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Abstract—Existing approaches to direct robot-to-human han-
dovers are typically implemented on fixed-base robot arms,
or on mobile manipulators that come to a full stop before
performing the handover. We propose “on-the-go” handovers
which permit a moving mobile manipulator to hand over an
object to a human without stopping. The on-the-go handover
motion is generated with a reactive controller that allows
simultaneous control of the base and the arm. In a user study,
human receivers subjectively assessed on-the-go handovers to be
more efficient, predictable, natural, better timed and safer than
handovers that implemented a “stop-and-deliver” behavior.

I. INTRODUCTION

Today’s robots are most commonly found in manufacturing
industries and warehouse automation, and typically operate
in isolation from humans. The introduction of robots that co-
exist and interact with humans is creating an opportunity for
new use cases, in both manufacturing and service robotics.
One such use case is delivery robots. Robotic deliveries
can either be performed indirectly by leaving the object in
the vicinity of the human receiver [1, 2, 3] or directly by
handing over the object to them. The majority of research
in robotic handovers is focused on direct handovers using
fixed-base manipulators [4, 5]. On the other hand, mobile
robots allow for more control over when and how to approach
a human receiver for fetch-and-carry tasks. While more
recent works implement handovers on fixed-base robotic
arms, earlier works feature humanoid robots [6, 7] and mobile
manipulation platforms [1, 3, 8, 9, 10, 11, 12]. In this work,
we focus on robot-to-human handovers performed with a
mobile manipulator.

Drawing parallels with human-to-human handovers, we
would expect a human handing over an object to be able to
perform the handover without completely stopping in their
path. The handover is more efficient as the giver can move
onto their next task quicker. This observation motivates us
to transfer this behavior to robot givers. Our recent survey
on robotic handovers revealed that none of the prior works
proposed keeping the robot’s base moving during the physical
exchange stage of the handover [13]. We identified only two
papers that considered the mobility of the handover agents.
Mainprice et al. [14] plans a path considering the mobility
of a human receiver; however, the robot comes to a stop at
the object transfer point. Kupcsik et al. [15] considers cases
where the transfer point moves for a human receiver who may
be walking or running; however, the handover is performed
with a fixed-base robotic arm. In this paper, we consider
mobile manipulators and exploit their full motion capability
in robot-to-human handovers.

Fig. 1: An on-the-go handover. Human receivers assessed on-the-go han-
dovers to be better than stop-and-deliver in most subjective metrics.

We present on-the-go handovers, in which the robot’s base
keeps moving even during the physical exchange stage of
the handover, as illustrated in Fig 1. To achieve on-the-go
handovers, we adopt the reactive controller by Haviland et al.
[16], which generates motions by moving the robot’s base and
its arm simultaneously. Our work investigates the subjective
perceptions of human receivers for on-the-go handovers com-
pared to stop-and-deliver handovers. To this end, we conduct
an in-person user study in which we compare two handover
behaviors (on-the-go vs stop-and-deliver) and two agent types
(robot vs human). The contributions of this work are two-
fold:

• We propose on-the-go handovers in which the robot’s
base continues to move during physical transfer. To
the best of the authors’ knowledge, this is the first
reported study of mobile manipulation to perform object
handovers throughout all phases of the handover.

• User studies that confirm the benefit of the on-the-
go handovers compared to standard stop-and-deliver
handovers in terms of subjective assessments by human
receivers.

As on-the-go handovers are faster, we expect people to
perceive it as more efficient and better timed. We also expect
on-the-go handovers to be perceived as more natural and
predictable as it conforms more closely to what a human
would do, and more competent as it requires the robot to
multi-task. In addition, we expect people to perceive the
handover as safer as the motion is smooth and blended
together. Furthermore, we expect that a robot giver will
emphasize the differences between two handover behaviors
more than a human giver would, as people are less familiar
with robot handovers and will therefore be more attentive
and critical towards it.
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Fig. 2: Flowchart diagram showing the behavior of the Fetch robot when
performing a handover for both the stop-and-deliver and on-the-go strategies.

