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Joint Stiction Avoidance with Null-Space Motion in Real-Time Model
Predictive Control for Redundant Collaborative Robots

Julian M. Salt Ducaju, Björn Olofsson, Anders Robertsson, Rolf Johansson

Abstract— Model Predictive Control (MPC) is an efficient
point-to-point trajectory-generation method for robots that
can be used in situations that occur under time constraints.
The motion plan can be recalculated online to increase the
accuracy of the trajectory when getting close to the goal
position. We have implemented this strategy in a Franka Emika
Panda robot, a redundant collaborative robot, by extending
previous research that was performed on a 6-DOF robot.
We have also used null-space motion to ensure a continuous
movement of all joints during the entire trajectory execution
as an approach to avoid joint stiction and allow accurate
kinesthetic teaching. As is conventional for collaborative and
industrial robots, the Panda robot is equipped with an internal
controller, which allows to send position and velocity references
directly to the robot. Therefore, null-space motion can be added
directly to the MPC-generated velocity references. The observed
trajectory deviation caused by discretization approximations of
the Jacobian matrix when implementing null-space motion has
been corrected experimentally using sensor feedback for the
real-time velocity-reference recalculation and by performing a
fast sampling of the null-space vector. Null-space motion has
been experimentally seen to contribute to reducing the friction
torque dispersion present in static joints.

I. INTRODUCTION

Trajectory generation is a well-studied problem in the
robotics field. It consists of defining the path and the course
of motion as a function of time. An overview of the many
ways for doing this task is provided in [1]. In an industrial
setting, it is common to aim for performing a task in
the shortest time possible to increase productivity. To this
purpose, the robot should perform the given task under time
constraints, making it convenient to formulate the problem as
an optimal control problem, which provides a performance
metric by means of an objective function [2].

Model Predictive Control (MPC) [3], [4] is a well-
grounded option for trajectory generation in robotic ap-
plications, since its formulation can include a final-state
constraint to be satisfied at the end of its prediction horizon
while respecting states’ and inputs’ limits during the motion.
MPC uses a model of the robot to predict the future states
and outputs based on the solution’s choice of the input
sequence. In the presence of an internal controller with a
short time constant considering the robot dynamics, position
or velocity references can be used directly making a complex
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dynamic model not necessary in the MPC. Therefore, a
purely kinematic model can be used.

Moreover, online MPC trajectory recalculation can be per-
formed to increase the resolution of the computed trajectory
by setting a fixed final time while keeping the number of
discretization points of the MPC prediction horizon constant.
Then, the continuous-time prediction horizon of the MPC
problem will shrink, successively causing a reduction of
the sampling period every time the trajectory is recalculated
online [5].

Fig. 1. Franka Emika Panda robot used in the experiments.

In the context of robot trajectory reprogramming, it is
convenient that a human operator guides the robot through
direct interaction [6], which is known as kinesthetic teaching
[7] or lead-through programming (LTP), throughout the
entire trajectory or parts of it. For an operator to be able
to teach the robot, it is necessary to apply force on the robot
end-effector or links. In this situation, the human operator
should be comfortable with the physical interaction with
the robot. Thus, it is important to be familiar with the
force/torque required for leading the robot. Furthermore, the
online MPC trajectory recalculation scheme is useful in the
presence of human-robot interaction (HRI) since, after the
human intervention is over, it can still be possible to reach
the robot’s goal pose without violating the problem’s fixed-
time constraint.

Therefore, the necessary force should not vary greatly
between different human interventions. In order to ensure
that the force that the operator needs to apply is always
similar, joint stiction should be avoided. Joint static friction,
or stiction, occurs when a joint has zero velocity and it
becomes locked and constrained against relative motion [8].
This phenomenon is caused by the interactions between the



asperities of the surface in contact in a robot joint, such as
gears, bearings, and shafts [9].

Dithering has been proven as a successful method to
reduce these uncertainties [10]. However, it may cause vibra-
tion of the robot if the torque feedforward signal’s amplitude
is too high. Another option to avoid stiction, only available
for robots that have more than 6 degrees of freedom (DOF),
is to use null-space motion [11]. Null-space motion is a
linear combination of joint angular velocities in an over-
actuated robot that causes no change in the end-effector’s
pose (Jb = 0 with b 6= 0, being J the Jacobian and b the null-
space vector) [12]. It has previously been used in kinesthetic
teaching to modify the robot’s configuration without altering
the end-effector’s pose [13]. However, it can also be added
to the trajectory reference to ensure that no joint remains still
during the trajectory execution.

