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Abstract— While 2D occupancy maps commonly used in mo-
bile robotics enable safe navigation in indoor environments, in
order for robots to understand and interact with their environ-
ment and its inhabitants representing 3D geometry and seman-
tic environment information is required. Semantic information
is crucial in effective interpretation of the meanings humans
attribute to different parts of a space, while 3D geometry is
important for safety and high-level understanding. We propose
a pipeline that can generate a multi-layer representation of
indoor environments for robotic applications. The proposed
representation includes 3D metric-semantic layers, a 2D occu-
pancy layer, and an object instance layer where known objects
are replaced with an approximate model obtained through a
novel model-matching approach. The metric-semantic layer and
the object instance layer are combined to form an augmented
representation of the environment. Experiments show that the
proposed shape matching method outperforms a state-of-the-art
deep learning method when tasked to complete unseen parts of
objects in the scene. The pipeline performance translates well
from simulation to real world as shown by F1-score analysis,
with semantic segmentation accuracy using Mask R-CNN acting
as the major bottleneck. Finally, we also demonstrate on a
real robotic platform how the multi-layer map can be used to
improve navigation safety.

I. INTRODUCTION

In recent years, we have witnessed great advances in
computer vision which have given robots the ability to
understand the world around them like never before [1], [2].
At the same time, advances in control of mobile platforms
have enabled robots from quadrupedal robot dogs to drones
to move in different environments and react to unpredicted
circumstances with high reliability.

However, when considering a mobile robot’s ability to
perform advanced high-level tasks in unstructured human-
inhabited environments, there is a crucial bottleneck stifling
the ability of these sensing and acting breakthroughs to
lead to the desired level of autonomy, performance, and
interaction: the way robots reason on this rich perceptual
knowledge is still very limited. When considering navigation
for example, ground robots still rely on 2D occupancy maps
built using Simultaneous Localization and Mapping (SLAM)
algorithms for path planning and obstacle avoidance. These
maps are built using only laser scanners and the rich infor-
mation coming from the variety of visual sensors available
to modern robots is mostly ignored. The combination of
these sensors would allow the robot to formulate a better
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Fig. 1: An environment representation built using the pro-
posed framework.

understanding of its surroundings and, in the case of nav-
igation, to take more intelligent choices to plan its route,
e.g., by avoiding obstacles invisible to the laser scanner.
Similarly, while interacting with humans, understanding ob-
ject semantics is crucial for understanding commands in
everyday language [3]; having a richer understanding of the
environment opens the door for complex capabilities such as
mobile manipulation and natural user interaction.

Though methods exist in literature to construct a meaning-
ful 3D representation of the environment [4]–[6], the acquisi-
tion of a full 3D map of an environment is a time-consuming
process. In most realistic scenarios, the underlying geometry
reconstructed by these methods is often incomplete, due to
time concerns, occlusions, or environmental traversability
limitations affecting the perception of the scene during the
mapping process. However, partial geometry is a consider-
able drawback in some applications; for example, when a
robot has to interact with an object, the lack of knowledge of
complete geometry can pose safety risks either to the object,
the surroundings, or the robot itself. Moreover, complete
objects model are also essential for user immersion and safe
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navigation in telepresence applications [7].
In this paper, we propose a mapping pipeline to construct

3D metric-semantic environment representations which in-
clude estimates of the full extent of objects in the environ-
ment through object shape completion. An example of this
representation is shown in Fig. 1. We also propose a novel
deterministic approach based on matching (and potential re-
placement) of a partial object with a similar synthetic model
from a known database, which avoids the unpredictability of
recent deep-learning-based shape completion approaches. In
the experiments, we validate our approach by comparing it
to a state-of-the-art deep-learning-based approach for shape
completion of chairs.

To summarize, the contributions of this paper are:
• A pipeline to generate a 3D metric-semantic mesh

representation of an environment that completes partial
objects with similar complete synthetic models.