Therefore, we consider the following hypotheses:
• H1: On-the-go handovers will be perceived more posi-

tively than stop-and-deliver handovers in all subjective
measures.

• H2: Compared to stop-and-deliver handovers, on-the-go
handovers will have a larger positive effect on subjective
metrics for a robot giver compared to a human giver.

II. METHODOLOGY

A. Robot Navigation and Control

Robot-to-human handover experiments are implemented
on a Fetch Mobile Manipulator which consists of a robotic
arm mounted onto a non-holonomic mobile base, and a head
which can pivot about two axes.

A 2D occupancy map of the experimental environment is
pre-computed by using a SLAM algorithm which fuses base
laser scanner and depth camera measurements [17]. This map
is then used to perform on-line localization using a particle
filter algorithm [17]. The position of the seated human is
assumed to be known within this map.

The robot is controlled using an optimization-based reac-
tive controller [16], which allows the simultaneous movement
of the robot’s base and the robotic arm. Target end-effector
task-space velocities are computed to drive the end-effector
in a straight line towards a waypoint defined relative to the
mobile base. The optimal control problem is augmented with
an additional control objective, formulated as a hard equality
constraint, for the mobile base to meet a specified linear
and angular velocity. These target velocities are calculated
using a proportional controller to drive the base towards the
final goal. The robot head is controlled independently using
a similar proportional controller.

B. Handover Behavior Implementation

To choose the robot arm configurations at the start and
at the transfer point of the handover, we use the findings
by Cakmak et al. [8] who propose using contrast in the
robot’s actions for handovers. We adopt their idea of spatial
contrast, by making the robot’s hand-over pose distinct from
other things that the robot might do with an object in its

Tucked On-the-goStop-and-deliver

Fig. 3: Different arm configurations the robot transitions between. The
robot’s head is pointed towards the user.

hand. The tucked and handover configurations of the arm
are fixed a priori, and defined relative to the robot base.
These configurations are chosen to be within arm’s length
of the receiver, able to be quickly and smoothly transitioned
to by the arm, and avoids colliding with the table and other
obstacles.

The robot begins with its arm in a tucked configuration
(0.3m forwards, 0.6m high) oriented away from the partici-
pant so that the object is not accessible by the participant
(as shown in Fig. 3, left image). When a handover is
performed, the end-effector is outstretched and tilted down
slightly towards the participant (as shown in Fig. 3, middle
and right images). This change in configuration aims to
maximize the spatial contrast between the robot’s states to
clearly communicate to the participant when the object is
ready to be grasped. In addition, a simple gaze behavior
is adopted where the robot looks at the participant while
it approaches them and performs the handover. This was
inspired by a user study by Zheng et al. [18] that found that
for robot-to-human handovers, people tend to reach for the
offered object earlier when the robot provides a continual
gaze cue towards the receiver’s face. The robot then looks
away towards the goal once the handover is complete.

The sequence of behaviors for the robot handovers is
described below, and visualized in Fig. 2:

• On-the-go (OtG): The robot begins with its arm in
a tucked position and the mobile base begins moving
down the corridor. Once it is within 2.5m of the
participant, the mobile base gradually slows down to
half its original speed, and the arm is extended towards
the participant (0.3m forwards, 0.5m to the side, 0.8m
high). Once the robot has passed the participant, the
mobile base speeds up to its original speed and retracts
its arm to its original tucked configuration.

• Stop-and-deliver (S&D): The robot begins with its arm
in a tucked position and the mobile base begins moving
down the corridor. Once it has arrived to the right of
the participant, the base stops and rotates to face the
participant. The arm is then outstretched to perform the
handover (0.75m forwards, 0.25m to the side, 0.8m
high), then retracted when the handover is complete.
The mobile base rotates to its original orientation, then
continues moving towards its goal.
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Fig. 4: Experimental setup of the user study.