A trajectory generated for a 7 (or more) DOF robot may
not necessarily involve varying the angular position of all of
its joints, since it is a redundant system and it might be able
to reach any end-effector’s goal pose by only moving 6 of its
joints. However, there could be an unexpected robot response
if the operator tries to move a stationary joint since the
force/torque required will be difficult to predict because of
joint stiction [8]. The method that we propose to avoid joint
stiction consists of adding null-space motion to an MPC-
generated trajectory reference.

The purpose of this paper is to experimentally analyze the
effects of adding null-space motion to an MPC-generated
point-to-point trajectory reference to evaluate the possible
advantages and drawbacks of this method. Moreover, HRI,
facilitated by the addition of null-space motion, would allow
the operator to locally modify the robot’s path, which could
be relevant in this context since the trajectory reference is
generated considering only an initial and a final point. The
implementation has been performed on the Panda robot by
Franka Emika [14], a collaborative robot [15], which can be
seen in Fig. 1.

Furthermore, in previous research [5], an open-loop strat-
egy was implemented for the online trajectory recalculation
where the initial state of the robot used to solve the MPC
problem was estimated using the previous MPC solution.
However, the addition of null-space motion to the MPC-
generated reference may increase the error in the initial
state estimation at every trajectory recalculation period, or
metaperiod, and this error will accumulate at every online
recalculation. For this reason, it is also a goal of this paper
to evaluate the influence of joint angular position sensor
feedback in the estimation of the initial state of the robot at
the beginning of every metaperiod when adding null-space
motion to an MPC-generated trajectory reference. The use
of sensor feedback is referred to as the closed-loop strategy,
as opposed to the previously used open-loop strategy [5].

This paper is outlined as follows: Sec. II presents the
method for solving the problem that is being considered.
Section III explains the experimental setup and the experi-
ments performed, and presents the results obtained. Finally,
conclusions are drawn in Sec. IV.

II. METHODS

In this section, we introduce the MPC formulation used
for trajectory generation and explain a strategy to add null-
space motion to it. The goal of the trajectory-generation for-
mulation used is that the robot reaches a final configuration
under a time constraint. Additionally, we outline a hybrid
dual-mode controller that would allow to switch between an
MPC-based trajectory-following controller with null-space
motion, and an admittance controller for human interaction.

A. Trajectory Generation Using MPC

The motion plan generated by MPC consists of a sequence
of joint angular velocity references, since the robot’s internal
controller takes care of applying the necessary torques to
each of the joints. Therefore, the optimization problem can
be formulated in the joint space of the robot, using the robot’s
joint configuration q ∈ R7 since the robot has 7 joints,
instead of formulating the problem in terms of the robot
end-effector pose, ξ ∈ SE(3), which is composed by the
end-effector’s position and orientation.

The initial and final joint configurations, q0 and qF , of
the problem are obtained from the initial and desired end-
effector poses, ξ0 and ξF , respectively, by means of inverse
kinematics [16]:

q = K−1(ξ) (1)

Since this problem considers a 7 DOF robot, there will
be an infinite number of solutions. Therefore, redundancy
can be conveniently exploited to meet additional constraints
on the kinematic control problem in order to obtain greater
manipulability in terms of manipulator configurations, inter-
action with the environment, and null-space motion.

Moreover, since the robot is equipped with an internal
controller that allows a velocity-reference control mode and
we assume good tracking performance without exceeding the
torque limits [17], the MPC does not need to use a complex
nonlinear robot dynamic model where the torque is the input,
and a simpler kinematic linear model is considered where
the motion is defined in terms of position, velocity, and
other higher-order time derivatives of position [18]. Also,
the internal controller reduces the effect of dynamic coupling
between joints by means of torque feedforward.

