
GraspME - Grasp Manifold Estimator

Janik Hager1, Ruben Bauer1, Marc Toussaint2,3, Jim Mainprice1,2
1Machine Learning and Robotics Lab, IPVS, University of Stuttgart, Germany

2Max Planck Institute for Intelligent Systems ; IS-MPI ; Tübingen/Stuttgart, Germany
3Technische Universität Berlin ; TUB ; Germany

1firstname.lastname@ipvs.uni-stuttgart.de 3lastname@tu-berlin.de

Abstract— In this paper, we introduce a Grasp Manifold
Estimator (GraspME) to detect grasp affordances for objects
directly in 2D camera images. To perform manipulation tasks
autonomously it is crucial for robots to have such graspability
models of the surrounding objects. Grasp manifolds have the
advantage of providing continuously infinitely many grasps,
which is not the case when using other grasp representations
such as predefined grasp points. For instance, this property
can be leveraged in motion optimization to define goal sets as
implicit surface constraints in the robot configuration space.
In this work, we restrict ourselves to the case of estimating
possible end-effector positions directly from 2D camera images.
To this extend, we define grasp manifolds via a set of keypoints
and locate them in images using a Mask R-CNN [1] backbone.
Using learned features allows to generalize to different view
angle, with potentially noisy images, and objects that were not
part of the training set. We rely on simulation data only and
perform experiments on simple and complex objects, including
unseen ones. Our framework achieves an inference speed of 11.5
fps on a GPU, an average precision for keypoint estimation of
94.5% and a mean pixel distance of only 1.29. This shows that
we can estimate the objects very well via bounding boxes and
segmentation masks as well as approximate the correct grasp
manifold’s keypoint coordinates.

I. INTRODUCTION

As humans share tasks with robots that are increasingly
more autonomous, it will become essential to provide user
interfaces or robot behaviors that allow to flexibly define
the task objectives. Hence in a human-robot collaborative
manipulation task, knowledge of the entire object’s grasp
manifold (i.e. suitable grasp candidates), provides a step in
this direction (e.g. shared autonomy). Note that the rapid
detection of grasp manifolds in image space can have other
applications ranging from robot motion planning to character
animation in video games.

In this paper, we a present a grasp manifold estimator
GraspME, based on the Detectron2 framework [2]. Our
model estimates the grasp manifolds, classifies the objects
and computes their bounding boxes and segmentation masks
all at the same time from a 2D image. A outcomes of such
a grasp manifold estimation is depicted in Fig. 1. We train
our model by supervised learning on simulation data from
an environment we develeopped in PyBullet [3]. We devised
two sets of objects: the first with simple geometry and the
second with more complex geometry from the 50 category
subset of 3DNet [4]. Our simulation environment generates
RGB, depth and segmentation images together with bounding

Fig. 1: Predicted grasp manifolds for complex objects using
our approach, depicted as black lines.

boxes and grasp manifold keypoints for each object in a
scene.

Object detection and semantic segmentation as well as
grasp point localization have been improved steadily by the
vision community which has led to a large list of baselines,
e.g. Mask R-CNN [1] and several models based on its
framework. Solutions based on grasp point detection often
either rely on predefined grasp points or trial and error
learning, which often proves to be rather unstable on unseen
objects. An important aspect is often neglected, namely that
for most objects, infinitely many grasp points exist instead
of just a few predefined. This amount of grasp points can
typically be defined by a manifold on a given object, mostly
depending on the object geometry.

Thus, our contribution consists of
1) the introduction of the new problem setting of grasp

manifold estimation on objects,
2) GraspME, a framework for object detection and grasp

manifold keypoints estimation from 2D images and
3) a simulation environment to generate suitable scenes

and data for this task.
Object’s grasp manifold provide more knowledge about

the scene than simple grasp points. In human-robot collabo-
ration this means providing more solutions for a handover. In
space sharing scenario this grasp manifold may lead to more
reactive behavior fallingback to different grasp solutions if
the human moves and thus minimally disrupting the human.

Another area that could benefit from grasp manifolds
is Task and Motion Planning (TAMP). For example, it
could be used in Logic Geometric Programming [5], where
optimization over continuously many grasp locations in a
manifold - in contrast to fixing a specific grasp - could lead
to a better trajectory with respect to the used control cost

ar
X

iv
:2

10
7.