For human-to-human handovers, the human giver mim-
icked the robot’s behavior as closely as possible. The role of
the human giver was performed by the same experimenter in
all experiments for consistency.

C. Experimental Procedure

The participant, who was seated at a table next to the
corridor as depicted in Fig. 4, was tasked to receive an
object from the robot. The robot approaches the participant
from their right side, following Dautenhahn et al. [19] who
found that the right side was the approach direction people
are most comfortable with, with no significant differences in
preferences being found between handedness. The giver starts
at one end of the corridor where the participant cannot see
them, so that they cannot initially know whether it is a robot
or a human performing the handover. The giver is tasked with
navigating to a goal at the opposite end of the corridor while
performing the handover. A soft toy is used as the handover
object and is loosely held in the gripper such that participants
can easily take the object from the robot’s gripper anytime,
without the robot needing to detect and respond to when the
person is taking the object.

Prior to the trials, the participant was told that there will
be two handover behaviors and two handover givers, and
that the handover agent will move down the corridor while
performing the handover. Each participant is exposed to all
4 types of handovers, as visualized in Fig. 5. The order in
which participants experience these handovers is randomized,
and they are not aware of which handover will happen before
each trial. Each experimental trial began after the participant
gave a verbal cue to the operators when they are ready. After
each trial, the participant was asked to fill out a questionnaire
regarding their experience with the latest trial. More details
about the survey are given in the next section.

D. Survey

To gauge the experiences of each participant during the
experiments, participants were asked to fill out a survey after
each trial to test the hypotheses listed in Sec. I. After each
one of the 4 trials, the participants responded to the following
6 statements using a 5-point Likert scale:

1) The giver was efficient in completing the handovers.
2) The interaction with the giver felt natural.
3) The giver’s timing was appropriate.
4) The giver was competent in giving objects to me.
5) I felt safe during the interaction.
6) I was able to predict what the giver was going to do.
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Fig. 5: Different handover scenarios that were studied, including human-
to-human handovers (top), robot-to-human handovers (bottom), static han-
dovers (left), and on-the-go handovers (right).

In addition, at the end of the 4 trials, participants were
asked about which handover behavior they preferred (On-
The-Go/Stop-and-Deliver/No Preference):

• Which robot giver handover behavior did you prefer?
• Which human giver handover behavior did you prefer?

At the end of the study, participants were asked to provide
any additional comments they might have about their expe-
rience.

III. RESULTS

We recruited 15 participants from the lab and University
premises1, including 11 male and 4 female participants
between the ages 20 and 31 (µ = 22.9, σ = 3.56). All
participants had some prior experience working with robotic
platforms. There were 3 out of the 60 trials that were repeated
for the following reasons: an error in the experimental setup,
a localization error of the robot, and a handover failure due
to a participant’s uncertainty about how to interact with the
robot on their first trial (a stop-and-deliver robot-to-human
handover). All following statistical tests are performed to a
5% significance level. The distribution of all responses are
shown in Fig. 6 and the user preferences are shown in Fig. 7.

A. Analysis

Due to the ordinal nature of the Likert scale variables,
a non-parametric test was applied. To test H1, a single-
tailed Pratt modified Wilcoxon signed-rank test was ran
for paired differences between perceptions of the on-the-go
and stop-and-deliver handovers. As we believe that a robot
agent compared to a human agent fundamentally changes the
nature of the handover, we do not treat our experiment as a
2×2 factorial design, and instead analyze the robot-to-human
and human-to-human experiment results independently. The
statistical test results are summarised in Table I.

1No external participants could be recruited due to the university COVID-
19 policy. This study has been approved by the Monash University Human
Research Ethics Committee (Application ID: 31765).
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Fig. 6: Summary of the raw data obtained from the survey filled out by 15 participants, comparing on-the-go (OtG) and stop-and-deliver (S&D) handovers.
The exact number of responses per Likert option is shown in each respective bar.