• Design and evaluation of a novel method to compare
and match partial observations of 3D object instances
against a database of synthetic models and to replace
the partial 3D mesh with the matched model in the
reconstructed 3D mesh of the environment.

• Evaluation and comparison of a learning-based ap-
proach to complete partial observations of 3D object
instances against our proposed method.

• A demonstration of benefits of the proposed environ-
ment representation in a 2D navigation case on a real
TurtleBot 3 Waffle.

II. RELATED WORK

Building environment representations where complete
models of objects are estimated requires first reconstructing
the 3D geometry of the environment, understanding its se-
mantics, and then shape-completing each object instance. In
this section, we will review state-of-the-art relevant to these
fields, together with relevant works in multi-layer mapping
for robots.

Reconstruction of 3D geometry: The availability of
inexpensive RGB-D cameras such as Kinect has resulted in
profound advances in developing 3D reconstruction methods.
KinectFusion [4] popularised Truncated Signed Distance
Function (TSDF)-based reconstructions as capable of real-
time reconstruction of small environments. The main draw-
back of KinectFusion is the use of a fixed-size voxel grid
which requires the map size to be known and a large
amount of memory. Multiple extensions have been proposed
to address these shortcomings [8], [9]. Among these, Nießner
et al. [10] propose a spatial hashing scheme to compress
space while allowing real-time access and updates of un-
derlying surface data. This spatial hashing was faster than
the hierarchical grid data structure used in other methods,
however, it relies heavily on GPUs for real-time performance.
By exploiting the spatial hashing technique employed in [10],
Voxblox [5] focused on improving memory efficiency and
real-time performance on the CPU by building incremental
Euclidean Signed Distance Fields (ESDFs) from TSDFs.
This makes Voxblox able to reconstruct large scale scenes

with reasonable computational costs. In this work, since we
are interested in building 3D model of complete environ-
ments, we employ Voxblox in the geometric reconstruction
module.

Semantic reconstruction: The recent innovations in
image segmentation methods enabled semantic knowledge
to be incorporated into 3D reconstructions into so called
semantic-metric representations. Among the methods to per-
form 3D semantic mapping, SemanticFusion [6] combines
the real-time SLAM system ElasticFusion [11] and a CNN
for object detection with a Bayesian update scheme for
semantic label integration, Voxblox++ [12], an extension of
Voxblox, combines geometric segmentation of depth data
with instance segmentation by Mask R-CNN [1]. A data
association strategy keeps track of labels to ensure global
consistency. On the same line, Kimera-Semantics [13] uses
Voxblox allowing however flexibility for choice for the 2D
instance segmentation algorithm. It runs faster than [12]
and shows accurate reconstruction when compared against
ground-truth. In this work, we employ Kimera-Semantics
with Mask R-CNN to build semantic representations.

Shape completion: Shape completion is the process for
inferring a full 3D model of an object based on a partial
measurement. Two main approaches to the problem exist:
model-matching and generative. Model-matching methods
attempt at matching a partial view to a similar model. The
most recent example of this class of methods is Scan2CAD
[14] which uses a 3D CNN trained on a custom dataset
to learn joint embedding between real and synthetic 3D
models to predict accurate correspondence heatmaps between
model and scan. It requires entire 3D scan of a scene as
input and tries to find the alignment of models of all the
objects in the scene. The method, however, does not utilize
any semantic information of the scene. Recently, generative
deep learning methods for shape completion have attracted
increasing interest in the community. Although methods
working on voxel data exist [15], point-clouds are better
suited to represent objects at different resolution. Among the
methods working on point-clouds [16]–[18], one of the best
performing ones is Point Completion Network (PCN) [2], a
shape completion method based on the PointNet architecture.
It is capable of generating high-resolution completions and
shows generalization over unseen objects and real-world
data. However, most of the results presented in works on deep
learning shape completion only pertain synthetic data and
their ability to transfer from synthetic-partial data to real data
has been questioned [17]. Moreover these methods often do
not account for much input noise while training. The problem
of scene completion (i.e., shape-completing all objects in a
scene) is less explored and in that context, which we target
in this work, errors in semantic segmentation or geometric
reconstruction of the scene can further increase the transfer
gap and lessen the performance of deep learning methods
even more. In this work, we explore the ability of PCN to
transfer to noisy real data as well as propose a novel model-
matching approach for scene completion and augmentation.