01
83

6v
1 

 [
cs

.R
O

] 
 5

 J
ul

 2
02

1



or even lead to more feasible and stable solutions of the
problem.

This paper is structured as follows: In Section II, we
present relevant related work. We then formulate the problem
of grasp manifold estimation from images and introduce
notation in Section III. Before introducing our GraspME
framework and implementation in Section IV, we present
the dataset we work with to train our estimator in Section V.
Finally, Sections VI and VII present our experiments, results
and conclusions.

II. RELATED WORK

Our work merges the two research fields of object de-
tection and grasp point detection. The first part is done by
following Mask R-CNN [1] while we combine it with a
keypoint detection approach for the second.

Mask R-CNN: Mask R-CNN is a successor of Faster R-
CNN [6] and Fast R-CNN [7] and addresses the problem
of object detection. It consists of two parts, a backbone to
generate region proposals and a head to solve the actual
task. To detect objects, Mask R-CNN’s head is composed
of two computation branches of which one is responsible
for classifying the object and generating an axis aligned
bounding box while the second branch estimates the object’s
segmentation mask. Mask R-CNN has also been used before
to detect unseen objects in simulation in [8]. Regarding
keypoint estimation, Mask R-CNN suggested the extension
of their framework with a third branch to estimate human
poses using keypoints. Our own framework extends this
approach by applying it on a new problem of predicting grasp
manifolds and their corresponding keypoints.

Grasp Point Detection: A common approach to detect
grasp points is to predefine fixed points on objects and lo-
calize them to plan a grasp trajectory, e.g. [9]. These methods
often lack in generalizability, as they cannot work properly
on unseen objects without grasp point labels. Another pos-
sibility is to let the model learn to differentiate between
good and bad grasp points and extrapolate the knowledge to
unseen objects. To be able to do this distinction, the model
can either rely on predefined grasp points or more common
by executing random grasps on the objects and learn by trial-
and-error [10], [11], [12], [13].

A benchmark for object affordances has been recently in-
troduced [14] to evaluate point cloud deep learning networks.
Our framework complements the aforementioned approaches
by introducing manifolds that contain possible grasp points
from which an algorithm can sample and execute a grasp.

Keypoint Detection: The topic of keypoint detection is
often associated to Human Pose Estimation. There are also
several datasets for this problem, e.g. MPII [15] or COCO
[16]. Several approaches address Human Pose Estimation via
keypoint detection and incorporating domain knowledge, e.g.
the COCO 2016 keypoint detection winner [17].

However, keypoints detection has lately also being used
to tackle other problems such as improving the quality of
image generation [18] or object detection by estimating the

object’s center as keypoint [19]. We use keypoints to describe
the grasp manifolds and estimate them during inference.

III. GRASP MANIFOLDS

A. Definition

We formalize the concept of an object’s grasp manifold
as a region GM with a continuous closed border. Any point
p ∈ GM defines a potential grasp on the object, such that
the closing point of the gripper is the same as this point p.

To simplify the problem, we approximate such a grasp
manifold by a set of keypoints, to which we will refer to
as grasp manifold keypoints kpi. Typically, they are chosen
as corner points that span the corresponding manifold, thus
approximating it as close as possible.

B. Object and Gripper Geometry

Depending on the object’s geometry, the corresponding
grasp manifold can be defined as a line or a whole surface
(see next subsections).

We assume the usage of a parallel two finger gripper, i.e.
to perform a grasp using an object’s grasp manifold, the
gripper should be aligned parallel to the manifold such that
the closing point of the gripper would be on the chosen grasp
point on the manifold. We expect that this can easily be
extended to other types of gripper.

C. Simple Objects

We assume that the simple objects have a lengthy shape,
i.e. one of the sides along the axes is longer than the other, i.e.
the object’s main axis. In most cases, the main axis defines
already the grasp manifold, e.g. for cylinders and capsules. If
we neglect any other situational circumstances, it is possible
to perform a grasp on a cylinder or a capsule if the gripper
is aligned parallel to the main axis of the object.

