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Combining Context Awareness and Planning
to Learn Behavior Trees from Demonstration
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Abstract— Fast changing tasks in unpredictable, collaborative
environments are typical for medium-small companies, where
robotised applications are increasing. Thus, robot programs
should be generated in short time with small effort, and the
robot able to react dynamically to the environment. To address
this we propose a method that combines context awareness and
planning to learn Behavior Trees (BTs), a reactive policy rep-
resentation that is becoming more popular in robotics and has
been used successfully in many collaborative scenarios. Context
awareness allows to infer from the demonstration the frames in
which actions are executed and to capture relevant aspects of
the task, while a planner is used to automatically generate the
BT from the sequence of actions from the demonstration. The
learned BT is shown to solve non-trivial manipulation tasks
where learning the context is fundamental to achieve the goal.
Moreover, we collected non-expert demonstrations to study the
performances of the algorithm in industrial scenarios.

Index Terms— Behavior Trees, Learning from Demonstra-
tion, Manipulation, Collaborative Robotics

I. INTRODUCTION

The focus for robotized applications is shifting towards
medium-small companies, where production is often cus-
tomer specific and achieved in shorter cycles, resulting in
frequent changes in the tasks of the robot. At the same time,
robots are more frequently used collaboratively, sharing the
environment with humans. Consequently, there is a need for
methods for generating robot programs that do not require
high programming skills or long time, and give programs
that react to changes in the environment. This need can be
fulfilled by using learning algorithms to synthesize control
policies that are reactive, human-readable, and modular -
allowing for code reusability. Behavior Trees (BTs) have
proven to be a good policy representation for many robotic
applications [1] and the interest in methods for their auto-
matic synthesis is also increasing [2].

In this paper, we propose to automatically generate BTs
from human demonstration. Learning from Demonstration
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Fig. 1: Behavior Tree solving the task: object in a box.

(LfD) methods (also known as Programming by Demonstra-
tion or Imitation Learning) allow the generation of computer
programs in an intuitive way, reducing the programming
skills required by the user, while leveraging the user expe-
rience in solving specific tasks. When demonstrating a task,
the user naturally performs actions in the correct sequence
leading to the goal, thus task switching controllers like
BTs can benefit from this, encoding task hierarchy in their
representation. Vice-versa, by representing a policy as a
BT, we inherit the reactivity that allows robots to adapt to
changes in the environment.

Our contribution is a method that learns task constraints
and contexts, to leverage the idea of backchaining to cor-
rectly design the BT: starting from the goal, pre-conditions
are iteratively expanded with actions that achieve them -
those actions that have that particular condition as their
post-conditions. Then, those actions’ unmet pre-conditions
are expanded in the same way. Examples explaining the
backchaining are provided later on. When compared to the
state of the art, our method allows to learn only the relevant
parts of a task, thus limiting the size of the BT. Moreover,
our method learns the tree directly, thus not needing to resort
to other policy representations as intermediate learning steps.



II. BACKGROUND AND RELATED WORK

This section provides a background on Behavior Trees and
Learning from Demonstration, summarizes related work, and
shows how our method contributes to the state of the art.

A. Behavior Trees

Behavior Trees are task switching policy representations
that originated in the gaming industry as an alternative
architecture to Finite State Machines (FSM) [1]. BTs have
explicit support for task hierarchy, action sequencing and
reactivity, and improve on FSMs especially in terms of
modularity and reusability [2].

In a BT, internal nodes are called control nodes, (polygons
in Figure E]) while leaves are called execution nodes or
behaviors (ovals). During execution, tick signals are prop-
agated from the root down the tree at a specified frequency.
The most common types of control nodes are Sequence
and Fallback (or Selector). Sequence nodes execute their
children in a sequence, returning once all succeed or one
fails. Fallback nodes also execute their children in a sequence
but return when one succeeds or all fail. Execution nodes
execute a behavior when ticked and return one of the status
signals Running, Success or Failure. They are of type Action
nodes or Condition nodes, the latter encoding status checks
and sensory feedback and immediately returning Success or
Failure. BTs are functionally close to decision trees with
the main difference in the Running state that allows BTs to
execute actions for longer than one tick. The Running state is
also crucial for reactivity, allowing other actions to preempt
non-finished ones. For more detail on BTs, see e.g. [1].