Then, as in previous research [5], the continuous-time
model chosen can be constructed by multiple decoupled
chains of integrators. Thus, the continuous-time state vector,
xc ∈ R21, is composed by the angular position, qi, velocity,
q̇i, and acceleration, q̈i, of each of the robot joints i =
1, . . . , 7:

xc =
[
q1 q̇1 q̈1 . . . q7 q̇7 q̈7

]T
(2)

The continuous-time linear model can thus be written as:

ẋc(t) = Acxc(t) +Bcuc(t) (3)
yc(t) = Ccxc(t) (4)

with

Ac = blkdiag([Ãc, . . . , Ãc]), Bc = blkdiag([B̃c, . . . , B̃c])



and Cc = I21, where I21 is the identity matrix in R21x21,
blkdiag(·) forms a block diagonal matrix from the given list
of matrices, Ac ∈ R21x21, Bc ∈ R21x7, and

Ãc =

0 1 0
0 0 1
0 0 0

 , B̃c =
[
0 0 1

]T
The continuous-time input is the angular jerk of the joints,
uc =

...
q ∈ R7.

For the choice of sampling period, h, to discretize the
continuous-time linear system, a sampling period different
from the one of the controlled system was chosen for the
discretization of the kinematics in the optimization. Then, a
linear interpolation of the calculated input sequence is used
to provide references at the sampling rate of the robot [5].
This justifies the use of a predictive first-order-hold (FOH)
sampling method [19]:

xk+1 = Φxk +
1

h
Γ1uk+1 +

(
Γ− 1

h
Γ1

)
uk (5)

yk = Cxk (6)

with

Φ = blkdiag([Φ̃, . . . , Φ̃]), Γ1 = blkdiag([Γ̃1, . . . , Γ̃1]),

Γ = blkdiag([Γ̃, . . . , Γ̃])

where Φ ∈ R21x21, Γ1,Γ ∈ R21x7, and:

Φ̃ =

1 h h2/2
0 1 h
0 0 1


Γ̃ =

[
h3/6 h2/2 h

]T
Γ̃1 =

[
h4/24 h3/6 h2/2

]T
C = Cc

As developed in previous research [5], the discrete-time
model obtained from the FOH sampling method (5), (6) can
be rewritten in the standard form by using a new discrete
state variable, ζ ∈ R21:

ζk+1 = Aζk +Buk (7)
yk = Cζk +Duk (8)

where

A = Φ, B = Γ +
1

h
(Φ− I21)Γ1, D =

Γ1

h

Since yk = xk because of (6) and C = I21, we can from
(8) obtain the relation:

xk = Cζk +Duk (9)

It should be mentioned that the input u is the discretized
counterpart of uc, and the discrete controlled variable x is the
discretized counterpart of xc. On the contrary, the discrete-
time state ζ is not a discretized version of any variable found
in the continuous-time state-space system formulation (3),
(4).

Moreover, the quadratic cost function chosen for solving
this problem at time step k is:

Vk(Uk) =

k+H∑
j=k+1

xTj Qxj +

k+H−1∑
j=k

uTj Ruj (10)

where Uk = [uk, . . . , uk+H−1] ∈ R7xH is the input signal
sequence over the control horizon of H steps that minimizes
the cost function over the MPC prediction horizon of H
steps at every metaperiod, and Q ∈ R21x21 and R ∈ R7x7

are positive semi-definite weight matrices that penalize the
controlled variables and inputs, respectively.

This optimization problem is subject to the discrete-time
model of the system (7), (9). Additionally, a hard constraint
on the value of the discrete-time final controlled variables is
used to ensure that the robot reaches the desired configuration
at the end of the trajectory:

xk+H = xgoal (11)

In addition, a set of linear constraints must be included
to bound the admissible range of the inputs and controlled
variables:

F [uTk , . . . , u
T
k+H−1]T ≤ f (12)

G[xTk+1, . . . , x
T
k+H ]T ≤ g (13)

The choice of the cost function as convex, as well as a
linear model and convex constraint sets, makes the whole
problem convex, which is beneficial for the computation
of the problem since if a solution exists, it is the globally
optimal [20].

Finally, this convex problem is solved at every trajectory
recalculation period, or metaperiod. The sampling period, h,
used in the discretization is equal to:

h =
TF − tk
H

(14)

where H is the number of discrete steps in the prediction
horizon, TF is the final time where the goal state must be
reached, and tk is the time when the robot starts using the
newly recalculated trajectory reference. As mentioned earlier,
the continuous-time prediction horizon of the problem will
shrink since, as time goes by, tk will increase while the
final time TF and H are constant, thus increasing the
resolution of the computed trajectory as the goal state, xgoal,
is approached.