Therefore, the grasp manifold for capsules and cylinders
is defined by the starting and the ending keypoint of the
object’s main axis going through the object’s center, resulting
in a line. An example of the grasp manifold for these two
object types can be seen in Fig. 2 as a red line.

For the cuboids, the manifold containing possible grasp
points is much larger. The main axis of the cuboid is still
the key to define it. However, it can expand in the upper
and lower direction as well, creating a plane parallel to the
cuboid’s faces, as can be seen on the left in Fig. 2 in red.
For simplicity, we reduced the grasp manifold for cuboids to
a line (the main axis), such that only two keypoints define
the grasp manifold for simple objects.

Fig. 2: The three object models in blue and transparent with
the corresponding grasp manifold in red: cuboid, cylinder,
capsule (left to right).



Fig. 3: The complex object models taken from 3DNet [4].

D. Complex Objects

For objects with less trivial geometries we defined the
grasp manifold manually by specifying the corresponding
keypoints. To simplify the problem, we restrict ourselves to
a maximum of K keypoints per object which approximates
the real grasp manifold.

The approximated grasp manifold is defined by connecting
the sequence of keypoints {kpi}ki=1 with k ∈ [2,K], con-
ditioned by the number of keypoints used to approximate
the grasp manifold for the corresponding object. The grasp
manifold of objects like bananas or bottles is a line, while it
is a surface for objects like cameras and guitars.

IV. THE GRASPME MODEL

Our proposed model estimates the grasp manifold from
2D images via keypoints localization instead of directly
computing the object’s pose, as mentioned in III.

Since this procedure is analog to human pose estimation,
we use the method of Mask R-CNN [1] and the correspond-
ing Detectron2 framework [2] as basis for our model.

A. Architecture

Similar to Mask R-CNN, our framework also consists
of two main parts. First, a backbone model, the Region
Proposal Network (RPN) from Faster R-CNN [6], is used
on the whole image to generate region proposals. These are
fed into the network’s region of interest (ROI) head for the
actual task: the classification, the bounding box detection, the
mask prediction and the keypoints estimation. The overall
framework architecture can be seen in Fig. 4.

For the backbone, we use the ResNet-FPN variant from
Mask R-CNN [1]. It consists of a ResNet [20] of depth 50,
denoted as ResNet-50, or of depth 101, denoted as ResNet-
101, with a Feature Pyramid Network (FPN) [21] on top. The
rest of the architecture follows the suggestions from Mask
R-CNN and the Detectron2 framework [2] for the Human
Pose Estimation. For our experiments, we use only the 2D
RGB images as input.

Depending on the object types, we set the number of
keypoints to detect to K = 2 for the simple objects and
to K = 10 for the complex objects. We chose this number
because we found that we do not need more than 10 to
approximate manifolds for our objects. Extending to more
keypoints would be possible. Since not every complex object
type needs 10 keypoints to define the corresponding grasp

Fig. 4: GraspME framework for grasp manifold estimation.

manifold, we add extra keypoints at the object’s origin with
a visibility flag equal to 0 such that each object type has a
set of 10 keypoints and these additional keypoints will be
neglected during the training.

Since our approach should be able to detect unknown
objects, all object types belong to the same category “object”
which leads to a class-agnostic object detection task. How-
ever, we additionally train a network with different object
classes for comparison.

V. TRAINING DATA GENERATION

Our simulation environment is based on PyBullet [3]. The
generated data should be diverse enough such that the trained
model generalizes to unseen poses and objects, and to real
data.

We consider the scenario where a robot grasps objects
from a flat table surface while observing the scene from
above. The camera’s position is sampled from a hemisphere
around the tabletop’s center. The camera records RGB and
depth data together with corresponding segmentation images
of the observed scenes. The segmentation images are auto-
matically generated by the PyBullet simulation.

Additionally, we store the axis aligned bounding boxes per
object and the keypoints that define the grasp manifold for
the corresponding object.

A. Bounding Boxes

The bounding boxes are computed by using the minimal
and maximal x- and y-coordinates of the object’s segmen-
tation mask. This way, we define the bounding box with
the lower point (xmin, ymin), its width w = xmax − xmin

and its height h = ymax − ymin. Due to occlusions, the
segmentation mask and the bounding box are computed only
for the object’s visible part.