As is shown in the attached Vide(ﬂ when representing
a policy learned from demonstration with a BT, we auto-
matically benefit from the BT reactivity, as some actions in
the demonstrated sequence can be skipped by the robot, if
already performed by the user, or executed again if external
disturbances undo some parts of the task.

B. Learning from Demonstration

In LfD, robot programs are learned from human demon-
strations [3]. LfD methods are particularly useful when users
don’t have enough programming skills, or writing robot
programs to solve a task takes too long. A LfD method
defines how to demonstrate a task, the policy representation
and how that policy is learned. Demonstration methods are
mainly of three types: kinesthetic teaching, where the user
physically moves the robot, teleoperation, where a robot is
controlled through an external device - particularly useful
when the robot operates in unreachable environments - and
passive observation, where the robot or the human are
endowed with tracking systems and the demonstrator’s body
motion is recorded. When choosing a demonstration method,
attention has to be put in the correspondence problem, i.e. the
mapping between a motion performed by a human teacher
and the one executed by the robot. Kinesthetic teaching,
which is used in this paper, does not suffer from this problem

Ihttps://youtu.be/cy6PKRrsMiM

as the motion is directly recorded in the robot task (or joint)
space. This method is intuitive and no particular training is
required for the user. However, there is a limit in the number
of robot degrees of freedom and weight that a human can
move to demonstrate a task.

C. Related Work

To the best of our knowledge there are only four previous
studies [4]-[7] that combine LfD and BTs. The method
proposed in [4] and [5] learns a mapping from state space
to action space as a Decision Tree (DT), which is converted
into a BT, using the fact that BTs generalize DTs [8]. In [6],
on the other hand, authors encode the demonstrated sequence
of actions directly as a BT, while in [7] BTs are generated
by natural language instructions.

In [4], LfD is used to assist game designers in creating
behaviors for Non-Player Characters (NPCs). A DT is trained
as a mapping between the game’s state and the action the
NPC should execute. The DT is later flattened into a set
of rules which are simplified with a greedy algorithm and
translated into a BT. The final BT, however, cannot be used
as is but requires a final tuning of parameters, thus limiting
its usage to support the final NPC design. This is extended
by [5] who generalize it to use any logic minimizer instead of
the greedy algorithm, and implement the solution on a mobile
manipulator performing a house cleaning task. The whole
action space and state space are encoded in the tree which
would then contain elements that are not used at runtime and
complicate the structure of the BT. Furthermore, the frame
of reference is hard-coded in the actions which reduces their
reusability. The same place action for example cannot be
reused in different situations. The method does not exploit
any previous knowledge about the actions’ behaviors and it
cannot execute behaviors that were not demonstrated but that
may be required in some situations.

Authors of [6] synthesize a BT directly. They train an
agent to play the video game StarCraft from expert demon-
strations. Each demonstration consists of a sequence of
actions that are placed under a sequence node in the BT,
and all sequence nodes for each demonstration are placed
under a fallback node. The BT is finally simplified by finding
similarities between different demonstrations. We argue that
this approach is more of a mapping between in-game actions
and BT behaviors, resulting in large and hard to read BTs
(> 50.000 nodes) and limiting the reactivity (in-game actions
and conditions are all put under the same Sequence node).