B. Null-Space Motion Addition to the Reference Trajectory

The manipulator’s Jacobian matrix, J(q) ∈ R6x7, maps
the joint angular velocities, q̇, to the end-effector’s twist,
γ = [ωT, vT]T ∈ R6, with v and ω denoting the linear and
angular velocity of the end-effector, respectively:

γ = J(q)q̇ (15)

Therefore, null-space motion is constructed by using the null-
space vector of this Jacobian matrix:

q̇ = J†(q)γ +N(q)q̇a (16)



where the matrix N(q) = I7 − J†(q)J(q) ∈ R7x7 projects
the additional arbitrary joint angular velocity, q̇a, into the null
space so that it is independent of the end-effector Cartesian
motion [16].

The first term of (16) is the relationship between the joint
velocity q̇ and the end-effector’s twist γ by means of the ma-
nipulator Jacobian (15), and superscript † denotes the Moore-
Penrose pseudoinverse matrix given by J† = (JTJ)−1JT

[21]. This term is shared for both 6 and 7 DOF robots,
although in the case of 6 DOFs, the Jacobian is a square
matrix. However, the second term of (16) is the null-space
motion, which only appears in redundant manipulators. The
null-space motion unitary vector is calculated as:

q̇nsu =
N(q)q̇a
‖N(q)q̇a‖

(17)

Also, since the Jacobian matrix is particular for each robot
configuration, this vector should be sampled in real-time.

The null-space unitary vector given in (17) has to be scaled
before being included with the MPC-generated angular ve-
locity references. A sinusoidal signal has been chosen to
smoothly transition between positive and negative scaling
values to avoid reaching any joint limit. Its frequency de-
pends on the length of the trajectory execution, to make sure
that the first and last velocity references sent are equal to 0.
Additionally, α ∈ R is a constant used to scale its amplitude:

q̇NS = q̇nsuα sin

(
2πt

TF

)
(18)

Then, null-space motion is calculated at each robot sam-
pling instant and added to the velocity references calculated
by the optimization to avoid joint stiction:

q̇ref = q̇MPC + q̇NS (19)

where q̇ref is the velocity references sent to the robot,
q̇MPC is the linearly interpolated velocity reference sequence
calculated by the MPC, and q̇NS is the null-space motion
component obtained from (18).

Moreover, the controlled-variable constraint (13) should
consider the superposition of the null-space motion on the
MPC solution to avoid any possible constraint violation.
Therefore, when solving the MPC optimization the joint-
velocity range should be reduced for every joint in a
proportional way to the maximum possible joint-velocity
component corresponding to the added null-space motion.
With this approach, it is guaranteed that the joint-velocity
limits are fulfilled. Also, the joint-acceleration range should
be conservative to never exceed the joints’ torque limits [17].

Finally, joint angular position sensor feedback can be
used to reduce the mismatch between the estimation of
the initial state used for the online optimization-problem
calculation at every metaperiod and its real value caused
by the addition of null-space motion to the MPC-generated
trajectory. Therefore, a closed-loop form of the problem is
proposed to obtain a more accurate estimation of the initial
state to be used in the MPC. However, data samples from
the robot’s sensors cannot be directly used as the initial state,

since there is a planned computational delay that accounts
for the time required to solve the optimization problem in
the MPC. Therefore, in order to provide a precise initial state
estimation it is necessary to use the system’s model described
by (7) and (9) to estimate the state evolution between the
sampling time of the sensor feedback and the time where
the new trajectory velocity references are deployed to the
system.

C. Human-Robot Interaction (HRI)

Even though the main focus of this research is to analyze
the effects of a method that facilitates HRI by reducing joint
stiction, we also provide an illustrative example of one pos-
sible way that a human operator can interact with the robot.
Then, we outline a hybrid dual-mode controller where the
robot receives commands from the MPC-generated trajectory
that includes null-space motion (19), or from human-robot
interaction, but never from both sources simultaneously, as
summarized in Algorithm 1.