B. Keypoints

We define the keypoints for each object type beforehand,
and project them during the simulation on the image plane
using the full projection matrix of the camera, giving us
the absolute position of a grasp manifold keypoint kpi =
(xi, yi).

Since a keypoint could be invisible due to being occluded
or outside of the camera’s view, we set a visibility flag vi for
them using the COCO format [16] for keypoint detection, i.e.
vi = 0 if the keypoint does not exist on the object, vi = 1
if the keypoint exists but is not visible and vi = 2 if the



TABLE I: An overview over the training parameters chosen
for the different architectures and experiments. The model
name is a concatenation of abbreviations of the training
parameters in the following order: backbone (R50/R101),
training data (S/C/P), class agnostic (merged classes = M)
or classification (C), iterations (40/80)

Model Name Backbone Class Agnostic Training Data Test Data Iterations

R50-S-M-40
ResNet-50-FPN

True

Simple Simple

40k
R50-S-C-40 False 40k
R50-S-M-80 True 80k
R101-S-M-40 ResNet-101-FPN True 40k
R101-S-M-80 True 80k
R50-C-M-40

ResNet-50-FPN
True

Complex Complex

40k
R50-C-C-40 False 40k
R50-C-M-80 True 80k
R101-C-M-40 ResNet-101-FPN True 40k
R101-C-M-80 True 80k

R50-P-M-40 ResNet-50-FPN True Part
Part

40kUnseen
Complex

R50-P-M-80 ResNet-50-FPN True Part
Part

80kUnseen
Complex

keypoint is visible. Furthermore, for the simple objects only,
if kp1 is not visible but kp2 is, we swap kp1 and kp2 and their
corresponding visibility flags such that kp1 should always be
visible. This is possible due to the symmetric properties of
those objects.

C. Object Shapes and Randomization

For cuboids, cylinders and capsules, the sizes are ran-
domized for each object instance before rendering them,
i.e. the cuboid’s length, width and height are chosen such
that the length has the largest value with a small probability
of generating cubes. The same holds for the capsule’s and
the cylinder’s length and radius. Typical samples during the
simulation can be seen in Fig. 5a.

For complex objects, we use a small subset of 11 objects
from the 50 category subset of 3DNet [4]: apple, banana,
bottle, camera, can, grenade, guitar, gun, maglite, mug and
pliers. These synthetic 3D mesh models are rescaled and
transformed from the original versions to fit our simulation.
The object models are depicted in Fig. 3 while some samples
from the simulation with complex objects can be seen in Fig.
1 and 5b.

To increase the diversity of the simulated dataset, we
incorporate domain randomization techniques which have
been proposed by Tobin et al. [22]. Hence, we randomize for
each scene separately, the camera’s view point, the lighting
conditions with one light source, the table’s color, the total
amount of objects and the objects’ colors, positions and
orientations before dropping them from above the tabletop
using simulated physics.

D. Training

The training procedure for the RPN, the classification, the
bounding box detection, the mask prediction and the keypoint
estimation are adopted from the Mask R-CNN which is why
we refer readers for further details to [1] and its predecessors
Fast R-CNN [7] and Faster R-CNN [6].

During training, we apply some randomly chosen online
augmentations to improve the generalizability of our model.

TABLE II: The results on the simple and complex test data
w.r.t. AP in percent (%), IoU of the grasp manifold in percent
(%) and mean pixel distance between keypoints on the three
main tasks of bounding box, mask and keypoint estimation.

Model Name APbb APseg APkp IoUclip IoUfull mDist

Random - - 0.0 0.6 ± 1.5 0.6 ± 1.5 38.84 ± 8.01
R50-S-M-40 93.3 93.2 22.7 39.7 ± 32.8 39.7 ± 32.8 9.18 ± 9.93
R50-S-C-40 93.8 93.6 24.4 39.8 ± 32.4 39.8 ± 32.4 8.82 ± 9.44
R50-S-M-80 93.3 93.5 23.5 39.9 ± 32.5 39.9 ± 32.5 8.33 ± 9.35
R101-S-M-40 94.2 94.1 23.0 39.2 ± 32.8 39.2 ± 32.8 9.33 ± 10.19
R101-S-M-80 93.9 94.0 24.6 40.2 ± 32.5 40.2 ± 32.5 8.12 ± 9.90