Finally, in [7], authors propose a method able to generate
BTs out of natural language instructions. The method parses
the expression and searches in the robot database if there
are already trees solving the requested task. Otherwise, a
new tree is learned by matching the parsed expression to
hand-coded primitive methods encoding simple BTs solving
e.g. the picking of an object. Although the method allows
to define a wide variety of tasks, the learned trees are hard
to read and it is not clear how would the method handle
assembly-like tasks where the relative position of objects in
the scene matters.
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Not using BTs, there are other LfD methods that have
been used to learn a task plan. Some authors have focused
on learning some kind of FSM. In [9] an FSM is learned
while in [10] a Hidden Markov Model (HMM) is learned.
A different approach is taken by the authors in [11] where
skill chains are created by chaining skills that have a goal
that allows the next skill to be executed successfully. Chains
from multiple demonstrations are combined into a skill tree
to allow multiple chains that achieve the same goal. The main
advantage of using BTs over these methods is the increased
readability and inherent reactivity of BTs.

The method we propose in this paper builds on the work
of [12] and [13]. Authors in [12] use a demonstration to
infer constraints about the order in which actions should be
performed, and, if multiple demonstrations are provided, the
robot can learn to generalize, instead of just repeating what
the humans do. When the actions are given pre- and post-
conditions, a planner can be used to construct a plan that
satisfies the demonstrated constraints, leveraging the idea of
backchaining. Pre-conditions are the conditions that must be
satisfied prior to executing the action, while post-conditions
are the conditions that will be satisfied as an effect of the
action execution. For example, taking Table [[] as reference,
a pre-condition to the Pick action is that the robot gripper is
open, while post-conditions are that the gripper is closed and
an object is held. Colledanchise et al. [13] present a planner
to automatically grow a BT. The algorithm grows the tree
iteratively, where in each iteration the current tree is executed
and failing pre-conditions are replaced with subtrees that
execute actions with appropriate post-conditions.

When solving tasks, both the context and the reference
system of action is of importance. By context we mean how
one action assumes different characteristics with respect to
the particular instance in which the action is performed:
for example, a place action that happens in the frame of
an object A but fo the left of an object B is considered
different from the same action if it happens fo the right of
B (Figure [3] - this is particularly important to solve tasks
like the tower of Hanoi and it will be explained in detail
in Section [[II-E). Thus, our method relies on a reference
frame inference algorithm using a clustering approach. The
idea is that the same position in different demonstrations
will have low variance and lie close together if represented
in an adequate frame. Note that the context inference is also
achieved with the clustering algorithm, as we do not include
semantics for left, right, on, under, in. In [9], the authors
represent the endpoint of a robot skill in different reference
frames and identify clusters by using a threshold on the
euclidean distance between the points. Similarly, [12] infers
reference frames by identifying clusters using K-means. The
method in [14] identifies clusters by fitting Gaussians and
returning the reference frame with the lowest variance.

III. PROPOSED METHOD

At a high level, our proposed algorithm learns BTs from
demonstrations in four steps, see Figure 2l Human demon-
strations are clustered to infer the context of each action and
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Fig. 2: Outline of the proposed method.

TABLE I: Available actions with their pre- and post-
conditions. A * indicates that the action can be demonstrated,
i.e. that is an action that the user can choose. The other
actions are lower level and only available to the BT. The
parameter o represents an object while p is a position.

Action Pre-conditions Post-conditions

PicK(0)* GRIPPER(0open)  GRIPPER(CLOSED)
INGRIPPER(0)

PLACE(o, p)* INGRIPPER(0) OBJECTAT(0, p)
GRIPPER(0open)

INGRIPPER(none)

DRroP(o, p)* INGRIPPER(0) OBJECTAT' (0, D)
GRIPPER(0open)
INGRIPPER(none)

SETGRIPPER (open) GRIPPER(0open)
INGRIPPER(none)

SETGRIPPER(closed) GRIPPER(closed)

similarities between them, and then to infer task constraints
and goal conditions, which are finally fed to a planner that
builds the BT. By task constraints we define sequences of
actions whose relative order is important in the solving
process. For example, if the robot has to place two items
in a box, the order in which the items are placed might
not be important, but it is important that an item is picked
before it is placed. By goal conditions we define the states
in which the robot and the objects in the scene must be
for the task to be considered completed. In this section we
detail all components of the method. We restrict the work
to consider only manipulation tasks, and by consequence we
take examples from this domain. We argue that the validity
of the algorithm is not limited by this choice but we leave the
extension to mobile manipulation tasks and to other actions
to future work.