Since human input is, in this scenario, a path correction
to the previously generated MPC trajectory reference, ad-
mittance control [13] is a suitable strategy for the human-
interaction control mode. Another common human-robot
interaction control strategy such as compliance control [22]
is less appropriate for this application since its virtual spring
component would try to bring the robot closer to the MPC
reference rather than allowing the human to freely operate
the robot.

If a joint-torque interface is available, a simple way to
implement admittance control is to supply the robot with
joint torque commands. For this, the rigid-body dynamics of
the robot is used [12]:

M(q)q̈ + C(q, q̇)q̇ + g(q) + τfric = τmot (20)

where M(q) ∈ R7x7 is the generalized inertia matrix,
C(q, q̇) ∈ R7x7 describes the Coriolis and centripetal forces
effects, g(q) ∈ R7x1 captures the gravity-induced torques,
and τfric ∈ R7x1 and τmot ∈ R7x1 represent the friction and
motor torques, respectively.

Then, if the admittance controller is active (Algorithm 1,
Line 2), it will send commanding torques to joint motors that
are equal to the sensed external joint torques, τext ∈ R7x1:

τmot = τext (21)

where part of the commanded joint torque is used for robot
motion, but a fraction of the commanded joint torque is used
to overcome joint friction, as seen in Eq. (20).

Friction is present in any element that involves relative
motion in robot mechanisms. All friction models have in
common a significant change of friction magnitude in the
zero-velocity vicinity, as shown in Fig. 2, which is the major
concern of friction compensation [23]–[26]. For this reason,
avoiding joint stiction is helpful for the human operator that
interacts with the robot to predict beforehand the necessary
force that he/she should apply to the robot to achieve the
desired displacement.



Fig. 2. Joint friction as a function of joint angular velocity.

Finally, a switching mechanism between both control
modes (Algorithm 1, Line 1), trajectory following with null-
space motion addition and admittance control, based on
external torque sensor feedback, can be either automatic,
following a collision detection and classification method (a
summary of different strategies can be found in [27]), or
manually determined by the human operator.

Algorithm 1 Hybrid Dual-Mode Controller
1: if human is interacting with robot then
2: HRI mode: Send τext (21) as command to the robot’s

torque-reference interface.
3: else
4: Trajectory-following mode: Send q̇ref (19) as com-

mand to the robot’s velocity-reference interface.
5: end if

III. EXPERIMENTS AND RESULTS

The experiments presented in this section evaluated the
performance of the addition of null-space motion onto an
MPC-generated trajectory.

A. Implementation and Experimental Setup

The robot used in the experiments is the Franka Emika
Panda [14], a 7-DOF robotic arm. In addition to the joint
velocity interface, the robot’s internal controller also allows
the operator to send joint position and torque commands.
The Panda robot has a sampling rate of 1 kHz, and therefore,
references should be sent to it every 1 ms. A photo of the
robot used is shown in Fig. 1.

This collaborative robot, or cobot [15], is designed to share
its workspace with humans in a safe manner, and it allows
the human operator to set different maximum external-
torque thresholds for each of the control modes so that if
an accidental collision between the robot and the operator
happened, the robot would perform a security shutdown.

As for the design choices for trajectory generation, the
MPC prediction horizon was chosen to be equal to H = 25
as a trade-off between trajectory resolution and real-time
computational cost, and the recalculation metaperiod was
equal to 0.1 s. Also, the weighting matrix Q penalized the
joint velocity and acceleration, but not the joint angular

position, since there was no specific desired position be-
tween the initial and the final states [5], and since a hard
constraint (11) was imposed on the final joint position,
Q = blkdiag([Q̃, . . . , Q̃]) where Q̃ = diag(

[
0 1 1

]
).

Additionally, the input was less penalized than the states,
R = 0.001 I7.

The first experiment presented analyzed the detrimental ef-
fects of slowing the sampling rate of the null-space vector of
the Jacobian matrix. Then, the second experiment showed the
suitability of using sensor feedback when adding null-space
motion to MPC-generated trajectory references. Moreover,
the third experiment focused on the results obtained for a
closed-loop, fast null-space sampling approach where one of
the joints would have remained static if null-space motion
had not been included. Finally, the last experiment evaluated
the dispersion of friction torque as a function of the joint
angular velocity.