Random - - 0.0 8.2 ± 10.9 10.1 ± 11.0 26.61 ± 8.68
R50-C-M-40 96.4 93.1 93.5 64.8 ± 29.6 26.1 ± 22.2 1.52 ± 2.79
R50-C-C-40 94.9 91.2 91.5 64.4 ± 29.7 28.4 ± 24.1 1.57 ± 3.09
R50-C-M-80 96.5 93.1 93.4 64.8 ± 29.5 25.3 ± 21.5 1.51 ± 2.85

R101-C-M-40 96.7 93.4 93.7 65.2 ± 29.8 25.8 ± 25.2 1.53 ± 2.92
R101-C-M-80 96.5 93.2 93.2 65.4 ± 29.8 25.6 ± 25.0 1.48 ± 2.87

We use the implemented augmentations from the Detectron2
framework [2] like flipping and changes of lighting, satura-
tion, brightness and contrast, from which 2 augmentations
are chosen at random for each batch.

a) Dataset: We generated 40,000 synthetic scenes per
object set. The model is then trained on 80% of the data, i.e.
on 32,000 data points, while the remaining data is withheld
for validation and testing, each containing 4,000 data points.

The images are of size 512 × 512 pixels which we keep
fixed as input for our models. We collect these amounts of
data for three datasets: the first one contains only simple
objects (called “Simple”), the second one contains only
complex objects (called “Complex”) and the third contains
8 out of 11 complex objects (called “Part”). A fourth dataset
including 4,000 data points each for validation and for testing
contains the remaining three objects that did not appear in
any scene in “Part” (called “Unseen”).

b) Hyper parameters: We chose an image batch size of
10 while the batch size per image is 64 for the RPN and 128
for the ROI head due to memory restrictions. As we cannot
compare our method to any baseline due to lacking one, we
use different training parameters as follows to get a better
overview over the effects of these parameters.

The models are trained for 40k and 80k iterations with a
base learning rate of 0.001. We decrease the learning rate by
a factor of 10 after 30k iterations if trained for 40k iterations
and additionally after 60k if trained for 80k iterations. Due to
the similar approach, we use the two pretrained models from
Mask R-CNN for the Human Pose Estimation experiments as
initialization and finetune them on our datasets and problem
setting. The training of the models is performed on two
GeForce GTX 1080 Ti GPU. An overview over all model
configurations can be found in Table I.

VI. EXPERIMENTS

The experiments are conducted on the two scenarios
with simple objects and with complex objects. Since there
does not exist any baseline yet that estimates whole grasp
manifolds from 2D images, we can only compare different
architectures and training setups of our models. An overview
of the performed experiments for all of the model’s outputs
can be seen in Table I. Overall, we achieve an average speed



(a) Ground-truth for simple objects (b) Ground-truth for complex objects

(c) Predictions for simple objects on R101-S-M-80 (d) Predictions for complex objects on R101-C-M-40

Fig. 5: Results of the predictions (bottom) in comparison to the ground-truth (top) for simple (left) and complex objects
(right). The corresponding grasp manifolds are depicted as black lines.

TABLE III: The results on the complex test data including
unseen objects w.r.t. average precision (AP) in percent (%)
on the three main tasks of bounding box, mask and keypoint
estimation.

Data Iter. APbb APseg APkp IoUclip IoUfull mDist

Part
Rand. - - 0.0 9.6 ± 12.1 12.0 ± 12.1 26.34 ± 9.07
40k 96.6 92.4 94.5 68.7 ± 31.2 30.5 ± 23.4 1.30 ± 3.04
80k 96.5 92.3 94.3 69.1 ± 31.1 28.9 ± 21.8 1.29 ± 2.96

Unseen
Rand. - - 0.0 5.0 ± 6.4 6.0 ± 6.0 27.76 ± 7.99
40k 60.9 86.0 1.9 13.6 ± 15.6 12.1 ± 9.7 21.09 ± 8.12
80k 57.4 84.9 1.8 13.4 ± 15.7 12.1 ± 9.8 21.43 ± 8.20

Comp.
Rand. - - 0.0 0.6 ± 1.5 0.6 ± 1.5 38.84 ± 8.01
40k 89.4 92.2 56.4 51.0 ± 37.7 24.9 ± 22.1 7.77 ± 7.04
80k 88.0 91.8 54.1 51.1 ± 37.7 23.6 ± 20.6 7.88 ± 7.48

of 11.5 frames per second on one of the before mentioned
GPUs which makes our framework suitable for real time
applications.