A. Demonstrating a task

The teaching method is kinesthetic and there are three
actions available: a Pick action will close the robot grippers
around the target object and a Place or Drop action will open
the grippers, releasing the object. Thus, a demonstration is
performed by dragging the robot end-effector to the desired
pose and by selecting one of the available actions in a simple
GUL. For all actions, the pose of the end-effector is recorded
as the target pose for that action and in the reference frame
of every object in the scene that matters for the task. The
relevant objects, must be defined prior to the beginning of
the demonstration.



TABLE II: List of incompatible conditions with the compat-
ibility predicate: the conditions in every couple cannot hold
at the same time if the predicate is satisfied.

Condition Couples Incompatible if

INGRIPPER(07)
GRIPPER(S1)
OBJECTAT(01, P1)
OBJECTAT' (01, p1)
OBJECTAT(01, P1)
GRIPPERSTATE(open)

INGRIPPER(02)
GRIPPER(s2)
OBJECTAT(02, p2)
OBJECTAT' (02, p2)
OBJECTATT (02, p2)
INGRIPPER(0)

01 # 02

51 # s2

01 = 02 Ap1 # P2
01 = 02 A\ p1 # P2
01 = 02 A p1 # p2
0 # none

B. Actions and Conditions

To perform the tasks, the robot has access to the actions
in Table[[] listed with pre- and post-conditions. An action A
is formally defined as a tuple A = (T, x,p,0,F) where
T is the type (i.e. the action label), = is some action-
specific parameter vector, p is the target position, o is the
target orientation, and F' is the reference frame or coordinate
system where the action occurs.

Each action A is further given a set of pre-conditions C;;‘Te
that must be true for the action to succeed and a set of post-
conditions Cfost that are made true by executing the action.
Let € be the set of all conditions that appear as a pre- or post-
condition of any action. Then, let the compatibility function

comp : € x € — {true, false}

take two conditions and return true if they can be true at
the same time and false otherwise. Note that for any two
conditions ¢, co € € we have

comp(cq, c2) = comp(ca, 1)

comp(cy, ¢1) = true

Incompatibility between conditions is detailed in Table

The difference between Place and Drop lies in the ac-
curacy with which the object is placed. In Place, the post-
condition is satisfied if the target object lies in a sphere of
radius 5 cm centered in the goal position of the action, while
in Drop a cylinder of radius 10 cm is used (this is marked
by a ' in the post-condition name). This matters since the
target pose of the action is recorded in the end-effector. When
dropping from a height, the recorded position will lie above
where the object lands and the object may also bounce once
it hits the ground. Thus, a Drop action is chosen when the
goal pose for the object doesn’t need to be precise, e.g. when
dropping objects in a trash bin.

C. Behavior Tree synthesis

The BT is synthesised using the planner proposed in [13],
leveraging the idea of backchaining. Note that unlike [13],
we run the planner in a simulator, as we don’t want the
robot to stop it’s execution to re-plan in case of unmet post-
conditions, and because it is preferable to have the full tree
available before running it on a real robot. For this reason,
the simulator used for the planner is set to cause the BT
leaves to fail once, thus triggering the planner to expand the
BT. In this, there is a trade-off to make between the tree size
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Fig. 3: The two actions of placing the triangle (figures a and
b) are represented in three frames (figures c-d) and clustered.
The clusters in ¢ represent the two contexts.

and the reactivity to unforeseen events when running on the
physical environment.

Furthermore, we propose to give each action a cost. The
cost could for example be execution time or any arbitrary
ranking. If there are multiple actions that can achieve the
same post-condition, only the one with lowest cost is added
to the tree. If the goal is to have the gripper open, this avoids
using the action PLACE instead of the more appropriate
SETGRIPPER(open).