B. Experiment 1: Analysis of the effects of the null-space
sampling rate on the trajectory accuracy

This experiment studied the effects of null-space dis-
cretization by performing the same trajectory in different
runs, the only difference being that each run was performed
at a different sampling rate of the null-space vector of the
Jacobian matrix (1, 2, 5, and 10 ms). Since the null-space
vector depends on the robot’s configuration, a slower null-
space sampling increases the difference between the null-
space vector that is used for the velocity reference and the
actual null-space vector.

The robot’s initial configuration, randomly chosen, was,
in radians:

q0 =
[
0 −0.79 0.0 −2.36 0.0 1.57 0.0

]
(22)

Moreover, the trajectory lasted 10 s, enough time to clearly
see the detrimental effects of a slower sampling rate of the
null-space vector. Also, the trajectory consisted only of null-
space motion, and the unitary null-space vector was scaled
by a sinusoidal wave of frequency equal to 1 Hz and an
amplitude constant, α, equal to 3 in (18). Therefore, at the
end of the trajectory, the end-effector should ideally have
the same pose as the initial one. Furthermore, an open-loop
strategy was used for this experiment in an attempt to isolate
the effects of having an insufficient sampling frequency of
the null-space vector.

The temporal evolution of the robot’s pose has been
analyzed using Figs. 3 and 4. Figure 3 shows the temporal
evolution of the end-effector’s Cartesian coordinates and
Fig. 4 the temporal evolution of the end-effector’s orienta-
tion, by means of the Euler rotation angles (ZYX) from the
robot base coordinate reference system to the end-effector’s
coordinate reference system. It can be observed how slowing
the sampling rate caused the robot to drift from the desired
constant end-effector’s Cartesian pose.

Consequently, the null-space vector should be updated at
the fastest update rate available, which in this case was
the robot’s sampling frequency (1 kHz). However, varying
the null-space velocity references in intervals of 1 ms still



Fig. 3. Experiment 1 — End-effector’s position with respect to base frame.

Fig. 4. Experiment 1 — End-effector’s orientation with respect to base
frame.

introduced a slight deviation from the planned trajectory, as
seen in Figs. 3 and 4. For this reason, the next experiment
considered a closed-loop approach to compensate the distur-
bances introduced by the approximate null-space motion.

C. Experiment 2: Comparison of the open-loop and the
closed-loop strategies

Sensor feedback from joint position sensors can be used
when updating the initial state estimation for online opti-
mization in the MPC to account for the degrading effects
of low-rate null-space sampling observed in the previous
experiment. To show the benefits of using sensor feedback, it
was necessary to compare the results of the implementation
of null-space motion in the closed-loop MPC strategy versus
the open-loop MPC strategy.

Several reference trajectories with different initial and goal
robot configurations were used for this experiment. Addition-
ally, each of them was executed five times. These trajectories
combined null-space motion and MPC-generated trajectory
references. Also, the null-space vector was sampled every
ms and the sinusoidal scaling function’s period was equal to
the length of the trajectory.

The results of Experiment 2 are presented in Table I,
which shows the mean and standard deviation of the end-
effector’s Cartesian position error at the end of the trajectory.

The following expression was used for calculating this error:

e =
√

(xG − xF )2 + (yG − yF )2 + (zG − zF )2 (23)

where the subindex G refers to the goal position and the
subindex F refers to the final position end-effector coordi-
nate of the corresponding trial.

TABLE I
END-EFFECTOR’S FINAL CARTESIAN POSITION ERRORS [MM]

CL - NS CL OL - NS OL
Mean 1.43 0.48 5.97 1.18

Std. Dev. 0.78 0.25 0.39 0.11

In Table I, CL and OL refer to the closed-loop and the
open-loop implementations, respectively, and NS to the runs
that included null-space motion. Several assertions can be
made based on Table I. First, when no null-space motion
was added, the closed-loop strategy provided a more precise
final Cartesian position, since there was a better initial state
estimation at each MPC trajectory recalculation. Also, in
both open-loop and closed-loop scenarios, including null-
space motion was detrimental to the final state precision of
the trajectory. Finally, using an open-loop strategy caused a
greater total final Cartesian position error and therefore, if
possible, a closed-loop scheme should be used to implement
null-space motion.