Fig. 2: Detailed overview of the pipeline

Multi-layer mapping: Multi-layer maps for robotics are
not a new concept. Many works have proposed hierarchical
mapping methods where a 2D occupancy map is maintained
together with traversability graphs and topology [19], [20].
However, these architectures rarely include multiple maps
capturing the environment as seen by different sensor modali-
ties but rather abstract the environment to facilitate reasoning
and human-robot interaction.

Recently, motivated by the advancements in computer
vision and machine learning, interest has increased toward
multi-layer mapping formalisms able to include different sen-
sor information. In [21] a 2D multi-layer mapping framework
composed of a metric, semantic, and exploration layers is
proposed, and its application in the context of autonomous
semantic exploration is presented. In that work, the focus is
left on 2D mapping only, and no object shape completion is
attempted. Rosinol et al. [22] propose a hierarchical graph
comprised of multiple layers, including one where object
extents are estimated by fitting a CAD model to the partial
object. In this work, we propose a more general approach
to shape completion, by matching over a database of object
models, instead of a single one.

III. PROBLEM FORMULATION

The aim of this work is to build rich map representations
where geometric information of the environment is main-
tained together with the object semantics. Additionally, we
want to maintain an estimate over the full extent of each
object.

Formally, we want to build a hierarchical multi-layer map
M = {M,G,S,O}, composed of the following layers:

1) 2D geometry M: a representation of traversable area,
often used for navigation and obstacle avoidance;

2) 3D geometry G: a representation of the environment
where objects can be recognized by their appearance;

3) 3D semantics S: a representation where semantic infor-
mation over objects in the environment is maintained;

4) Object instances O = {o∗}: for each object in the
environment, we want to estimate its full extent o∗ from
a partial view õ.

In the next section we will discuss the proposed pipeline,
which builds all the aforementioned maps iteratively by
means of visual and range information obtained by a robotic
platform exploring the environment.

IV. METHOD

The proposed pipeline, shown in Fig. 2, is split into
Realtime Reconstruction and Scene Augmentation. Realtime
Reconstruction includes modules to build the geometric and
semantic representations. These reconstructions form the
input to the second half of the pipeline, that performs Scene
Augmentation on the input to deliver the final geometric rep-
resentation of the scene having objects with complete geom-
etry. All representations are kept aligned to a 2D occupancy
map M built through SLAM. The proposed pipeline consists
of the combination of existing software components along
with novel components to produce the final representation.
While developing the pipeline, the emphasis was kept on
the flow of data rather than on the individual component
implementations. Hence, each component is independent
from the others, thereby easily replaceable with any current
or future work that can ensure the same data flow.

A. Realtime reconstruction

The purpose of the reconstruction module is to gener-
ate the 3D geometric representation G and the semantic-
geometric representation S online. Both layers will be rep-
resented as 3D colored meshes; in G, each face’s color will
represent the color information obtained from the camera,
while in S the color will map to a semantic object class.
Semantic information is gathered through a deep learning
based pixel-level instance segmentation method, the output
of which along with the respective depth image and pose
information is used to generate the semantically annotated



(a) Spread onto wall and floor (b) Spread onto a table

Fig. 3: Discrepancies caused by inaccurate object mask. In
both pictures the marked regions represent erroneous spread
of a label (best viewed in color).

3D mesh. In this work, we use Voxblox [5] and Kimera-
Semantics [13] to construct the geometric and semantic-
geometric representation respectively, employing Mask R-
CNN [1] as the deep learning algorithm to obtain the object
semantic segmentation from images.