Ha
Robot Human

W(15) p W(15) p

Efficiency OtG>S&D 87.0 0.021 81.0 0.016
Naturalness OtG>S&D 80.0 0.020 85.0 0.041
Timing OtG>S&D 114.0 0.001 106.5 0.002
Competence OtG>S&D 55.0 0.291 75.0 0.007
Safety OtG>S&D 63.0 0.049 42.0 0.042
Predictability OtG>S&D 90.5 0.008 101.0 0.003

TABLE I: Wilcoxon signed-rank test results for robot handover behavior
hypotheses H1. Significant results are indicated in bold.

For human-to-human handovers, on-the-go handovers were
rated significantly better than stop-and-deliver handovers with
respect to all survey questions. This was expected, as it is
natural for people keep moving as they are handing over
objects.

For robot-to-human handovers, on-the-go handovers were
found to be significantly more efficient, natural, safer,
predictable, and to have better timing. These results affirm
H1 to an extent. Interestingly, we did not find a statistically
significant improvement in the perceived competence of the
robot, therefore H1 was not fully affirmed.

To test H2, we define two new sets of variables as the
difference between on-the-go and stop-and-deliver handover
ratings for each of the robot and human agent experiments.
Single-tailed Pratt modified Wilcoxon signed-rank tests are
then used to test for H2 for each subjective metric. The results
for this statistical test are summarized in Table II. No subjec-
tive metric featured a statistically significant larger positive
effect when using on-the-go handovers over stop-and-deliver
handovers when compared between the two handover agents.

B. Discussion

From the survey data shown in Fig. 6, we observe that
all participants felt safe with the on-the-go robot-to-human

Ha W(15) p

Efficiency R(OtG−S&D)>H(OtG−S&D) 71.5 0.196
Naturalness R(OtG−S&D)>H(OtG−S&D) 55.5 0.488
Timing R(OtG−S&D)>H(OtG−S&D) 75.0 0.094
Competence R(OtG−S&D)>H(OtG−S&D) 38.0 0.844
Safety R(OtG−S&D)>H(OtG−S&D) 40.0 0.303
Predictability R(OtG−S&D)>H(OtG−S&D) 69.0 0.270

TABLE II: Wilcoxon signed-rank test results for H2. No result was statis-
tically significant, which means that handovers with robotic givers did not
benefit more from the on-the-go feature compared to human givers.

handover (all either agree or strongly agree). We believe
factors including the robot slowing down when it is closer to
the participant, and approaching from the side as opposed to
a front-on approach, helped to achieve this result. However,
out of all of the subjective metrics for on-the-go robot-to-
human handovers, participants rated the handover’s natural-
ness and competence the lowest, with only two participants
strongly agreeing that the robot exhibited each of these
traits. This is likely influenced by the specific handover
behavior implementation used, such as the timing of the
handover, positioning of the handover point, gaze patterns,
and other possible expected verbal or non-verbal cues. Future
work is recommended to fine-tune the behavior of the on-
the-go handover make the handover feel more natural and
competent.

We also observe that receivers subjectively preferred hu-
man givers over robot givers (p ≤ 0.023 for all subjective
measures and givers using a Pratt modified Wilcoxon signed-
rank test). This is somewhat in contrast to the study by
Unhelkar et al. [20] which did not find a significant difference
in the perceptions of fluency between human and robotic
givers. As opposed to their study, we did not ask about the
fluency of the interaction in our survey, and their platform
was a mobile robot without an arm which might change the
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Fig. 7: Distribution of handover preferences between 15 participants.

perception of the receivers.
Our hypothesis tests show that robot handover competence

was the only metric that did not improve when comparing
on-the-go handovers to stop-and-deliver handovers. This may
be due to participants perceiving the robot givers as equally
less competent compared to human givers, due to drawbacks
shared between both robot handover behaviors such as not
reactively adjusting to the receiver’s preferences. However,
further work should be conducted to verify this hypothesis.
All other subjective metrics favoured on-the-go handovers.