A. Metrics

We evaluate our models using the standard COCO metrics
[16] regarding average precision (AP) for the three outputs
bounding box (bb), segmentation mask (segm) and keypoints
(kp). As the metric for the evaluation of the latter output
is optimized for human pose estimation, we additionally
compute the mean Intersection over Union (IoU) of the
ground-truth grasp manifold with the predicted one by using
the same number of keypoints as the ground-truth (clip) or
the full set of predicted keypoints (full) as well as its standard
deviation.

We also measure the mean pixel distance (mDist) of the
predicted keypoints to the ground-truth ones by matching
them first with the closest ground-truth keypoint set per
object. Afterwards, we conduct some ablation studies on
the different model architectures and training setups of our
models. Due to a lacking baseline, we compare our model
to the Random baseline, i.e. we randomly sample keypoints
from the predicted bounding boxes from the models R50-S-
M-40 for the “Simple” test dataset and R50-C-M-40 for the
“Complex”, “Part” and “Unseen” test datasets.

B. Simple Objects

As can be seen from the upper part of Table II, we achieve
a very high accuracy with all our models for the bounding
box detection and the segmentation mask estimation while
the AP for keypoints is rather low. The reason for this is
the objects’ symmetry, which makes it harder to estimate
the correct keypoints without any additional information.
Flipping the keypoint labels during training could solve this
problem, by specializing on certain image regions, i.e. kp1
could always be rather on the left of the object while kp2
could always be on the right.

As can be seen in Fig. 5c, if we detect an object, we indeed
predict the keypoints and the corresponding grasp manifolds
very well in comparison with its ground-truth in Fig. 5a.
The models with the ResNet-101-FPN backbone achieve the
highest accuracies as well as the best values for our own
metrics.

We get values around 40% for the grasp manifold IoUs,
which proves that our assumptions about the low APkp

values is correct. This might also be the reason for the
rather high mean pixel distances between the ground-truth
and the predicted keypoints. As all of the objects had two
ground-truth keypoints which were fully used, the values for
IoUclip and IoUfull are the same. Our model outperforms
the Random baseline by far in all of the keypoint related
metrics.

C. Complex Objects

The results of the bounding box detection and the segmen-
tation mask estimation, reported in the lower part of Table II,
are off similar quality as for simple objects. However, due to
the unique shape of the objects, the APkp values are much
higher as the keypoints are much easier to identify on the
objects.

This is also reflected in the low mean pixel distance
between ground-truth and prediction of around 1.6 pixels
which also leads to a grasp manifold IoU of 65%. Though
using the full set of available keypoints does not seem to be
helpful as the IoU is much smaller.



Fig. 6: Results of the predictions (bottom) in comparison
to the ground-truth (top) for unseen objects on R50-P-M-
40. The corresponding grasp manifolds are depicted as black
lines.

Objects with less keypoints do not benefit from the ad-
ditional keypoints as their grasp manifold is approximated
already well enough. Due to the larger number of keypoints,
the Random baseline achieves higher scores with our metrics
but is still a lot worse than our framework. Overall, the best
results are again achieved by the models with the ResNet-
101-FPN backbone. These accurate results can also be seen
in Fig. 5d, where we predict all of the keypoints nearly
perfect in comparison with its ground-truth in Fig. 5b.

D. Unseen Objects

For the third experiment, we want to evaluate the gener-
alizability of our models by using the dataset “Part” to train
on a subset of the objects and test on the dataset “Unseen”
containing some withheld objects. Additionally, we provide
results on the full dataset “Complex” with all objects. We
report the corresponding overview in Table III.