This stage outputs G and S, i.e., a geometric and a
semantic-geometric representation of the environment avail-
able in a mesh format which are converted to point-clouds
due to ease of processing for the latter stage of the pipeline.

B. Object shape completion and scene augmentation

In order to obtain the object instances to shape-complete,
the semantic point cloud is segmented into individual clus-
ters, with each cluster representing a partial view õ of an
object o. Object instances are identified using differences of
normals. Then, given a semantic class c, for each partial
view õ for which S(õ) = c, we propose an object shape-
completion method fc to estimate its full extent o∗. Formally,
fc : õ→ o∗. In this work, we demonstrate the augmentation
by replacing chairs, but the proposed methodology can be
applied to other classes of objects as well.

1) Shape Filter: After clustering, it can happen that some
clusters õ may be incorrectly classified to class c. This can
happen e.g., for issues of time synchronization between RGB
and depth images, or because the mask obtained from Mask
R-CNN may contain parts that do not belong to the object.
The marked regions in Fig. 3 are examples of such cases.
To avoid completing the shapes of mislabeled objects, we
pass each cluster through two filters aiming at recognizing
erroneous labeling.

The first filter aims at recognizing label-bleeding along
walls and floor by identifying planarity of a cluster point-
cloud by its covariance matrix. A cluster is discarded if the
covariance matrix shows values close to zeros for at least
one of the axes.

The second filter aims at identifying mislabeled objects.
Objects of a certain class tend to have similar shape and
size, and these can be used to identify objects which do not
conform to the class model. In practice, we determined the
distance of the farthest point to the object centroid λ and
removed objects for which this measure was out of range
for any sort of chair commonly found in an office or home

environment. Despite the filtering, some false positives may
remain for later stages.

2) Shape matching: In order to estimate the full extent of
an object, we match its partial shape õ to a similar synthetic
model o∗. Formally, given õ, a partial view of an object of
class c, and C = {oi}Ni=1, a database of N object models oi
of class c, we want to find

o∗ = argmin
oi∈C

δ(oi, õ) (1)

for some distance metric δ. In this study, a custom point-
cloud database of chairs was created from the 6778 3D
models available in the ShapeNet dataset [23].

In order to compute the distance δ, oi and õ need to first
be registered to the same pose.

Pose matching: Inferring the pose of an object directly
from its raw partial point-cloud representation is quite diffi-
cult. Instead, it is easier to find a transformation that can be
applied to the model that will align it with the object through
point-cloud registration methods through Iterative Closest
Point (ICP). However, ICP is a computationally expensive
algorithm and is susceptible to getting stuck at local minima,
so it is best if any initial estimate of the transformation
is available to loosely align the source (database models)
with the target (partial point-clouds). ICP can then fine-tune
the coarse transformation in very few iterations to tighten
the alignment. Given that the natural pose of any grounded
objects will always be around the z-axis, to find a coarse
transformation, a random model from the dataset is selected
and a set of uniformly sampled rotations are performed
around its z-axis. The transformation matrix for the rotation
yielding the minimum average point-to-point distance is used
to initialize the ICP algorithm. ICP fine-tunes this rotation
over the z-axis to provide the final transformation matrix.
The advantage of this approach is that it is applicable to any
grounded object.

Model matching: Finding a match involves searching
through the database. The final transformation refined after
ICP method is applied to each model and the correspond-
ing point-to-point distance with the partial point-cloud is
recorded. This is used as a measure of model distance δ. The
hypothesis is that the model that most closely resembles the
actual object should return the smaller distance. The matched
model o∗ in the local frame of the partial object is re-scaled
and translated back into the world frame and added to the
object representation layer O.

3) Scene augmentation: Finally, after having built G, S,
and O, we build an augmented scene, i.e., a representation
where we replace objects in G with their complete counter-
parts in O. While not constituting one of the layers of M,
this additional virtual representation can be used for planning
and navigation, as we will show in Sec. V-C. To this end,
we construct a merged point-cloud A = (G\S)∪O, where
S ⊂ G is the subset of points of G that are within a point-
to-point distance threshold ε from any of the object models
in O.