D. Goal and constraints identification

The algorithm to infer task constraints is based on the
work proposed in [12], where constraints are identified by
observing the order in which actions appear in the demon-
strations and adding each pair of ordered actions to the list
of constraints. We argue that it is not the order of the actions
that is important, but rather the effects of one action to the
next. In our method, the list of constraints generated by the
order of demonstrated action is translated into pre-conditions
that must be fulfilled before executing an action.

Conflicting constraints (for example action A being per-
formed after B in one demonstration but before B in another)
are removed as they are interpreted as an aspect of the task
that is not relevant and is left for the planner to solve. At
the same time, candidate post-conditions of an action are
checked for compatibility against the pre-condition of the
following action and discarded if conflicts are generated.

Since we assume that by the end of the demonstration the
goal is achieved, goal conditions are inferred by traversing
demonstrations from end to start and recursively adding the
actions’ post-conditions. Demonstrations with the same goal
conditions are grouped together and the final goal is satisfied
if any of the groups’ goal conditions are satisfied. Constraints
are inferred for each group in isolation and the goals for
each group are sent to the planner separately. The planned
trees achieving these goal conditions are combined under a
fallback node.

E. Clustering of demonstrated actions

Due to human errors and measurement noise, demonstra-
tions of the same task might be inconsistent in the order
of executed actions and in target positions of the objects.



Different actions might also be executed in different refer-
ence frames. Thus, equivalent actions across demonstrations
have to be identified and their reference frame inferred. An
unsupervised clustering algorithm inspired by [9], [12], [14]
is used to detect similarities between demonstrations. When
representing the target position of the demonstrated actions
in a reference frame F', similar actions that are executed in
F will lie close together and form clusters. The algorithm is
extended here to not only use the clustering to infer reference
frames, but also to detect context and action equivalence.

We define two actions A and B to be equal if all elements
of the corresponding tuples are equal, except orientation.
We assume that the position is important and different
orientations are just variations of the same action. Note
that we make this simplification as we deal with symmetric
objects; it is not generally true.

Assuming T, x, and n are known, the clustering only
has to be done among actions where these are equal since
the actions cannot be equal otherwise. Once the candidate
actions have been identified, their target positions are repre-
sented in each of the candidate frames. We detect clusters
with the DBSCAN algorithm [15] as implemented in scikit-
learlﬂ [16], but any algorithm that does not require a-priori
knowledge of the number of clusters and can reject outliers
can be used. A score is given to each cluster according to

|cluster|
r

—0o0

|cluster| > 1
score(cluster) = cluster| = 1
cluster| =

where |cluster| is the number of points in the cluster and r
is the maximum distance from a point in the cluster to the
mean. The score function assigns a high score to large and
dense clusters. If an action is part of multiple clusters, the
cluster with the highest score is used. Actions that do not
belong to any cluster are considered to not be equivalent to
any other action and occurring in a default frame, typically
map or robot base frame.

If an action potentially belongs to multiple clusters, we
can infer the context in which the action is performed. It
is desirable to detect when an action occurs in different
contexts and treat each context as a separate action even
if they have the same type, parameters, and target position,
and occur in the same reference frame. Situations can arise
where the same action A is performed at two separate points
in a demonstration. The constraint identification step would
then notice that all actions between the two occurrences
happen both before and after A. The result is contradicting
constraints that are removed. All information about what
happened between those two occurrences is thus lost. To
solve this issue, the two best clusters will be kept if their
score is above a threshold dependent on the number of
demonstrations.