As can be seen, the models trained and evaluated on the
“Part” dataset achieve similar performance to the models
trained on the “Complex” dataset with respect to the COCO
metrics while getting even better scores with our own metrics
in terms of mean IoU with nearly 70% and mean pixel
distance to the ground-truth keypoints of around 1.3 pixels.
This could be due to the withheld objects that might belong
to the objects that are more difficult.

Even though the model has never encountered objects
from the “Unseen” dataset, it could still segment most of
them from the images and estimate corresponding bounding
boxes. However, computing the expected keypoints from the
ground-truth was not possible, following the COCO metrics
and the high pixel distance. There is some intersection of the
grasp manifolds though, as can be seen from the IoU values,
from which we can assume that a grasp manifold has still
been found by the models.

Using the full amount of keypoints decreases the quality
of the results. We assume that these low values overall
come from the very different object shapes in comparison
to the known object’s shapes and that it was difficult for
the model to approximate the expected grasp manifold and
the corresponding keypoints. However, the model might have
predicted another unintentional grasp manifold that is still

Fig. 7: Results of the predictions for unseen real data
on R101-C-M-40. The corresponding grasp manifolds are
depicted as black lines.

a valid grasp manifold. By extending our approach to find
several grasp manifolds or using more than one ground-truth
grasp manifold per object, we might be able to achieve better
results.

To emphasize this hypothesis, we compare some of the
results on the unseen objects in Fig. 6. As can be seen, the
result’s quality depends on the object. The grasp manifolds
for the maglites are quite accurate while the grasp manifolds
for the apples also seem to be rather close to the ground-truth.
As the guitar is the most difficult of these objects regarding
shape, the results are not so good in comparison with the
ground-truth. However, the model still often predicts a grasp
manifold by focusing on the guitar’s corpus which seems
to be valid, even if it is different from the expected one.
We conclude that our framework is able to estimate grasp
manifolds also on unseen objects.

As the “Complex” dataset contains both seen and unseen
objects, the COCO scores are obviously lower as for the
models trained on all objects but we still achieve very
good results in all three categories and also estimating the
grasp manifolds well enough as can be seen from the IoU.
Therefore, having some unseen objects mixed with known
objects does not decrease the results too much, except for
the mean pixel distance. The model might even benefit from
having these mixed scenes and hence, achieve better results.
Even for the “Unseen” dataset as well as for the “Part”
and the “Complex” datasets, our framework outperforms the
Random baseline.

E. Ablation Studies

To further evaluate our framework, we compare different
model architectures and training setups as ablation studies.
The first part is about the model’s architecture in terms of the
backbone. Regarding the results of our experiments, we can
see that models with the ResNet-101-FPN backbone achieved
better results than with the ResNet-50-FPN backbone.

Training the model by additional 40k iterations does not
seem to improve the results as much as expected regarding
the COCO metrics. For the ResNet-101-FPN backbone, the
model trained for only 40k instead of 80k iterations achieves
even better results. The higher number of training iterations
is only noticeable with respect to the IoU and the mDist.

The difference between using separate classes for each
object type or simply having one for all, i.e. having the
class-agnostic case, is rather unsignificant. For the complex
objects, the class-agnostic model achieves better results by
nearly 2 points in all three categories of the COCO metrics
and slightly better values for the IoU and the mDist metrics.



Therefore, we recommend the class-agnostic model as it can
also be used for unseen objects without additional training.

F. Real Data

We present initial results on real camera images. However,
as ground truth labels were not available, we could only
evaluate the resulting images. Some of the better results are
depicted in Fig. 7, which seems promising regarding the
usage in real applications, as in most cases the object’s main
axis is predicted.

VII. CONCLUSION

Overall, we showed that our models achieve good results
in terms of object detection for both simple and complex
objects. Even though the values for evaluating the models on
unseen objects are low, we can see that our framework could
still partially generalize to these shapes and predict a grasp
manifold. Thus, our model can support other methods for
finding suitable grasp points on objects by spanning a whole
manifold of possibilities. By having a frame rate of 11.5 fps,
we expect to use our approach for real time applications.

We plan to provide a proof of concept by integrating it
into a trajectory optimization framework and demonstrate
our model’s usage to perform human-robot-collaboration
tasks, e.g. via shared autonomy and autonomous environment
interactions in real scenarios. The sampled grasps in these
scenarios will also be compared to those provided by other
algorithms mentioned in Section II. Furthermore, we want
to extend our framework in taking advantage of additional
depth data to gain valuable information about the scene.