(a) Top view from Gazebo (b) Augmented scene (c) Meeting table detail

Fig. 4: Simulated office scene (a). In the 3D geometric model (b), chair partial observations have been replaced with the
complete models and each area marked in red in (b) denotes a false positive. A detail of the meeting table in the North-West
corner of the environment is shown zoomed in (c) (best viewed in color).

V. EXPERIMENTS

In this section, we present experiments aiming to validate
the proposed method by answering the following questions:

1) is the pipeline able to reconstruct environments while
navigating in them?

2) when considering chairs, how reliably can the proposed
method locate them and estimate their full extent?

3) how does the object extent estimated by the proposed
method compare with state-of-the-art shape-completion
deep learning methods?

In order to answer these questions we conducted multiple
experiments in simulation (Sec. V-A) and on real robotic
platforms (Sec. V-B).

As a measure to evaluate the method’s ability to recognize
objects, we used the F1-score,

F1 = 2
Precision ·Recall
Precision+Recall

. (2)

All experiments have been run on a laptop with Intel Core
i7-8750H, 2.20GHz CPU, Nvidia GeForce 1050 Ti GPU,
and 16 GB RAM. While they are not presented here due to
space limitations, we conducted more experiments that can
be found in [24].

Finally, in Sec. V-C, we will demonstrate how the pro-
posed method can improve navigation safety.

A. Simulation experiment

In order to evaluate the proposed method, we setup a sim-
ulated office environment [25] in Gazebo. The environment,
shown in Fig. 4a, consists of a few different furnished zones,
comprising a meeting table, a couple of lounge areas, and
an a few desks. In total, the environment contains 19 chairs
distributed among the different zones. 8 chairs around a long
meeting table, 6 chairs facing the wall with some objects in
between them, 4 office chairs facing one of the desks, and
partially slid inside, and one chair near a long table facing
the room. We spawn in the environment a simulated model

TABLE I: Experimental results

Experiment Precision Recall F1-score

Simulated office 0.69 0.59 0.63
Real office 0.71 0.83 0.78
Real corridor 0.80 1.00 0.89

of a Husky robot from Clearpath Robotics, equipped with a
Kinect RGBD camera and a SICK laser scanner.

The first aspect we wanted to evaluate in simulation was
the ability of the proposed method to correctly identify and
then shape-complete the chairs present in the environment.
To this end, we manually teleoperated the robot to construct
a multi-layer mapM of the environment using the proposed
method. We empirically set the range for λ to [0.1, 0.25] m,
and ε = 0.1 m.

A total of 16 chairs were identified and shape-completed.
Out of the 19 chairs in the environment, 11 were correctly
identified and the other 5 were false positives. The first row
of Tab. I shows the achieved precision, recall, and F1-score.
The results are quite modest. Misdetections were caused by
inaccurate segmentations provided by Mask R-CNN, that
were not fully compensated for by the filter described in
Sec. IV-B. Fig. 4b provides a top view of the scene after
object replacement and the marked objects denote the false
positives, and Fig. 4c zooms over the meeting table, where
most of the chairs have been completed properly except
for one false positive arising from one label spreading on
the table top. Mask R-CNN represents current state-of-the-
art capabilities in terms of object segmentation, the results
presented here are expected to improve with better object
segmentation.

Another investigated aspect was the quality of shape-
completion produced by the proposed method, in comparison
to state-of-the-art deep learning methods. To this end, we
compared with PCN [2]. Fig. 5 shows some examples of
the output of PCN for chairs mapped at different level of



(a) Four legs (b) Three legs

(c) One leg (d) No legs

Fig. 5: Performance of PCN on chairs with various degree
of completion. Input (left) and output (right) are in the same
pose, misalignment is due to a failure of the network.

(a) Input has data for backrest, seat, and leg/legs.