To sum-up, the proposed method is capable of building a
BT solving a task that has been previously demonstrated. In
light of what explained, it is important to point out that for a

2https://scikit-learn.orqg/stable/modules/
generated/sklelLarn.cluster.DBSCAN.html

given task, a single demonstration is enough for the method
to generate a BT solving it. However, in such a case, the
robot would just repeat what the human did. Therefore, the
robot would be able to solve the task only if its starting
conditions match the ones in the demonstration. If we want
the robot to generalize, i.e. learn task constraints and infer
the actions’ reference frames, multiple demonstrations are
required. For example, the clustering algorithm requires at
least three samples to generate a cluster and infer another
reference frame than the one in the robot base.

IV. EXPERIMENTS AND RESULTS

In this section we consider various manipulation tasks
which challenge the learning algorithm in different ways. For
the experiments from a) to d), the demonstrations are per-
formed by an user familiar with the system. The experiments
were carried out using an ABB YuMi robot with an Azure
Kinect camera for object recognition using Aruco markers.
The code repository is made publicly availableﬂ The ABB
YuMi robot is put in LeadThrough mode (this mode switches
off the motor brakes in the robot arm and it gravity-balances
it) that allows to guide the robot end-effector to the desired
position, then the user has to input the action type to perform.

To demonstrate how sensitive the system is to varying
demonstrations, in experiment e¢) we asked non-expert users
to solve a task, to gain some insight on the exploitability of
the framework in an industrial scenario.

a) Object in box: The goal of this task is to put a cube
in a box (as for cube A in Figure [§). From any starting
condition, the demonstration is realized by picking the cube
and then by dropping it in the box.

Results: The algorithm is able to learn a BT after only one
demonstration. However, three demonstrations are required
to solve the task flawlessly. In this case it learns that dropping
the cube must happen in the box frame to make the learned
BT (reported in Figure [T) robust to changes in the box
position. The task can be solved by choosing both the Place
or Drop actions. However, if the former is preferred, then
the user has to be careful not to open the grippers above the
box, but inside it. If Place is used instead of Drop when the
robot end-effector is above the box, the cube could roll or
bounce inside the box, outside the more restrictive tolerance
of the action. Because of the reactivity of BTs, the robot
would attempt the picking again, until the task succeeds or
the picking action fails due to collision with the robot and
the box. The BT generated for this task had 16 nodes.

b) Towers stacking: The goal of this task is to stack
the cubes to form towers as showed in Figure ] The
demonstration is realized by picking one cube at a time and
fine placing it in the desired position.

Results: The algorithm is robust to variations in the
demonstrations, where the base of the tower is moved before
stacking the remaining cubes or where the order of the cubes
is altered from a demonstration to another. In such cases, the
robot would learn different possible configurations for the

3https://github.com/matiov/learn-BTs-from-demo
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Fig. 4: Initial (left) and goal (right) configurations for the
towers stacking task.

towers and grow a BT for each configuration, thus affecting
the size of the final tree. If multiple demonstrations are
provided, the placing actions are learned to be in the frame
of the base of the tower. The BT that builds the two towers
featured 101 nodes.

c) Towers of Hanoi: As shown in our previous
work [17], this is a challenging task for most basic planners
and thus motivates the needs of using learning approaches.
To solve this task one has to stack disks with decreasing
radius and the same action of placing a smaller disc on top
of a larger one can happen at different steps in the solving
process. We reproduce the task by moving a stack of three
cubes from a position to another (see accompanying video).

Results: Solving the task requires knowledge of the con-
text in which actions happen, learning frames is not enough.
Thus, our clustering step is necessary to solve the ambiguity
of having the same placing action happening in different
contexts (see Figures [5] and Figure [6] for a detailed analysis,
where cubes D, E, F are used for the task). Without the
context inference, the contradictory constraints generated by
the repeated actions, cause the planner to get stuck in the
local minima of Figure [6a] The BT generated to solve this
task had 113 nodes.

d) Kitting: In this task the goal is to place the cubes
in specific positions inside a bigger box as in Figure [7} to
mimic a kitting task. The task is demonstrated by picking
one object at a time and fine placing it inside the box in the
marked area. Multiple demonstrations are provided where
the order in which objects are picked and placed varies.