As this problem setting is unknown yet, we hope to draw
interest to this scenario and encourage other researchers to
approach it and use our framework as baseline.

ACKNOWLEDGMENT

We want to thank the authors of [1] and [2] for making the
code of their framework publicly available. This work was
conducted while Ruben Bauer was performing his Masters
dissertation in the Machine Learning and Robotics Lab,
University of Stuttgart, Germany. This work is partially
funded by the research alliance “System Mensch”.

REFERENCES

[1] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
IEEE Int. Conf. on Computer Vision (ICCV), 2017.

[2] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2.”
https://github.com/facebookresearch/detectron2,
2019.

[3] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning.” http://
pybullet.org, 2016–2019.

[4] W. Wohlkinger, A. Aldoma, R. B. Rusu, and M. Vincze, “3dnet: Large-
scale object class recognition from cad models,” in IEEE Int. Conf.
Robotics And Automation (ICRA), 2012.

[5] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning.,” in IJCAI, 2015.

[6] S. Ren and et. al., “Faster R-CNN: towards real-time object detection
with region proposal networks,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, 2016.

[7] R. Girshick, “Fast R-CNN,” in IEEE Int. Conf. on Computer Vision
(ICCV), 2015.

[8] M. Danielczuk and et. al., “Segmenting unknown 3d objects from real
depth images using mask r-cnn trained on synthetic data,” in IEEE
Int. Conf. Robotics And Automation (ICRA), 2019.

[9] F. Spenrath and A. Pott, “Gripping point determination for bin picking
using heuristic search,” Procedia CIRP, 2017.

[10] S. Levine and et. al., “Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data collection,” The Int.
Journal of Robotics Research, 2018.

[11] J. Mahler and et. al., “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” arXiv preprint
arXiv:1703.09312, 2017.

[12] D. Morrison, P. Corke, and J. Leitner, “Closing the loop for robotic
grasping: A real-time, generative grasp synthesis approach,” arXiv
preprint arXiv:1804.05172, 2018.

[13] D. Morrison, P. Corke, and J. Leitner, “Learning robust, real-time,
reactive robotic grasping,” The Int. Journal of Robotics Research,
2020.

[14] S. Deng, X. Xu, C. Wu, K. Chen, and K. Jia, “3d affordancenet: A
benchmark for visual object affordance understanding,” arXiv preprint
arXiv:2103.16397, 2021.

[15] M. Andriluka and et. al., “2d human pose estimation: New benchmark
and state of the art analysis,” in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2014.

[16] T.-Y. Lin and et. al., “Microsoft coco: Common objects in context,”
in European Conf. on Computer Vision (ECCV), Springer, 2014.

[17] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d
pose estimation using part affinity fields,” in IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2017.

[18] X. He, B. Wandt, and H. Rhodin, “Latentkeypointgan: Controlling
gans via latent keypoints,” arXiv preprint arXiv:2103.15812, 2021.

[19] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,” arXiv
preprint arXiv:1904.07850, 2019.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016.

[21] T.-Y. Lin and et. al., “Feature pyramid networks for object detection,”
in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2017.

[22] J. Tobin and et. al., “Domain randomization for transferring deep
neural networks from simulation to the real world,” in IEEE/RSJ Int.
Conf. on Intel. Robots And Systems (IROS), 2017.

https://github.com/facebookresearch/detectron2
http://pybullet.org
http://pybullet.org

	I Introduction
	II Related Work
	III Grasp Manifolds
	III-A Definition
	III-B Object and Gripper Geometry
	III-C Simple Objects
	III-D Complex Objects

	IV The GraspME Model
	IV-A Architecture

	V Training Data Generation
	V-A Bounding Boxes
	V-B Keypoints
	V-C Object Shapes and Randomization
	V-D Training

	VI Experiments
	VI-A Metrics
	VI-B Simple Objects
	VI-C Complex Objects
	VI-D Unseen Objects
	VI-E Ablation Studies
	VI-F Real Data

	VII Conclusion
	References