(b) Input has a key component missing

Fig. 6: Matched models using the proposed method. Input
point-clouds and model outputs are shown in yellow and
blue respectively (best viewed in color).

completion; even when the input is lacking only few regions,
the output produced by the network has visible outliers and
the internal pose estimation of the network fails. When a
similar chair in a different pose as in Fig. 5b is subjected to
the network, the confusion of the network is quite evident
as it tries to recreate the backrest resulting in a box-like
structure above the legs. Fig. 5d and 5c are the same chairs in
different orientations. For the former, the network is unable
to map it to a chair, whereas for the latter it is not able
to infer the extent of legs with one partial leg. All these
observations point to the fact that the network performance
does not seem to translate to realistic partial views that can
be obtained through acquisition “in the wild”.

The errors seen with PCN, i.e., noise and outliers, are not
present when using the proposed model matching system. In
this case, what influences the output quality is the region of
missing information rather than its quantity (Fig. 6). When
the input has parts of all the factors that define a chair

which are legs, backrest, seat, and arms a good approximate
match is obtained as seen in Fig. 6a. However, when a
key component is completely missing from the input, the
match may differ significantly from the actual object. In
Fig. 6b, we can see that a wheeled office chair lacking
arms and the wheeled base in the reconstruction is completed
with a circular base instead of a wheeled base (left), while,
when only a partial extent of one leg is present (right), the
corresponding match found has shorter legs and if this model
is placed back in the scene it would hover in the air. The
output also has a set of arms that are not present in the actual
object. From the observations, it is clear that a complete
extent of at least one leg is needed in the input to find a
good match that would be properly grounded. However, even
when a different chair model is identified as match, the pose
and overall shape produced by the proposed method are still
consistent with the observed object, which may make these
models useful for robotics applications, as demonstrated in
Sec. V-C.

B. Physical experiment

The tests on simulation provided insights into the perfor-
mance, the factors affecting it, and the bottlenecks in the
pipeline. With these limitations in mind, the viability of the
pipeline was tested on a Care-O-bot 4 [26] robot produced by
Fraunhofer IPA. The robot is equipped with multiple RGBD
cameras on the head, neck, and torso to perceive the area
in front of it. It is capable of omnidirectional motion with
a maximum velocity of 1.1 m/s. Three 2D laser scanners
mounted in the base allow the robot to react to static and
dynamic obstacles. For the experiments only the RGBD
camera mounted in the neck area was used. We mapped two
environments using the proposed method: an office where
we randomly placed some chairs, and a corridor with chairs
along the wall.

1) Office: 7 chairs of multiple designs were laid out in
a chaotic manner in the room. The robot was teleoperated
through the environment for one minute and the environment
was mapped with the proposed pipeline using data captured
through the RGBD camera mounted in the neck. Fig. 7a
shows the environment as reconstructed by the pipeline (layer
G), while Fig. 7b shows the augmented scene A with the
complete object models.

As shown in Tab. I, the setup yielded an F1-score of 0.78,
significantly better than the simulation. Of the five correctly
detected chairs, two (chairs 1 and 4) have good reconstruc-
tion quality, and three are reasonable but incomplete: chair
3 because of noise in depth measurements, chair 6 because
of inaccurate semantic segmentation, and chair 5 because of
heavy occlusion in data. Two false positives were caused by
inaccurate semantic segmentation of chair 6. The wheeled
base, backrest, and seat were registered whereas the stem
connecting the seat with the base was not registered, causing
a false positive seen below chair 6. Another false positive was
the result of label spreading of Mask R-CNN by which part
of the wall behind chair 6 got mislabeled.



(a) Office (b) Office with replaced chairs

(c) Corridor (d) Corridor with replaced chairs

Fig. 7: Pipeline performance

2) Corridor: 4 chairs were laid out in a narrow corridor
and the robot was immobile in a single observation position.
Fig. 7d depicts the result of the pipeline. The F1-score of
the reconstruction quality was 0.89 (Tab. I), which shows a
level of performance above the previous cases. Out of four
correct detections, three were accurately reconstructed while
one was incomplete due to sensor noise. There was one false
positive due to label spreading.