Results: Since what matters is the place pose for each
object, not the order in which the objects are placed, there are
many possible ways of solving the task (the demonstrations
covering only a few) and the risk is that non-relevant
constraints are inferred (of type place object A before B).
This makes the learned tree, with 603 nodes, larger than an
optimal solution but does not compromise solving the task.

e) Non-expert demonstrations: We asked employees at
ABB Corporate Research to demonstrate a task featuring a
tower with three stacked cubes and an object in a box. Some
of the users were familiar with the LeadThrough mode of
the robot but none with the learning algorithm and were
thus instructed to dispose the cubes in the goal configuration
starting from a random initial condition (Figure [8). Each
user demonstrated the same task three times for the same
reasons as in paragraph a). The goal of this experiment is

to test if non-expert users can indeed exploit the learning
framework and how their demonstrations affect the learned
BT. Note that designing a user-friendly GUI was not within
the scope of the work, so we did not ask the users to provide
subjective feedback on the system usability. Some users have
also tested the system to demonstrate tasks of their own
choice, e.g. stacking cubes in pyramid-like configurations,
showing that the learning algorithm is also generalizable
(within the limit in the number of tasks that can be designed
with four cubes and a box). Due to the precision of the vision
system affecting the results, the reported numbers for the
estimates on the success rate should not be taken as accurate
performance measures but rather an indication. To this extent,
we aim to analyze the performance of the learned BTs and
the differences between BTs in terms of number of nodes.
Finally, we study the behavior of the learning algorithm when
it is given demonstrations from several different users. Out of
the 14 users that tested the system, 7 made the optimal choice
for the actions to use in the different parts of the task, while
4 made a less optimal choice leading the robot to fail the
task in some cases. For the last user there has been an error
in the frame inference, leading to an unsuccessful tree. We
removed demonstrations from 2 users who misunderstood
the task, and tried to deliberately trick the system.

Results: The results of this experiment are plotted in
Figure 0] where the success rate is computed over 5 runs.
When the users are consistent in all the three demonstrations,
a success rate of 100% is achieved and the size of the tree
is limited (users 1 to 5). Moreover, in these demonstrations
the two subtasks of building the tower and placing the cube
in the box are solved in sequence. Minor variations, e.g.
the subtasks are not well separated (i.e. two cubes stacked,
then cube placed in the box and finally tower completed -
user 6), or the base of the tower (i.e. the E cube in Figure @)
is moved before stacking the other cubes (user 7), result in an
increased size for the learned tree, without compromising the
success rate. The success rate is lower for users 8 to 11. This
is caused by their non-optimal choice of the placing actions.
Users 8, 9 and 11 chose Drop (instead of Place) to stack the
cubes, with the tree achieving the more relaxed condition
for the goal pose of the tower cubes if they happened to be
close to each other but not stacked. With this choice it is still
possible to build a successful tree completing the task, but if
for some reasons the tower is undone and the cubes happen
to be close to each other, the tree will not recover because the
goal conditions for the cubes would still be satisfied. User 10
chose Place (instead of Drop) to put the cube in the box,
thus the system learns the goal pose for the cube with too
tight tolerances that are not always achieved. Letting these
users manually change the action labels after testing the BT
fixes the problem, building successful BTs. For user 12 the
algorithm learns to build the tower in the frame of cube A,
thus when the cube is moved the robot tries to move the
base of the tower accordingly, resulting in a collision, as it
has not learned to undo the tower. This clustering error can
be corrected by combining the demonstrations from user 12
with e.g. users 6 and 7, and by increasing the number of
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Fig. 5: Clustering step for the Place D action in the tower of Hanoi task. In our method, since the action Place D on top
of E happens twice but in two different contexts, it is detected as being two different actions. We can see that the purple
and black samples lie close to each other both in the reference frame E and F. However, the reference frame E is used for
the action Place D in the context of Figure [6a] while the reference frame F is used in the context of Figure [6b] (being the
choice labeled with ‘x”). Samples of other colors represent the action Place D in other steps of the solving process.