D. Experiment 3: Null-space motion integration with closed-
loop MPC in a trajectory that would have left one joint static

Once the two previous sets of experiments had shown
the suitability of sampling the null-space vector as fast
as possible and using a closed-loop control strategy to
compensate for the degrading effects of adding null-space
motion to an MPC-generated trajectory reference, the results
for the closed-loop controller in one of the trajectories of
Experiment 2 were analyzed.

Figure 5 shows how the addition of null-space motion
modified the total velocity references (19). It can be seen
that Joint 3 was not used in the MPC-generated trajectory,
but it was desired to have it continuously moving to avoid
its stiction, thus justifying the addition of null-space motion
to the trajectory.

Figures 6 and 7 show the temporal evolution of the end-
effector’s position in Cartesian coordinates and the temporal
evolution of the end-effector’s orientation parameterized in
the Euler rotation angles (ZYX) between the robot’s base
frame and the end-effector’s frame, respectively. Even though
the velocity references were different, null-space motion was
properly implemented in the MPC trajectory generation since
the temporal evolution of the end-effector pose was very
similar in both trials, and it only showed slight deviations
in the y-position in Fig. 6 and in the x-axis rotation in
Fig. 7, which were compensated before the motion was
finished. Therefore, joint stiction in Joint 3 was addressed by
adding null-space motion, while still being able to perform
an accurate trajectory under the task time constraints.
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Fig. 5. Experiment 3 — Joint angular commanded velocities’ evolution.
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Fig. 6. Experiment 3 — End-effector’s position with respect to base frame.
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Fig. 7. Experiment 3 — End-effector’s orientation with respect to base
frame.

E. Experiment 4: Friction torque dispersion

The final experiment evaluated the dispersion of the fric-
tion torque in a joint as a function of its angular velocity.
For this purpose, the torque-based admittance controller in
Sec. II-C was implemented, so that the commanded torque
to each of the joints was equal to their sensed external torque
signals. Also, the friction torque for all joints was estimated
by rewriting Eq. (20) as:

τ̂fric = τ̂ext − (M(q̂)ˆ̈q + C(q̂, ˆ̇q)ˆ̇q + g(q̂)) (24)

where the superscript ˆ denotes a variable that has been
estimated using joint position or torque sensor data.

Then, the experiment consisted of a human operator
leading-through the robot for 15 s using this torque-based
admittance controller. Figure 8 shows the results in terms of
the standard deviation, σ, of the estimated friction torque of
a joint in Eq. (24) with respect to its angular velocity.
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Fig. 8. Experiment 4 — Standard deviation of the friction torque as a
function of angular velocity of Joint 3.

The choice of joint and its angular-velocity range, shown
in Fig. 8, was related to the experiment presented in
Sec. III-D, since the motion of Joint 3 was generated only by
null-space motion and had the same angular velocity range,
as seen in Fig. 5.

It can be seen that the standard deviation of the friction
torque was greater when the angular velocity of the joint
was close to zero: σ(τ̂fric) = 0.13 Nm in the vicinity of zero
velocity compared to an average value of σ(τ̂fric) = 0.03 Nm
in the rest of the angular velocity range analyzed. Therefore,
adding null-space motion to a static joint can contribute to
reducing the friction torque dispersion.

IV. CONCLUSION

We have proposed the addition of null-space motion to an
MPC fixed-time point-to-point online trajectory generation
method in order to facilitate kinesthetic teaching in a re-
dundant robot. This approach allows a continuous motion
of all joints throughout the trajectory execution, even if
the MPC-generated trajectory does not include them in its
planning, so that joint stiction is suppressed and a human
operator can predict the force/torque necessary to move the
robot. A reduction of the friction-torque dispersion has been
experimentally observed as a consequence of adding null-
space motion in a static joint.

The discrete-time control of null-space motion has been
observed to be sensitive to discretization approximations of
the Jacobian matrix. The experiments performed have justi-
fied the extension of a previously studied open-loop scheme
[5] to a closed-loop scheme and a fast Jacobian matrix



sampling to correct these slight degrading effects on the
trajectory execution performance, thus allowing the addition
of null-space motion to the trajectory without causing a
significant loss of final-state accuracy.

An additional benefit of the presented closed-loop strategy
is that, if human intervention takes place during the trajectory
execution, the trajectory can be recalculated online once
human intervention is concluded using an accurate estimation
of the initial state in the MPC problem.
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