In summary, the inherent shortcomings of Mask R-CNN
and label spreading were present also in the real environment.
Additionally, it was observed that major occlusions and noise
in the depth information influence the quality. However, even
if the geometric shape of distant or heavily occluded chairs
was inaccurate, their pose was matched quite accurately.
Correct pose estimation is a crucial property in robotics, as
we will show in the demonstration that follows.

C. Application: Shape-aware autonomous navigation

As a demonstration of practical usefulness of the multi-
layer mapping framework proposed in this work, we explore
its use for robotic navigation. Most robots navigate using 2D
occupancy maps built using 2D lidar-based SLAM, however
those maps only represent occupancy at one specific height
and fail to capture the occupancy of complex obstacles. In
this demonstration, we custom fitted a Turtlebot3 Waffle Pi
robot with a Kinect RGBD camera mounted on a short pole
to improve its field-of-view. We setup two environments,
shown in Fig. 8a and Fig. 8b, where the robot is on one
side of some chairs and has to navigate to the other side.
The chair seats provide obstacles for the robot such that if
the robot plans a trajectory through the legs of a chair, the
pole will collide with a seat.

First, the robot navigated using a 2D lidar-based map
and, as can be seen in Fig. 8c and Fig. 8d, the resulting
trajectories passed through the chairs and caused a collision.

(a) Coffee room (b) Corridor

(c) Coffee Room: SLAM (d) Corridor: SLAM

(e) Coffee Room: Multimap (f) Corridor: Multimap

Fig. 8: Navigation experiment results over two scenarios. By
navigating using SLAM map only, (c) and (d), the robot
collides with chairs, while it avoids all chairs by navigating
on the multimap, (e) and (f) (best viewed in color).

Then, estimated object occupancies were projected down to
build another 2D costmap, by projecting all points in the
object layer having z ∈ [0.1, h], where h was the height of
the robot. Using this map, the robot navigated avoiding all
obstacles and reached its destination (Fig. 8e and Fig. 8f).

This demonstration serves first of all to illustrate the
usefulness of multi-layer maps that allow integration of
information across sensors and map layers. Secondly, it
shows how the knowledge maintained by proposed mapping
framework can enable reasoning on multiple representations
to increase robotic safety, autonomy, and reliability.

VI. DISCUSSION

Over the past decade, deep learning based image segmen-
tation and shape completion methods have made significant
leaps from a computer vision perspective. However, our ex-
periments hint at a problem of applying the current methods
in robotics: noisy and incomplete data captured in the wild
often deteriorates their performance considerably. This is
particularly true for deep learning methods that have usually



hard time to produce reasonable results on out-of-distribution
data. In our case, the semantic label from Mask R-CNN
was often coarse which led to labels bleeding out of the
object boundaries, and required additional post processing
steps. As for the methods like PCN, the network training
is performed in isolation with existing databases without
sufficiently taking the real-world factors into account. Hence,
when these models are applied in real world robotic appli-
cations, they may fall apart as seen in the experiments. It is
important to note that while visual fidelity and quality are
important from a computer vision and graphics perspective,
when considering robotics, other factors such as precise
occupancy and pose may be more crucial.

When considering the proposed method, though it is
scalable to account for more object classes, it also adds to the
requirement of extensive databases of synthetic models for
each object class and the computational overhead to search
through those databases to find a match. The process is time
consuming for larger environments, but can be performed
offline. However, despite all these factors, until deep learning
methods improve their ability to transfer, our experiments
confirm model matching as the most reasonable choice for
object completion for robotics applications.

VII. CONCLUSIONS

In this paper we presented a multi-layer robotic mapping
pipeline able to build in realtime geometric-semantic repre-
sentation and complete object instances in the environment
by model matching. We evaluated the proposed method in
both simulation and real environments as well as compared
its performance in object shape-completion against a state-of-
the-art deep learning method demonstrating how the models
produced by our approach are better suited for robotic appli-
cations. Finally we demonstrated how the proposed method
can be used to increase robustness of navigation. Since the
experimental scope was limited to estimating the extent of
a single object category, understanding the scalability of the
approach requires further studies.