(a) Tn this step of the solving process, the smallest disk D Fig. 8: Initial (left) and goal (right) configurations for the
is placed on top of the medium disk E, while it lays on the task demonstrated by non-experts.
medium pole.
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(b) In the final step of the solving process, the smallest disk o ° W0 w0 w0 w0 Dlw Joo -
D is placed on top of the medium disk E, while it is in turn %0
placed on top of the largest disk F. 0 c e o
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Fig. 6: In both these two steps of the tower of Hanoi ‘2‘2 I I I I I I I II II I
puzzle, the smallest disk D has to be placed on top of the 0
1 2 3 4 5 6 7 8 9 10 11 12

medium disk E. Howeyver, this action happens in two different
contexts as the relative position of all three disks is different
in the two steps and therefore it has to be taken into account.

User ID

Fig. 9: Number of nodes and success rate of the BTs
generated from non-expert demonstrations, before correcting
action types. The data has been sorted for clarity.

samples to form a cluster, so that the algorithm is forced to
use demonstrations from more than one user.

We can conclude that the learning algorithm behaves as
good as the data it is provided, meaning that if the task
is demonstrated as intended, but still allowing for minor
variations, then the performance is satisfactory. It deteriorates
if the user makes non-optimal choices in the actions or if a
user deliberately intends to trick the system. We can assume
that in an industrial scenario users have all the interests in
making the demonstrations as precise as possible, since they

Fig. 7: Initial (left) and goal (right) configurations for the
kitting task.



need to collaborate with the robot towards a common goal.

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a method that allows to build
BTs from demonstration and infer important features of the
task to solve. A natural extension of this work would be to
extend the set of tasks and behaviors to mobile manipulation
applications. In such a case, the navigation part would be
taught by teleoperation. The proposed method is tested on
toy problems with the intent to mimic assembly tasks, where
it is important to learn relative positions between objects.
The method works with any perception algorithm that can
estimate the pose of the objects in the scene by creating a
reference frame for every object. We use marker detection for
its simplicity, aware that it may not be a viable solution for
industrial scenarios. We would want to use common objects
instead of cubes and object detection algorithms for the
perception. Removing the markers might prevent the robot
from recognising objects univocally: if there are two objects
of the same category, the robot won’t be able to tell one from
the other. To solve this issue we exploit current Human Robot
Interaction (HRI) frameworks (leveraging the camera depth
information, as in [18] to give the robot the capability to
interact with the operator to disambiguate the objects [19].

BTs learned from demonstration could also be used to
seed a Genetic Programming (GP) algorithm [17], [20],
for example in a context in which the human operator
demonstrates a subtask of a more complex task and finding
the whole solution is left to the GP.

At its current state, the method would benefit from some
post-processing features, e.g to allow the user to shrink and
expand the BT while visualizing it. If we consider the first
subtree rooted with a Fallback node in the BT from Figure[I]
it could be visually shrank to a box with label ‘Pick A and
Place at pl in box’. The user could then click on said box
and see the expanded subtree. Another useful feature could
be to automatically combine similar subtrees to optimize the
full BT size. This is something that a GP algorithm could do,
but attention must be paid not to sacrifice human readability
in the optimization process.

Even if multiple demonstrations allow the robot to general-
ize the task, demonstrating again the same task is a tedious
operation. Moreover, at its current state, all information is
lost once the tree is learned. By this, we mean that if
operators want to teach the robot a task that logically builds
on previously learned tasks, they have to perform the whole
demonstration again. As an example, say that we previously
performed the demonstrations for experiment a) but we
now want to drop a second cube inside the same box. In
the current state, the operator (without manually modifying
the BT) would need to perform the whole demonstration
again, for three times. Solutions to both problems - avoiding
repeating a same demonstration multiple times and exploiting
previously learned trees - are left as future work.
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