In conclusion, the mapping pipeline presented here repre-
sents a step toward mapping methods, where different data
sources are combined and artificial intelligence is employed
to integrate and complete missing information. More work
in this direction is still needed, particularly in regards to
bridging the gap between shape completion of synthetic
object and scene completion of real environments as well
as to explore the inclusion of agent dynamics in the map.
However, we believe that such mapping approaches will be
pivotal to bring the many recent advances in computer vision
to real mobile robot applications.
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[10] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time
3D reconstruction at scale using voxel hashing,” ACM Trans. Graph.,
vol. 32, no. 6, 2013.

[11] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and
A. Davison, “ElasticFusion: Dense SLAM without a pose graph,” in
Robotics: Science and Systems, 2015.

[12] M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C. Cadena, R. Sieg-
wart, and J. Nieto, “Volumetric Instance-Aware Semantic Mapping and
3D Object Discovery,” IEEE Robotics and Automation Letters, vol. 4,
no. 3, pp. 3037–3044, 2019.

[13] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: An open-
source library for real-time metric-semantic localization and mapping,”
in IEEE Int. Conf. on Robotics and Automation, 2020, pp. 1689–1696.

[14] A. Avetisyan, M. Dahnert, A. Dai, M. Savva, A. X. Chang, and
M. Niessner, “Scan2CAD: Learning CAD model alignment in RGB-
D scans,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019-06.

[15] A. Dai, C. Ruizhongtai Qi, and M. Nießner, “Shape completion using
3d-encoder-predictor cnns and shape synthesis,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 5868–5877.

[16] Z. Huang, Y. Yu, J. Xu, F. Ni, and X. Le, “PF-Net: Point Fractal
Network for 3D Point Cloud Completion,” in IEEE/CVF Conf. on
Computer Vision and Pattern Recognition, 2020, pp. 7659–7667.

[17] X. Chen, B. Chen, and N. J. Mitra, “Unpaired point cloud completion
on real scans using adversarial training,” in Int. Conf. on Learning
Representations ICLR, 2020.

[18] L. P. Tchapmi, V. Kosaraju, H. Rezatofighi, I. Reid, and S. Savarese,
“TopNet: Structural point cloud decoder,” in IEEE/CVF Conf. on
Computer Vision and Pattern Recognition, 2019.

[19] H. Zender, O. M. Mozos, P. Jensfelt, G. J. M. Kruijff, and W. Bur-
gard, “Conceptual spatial representations for indoor mobile robots,”
Robotics and Autonomous Systems, vol. 56, no. 6, pp. 493–502, 2008.

[20] J. Crespo, R. Barber, and O. M. Mozos, “Relational Model for Robotic
Semantic Navigation in Indoor Environments,” Journal of Intelligent
& Robotic Systems, vol. 86, no. 3, pp. 617–639, 2017.

[21] T. Zaenker, F. Verdoja, and V. Kyrki, “Hypermap mapping framework
and its application to autonomous semantic exploration,” in IEEE Int.
Conf. on Multisensor Fusion and Integration, 2020, pp. 133–139.

[22] A. Rosinol, A. Gupta, M. Abate, J. Shi, and L. Carlone, “3D Dynamic
Scene Graphs: Actionable Spatial Perception with Places, Objects, and
Humans,” arXiv:2002.06289 [cs], 2020.

[23] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. (2015)
ShapeNet: An information-rich 3D model repository.

[24] K. P. Sivananda, “Semantic mapping for indoor robotics,” Master’s
thesis, Aalto University, Finland, 2020.

[25] A. Rasouli and J. K. Tsotsos. The Effect of Color Space Selection on
Detectability and Discriminability of Colored Objects.
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