Although the results regarding the subjective metrics sug-
gest that on-the-go handovers are superior overall, this pref-
erence is less clear when participants were asked explicitly
which handover they preferred, as shown in Fig. 7. Only a
slight majority of people preferred robot on-the-go handovers
(OtG: 54%, S&D: 33%, No pref.: 13%). A possible explana-
tion for this is that the preferred handover is also dependant
on the specific task, as posited by Martinson et al. [21].
This would be a factor participants consider for their overall
handover preference, but not when responding to Likert items
regarding the specific task used in the user study. We received
the following comments which support this:

• “[It] felt like each handover is good for a different
purpose. [I] preferred [the on-the-go] handover for this
particular [object].”

• “If the robot was bringing me a plate of food, I would
have preferred the [stop-and-deliver handover] since its
safer.”

Therefore, the results regarding subjective metrics may only
be relevant to this specific handover task. Future work
generalizing on-the-go handovers to more tasks may consider
the role of object semantics for handovers.

Another observation is that participants were influenced by
differences in handover behaviors not directly arising from
the on-the-go-stop-and-deliver handover dichotomy. Three
participants commented that the position the agents stopped
at to perform the stop-and-deliver handover (directly to
the right of the participant) felt awkward, and would have
preferred the robot to stop slightly earlier. However, this may
also be an advantage of on-the-go robots, as participants can
choose where to perform the handover along a continuum.
Three participants commented that they would have preferred

the robot on-the-go handover to reach its arm a bit further
or higher. Future work may be required to remove these
slight unwanted behavioral differences to ensure there are
no confounding effects in the experiment. Alternatively, a
more intelligent method to adaptively choose the handover
location based on the user’s position and/or preference could
be beneficial to people’s perception of the handover.

H2 was not supported by the results, showing that there
was not a significant difference between people’s perception
of the improvement of on-the-go handovers over stop-and-
deliver handovers between human and robot agents. As
opposed to our original justification for H2, this may instead
suggest that the benefits of a on-the-go handover are as
relevant for a human agent as they are for a robot agent.

IV. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

First stopping, and then delivering the object is the stan-
dard way performing handovers with mobile manipulation
platforms in the existing literature. On the other hand, “on-
the-go” handovers, where the robot does not come to a stop
during physical handover, can be more efficient since the
giver can move to its next task earlier. In this paper, we con-
duct a user study to investigate the subjective perception of
on-the-go handovers compared to stop-and-deliver handovers,
from the receivers’ perspective.

Our user study results showed that receivers subjectively
assessed robot-to-human on-the-go handovers as more effi-
cient, natural, safer and predictable and to have a better
timing compared to stop-and-deliver handovers. This sug-
gests that robot-to-human handovers should be performed as
on-the-go for scenarios similar to our experiment, however,
further qualitative research is needed to understand when and
where on-the-go handovers are suitable [3].

A limitation of this work is the assumption that the human
receiver always pays attention to the handover task. In real-
world deployments, users would divide their attention be-
tween the handover and other activities they are doing, which
might be as simple as checking their phones [21]. Catching
the attention of the handover target is more important for on-
the-go handovers compared to fixed manipulators, because if
the robot cannot catch the attention of the human receiver,
then the on-the-go handover would be reduced to a stop-
and-deliver behavior. Detecting if the user is ready for the
handover would be important for real-world situations [22].
The robot can also actively seek to increase the chance
of engagement by using gaze cues [23], better approach
angles [24, 25], predictable arm motions [26, 27], audio
cues [28], or a combination thereof [29]. If waiting for the
user to complete the handover is deemed to be detrimental
to the efficiency of a robot, then indirect handovers can be a
way to circumvent this issue [2], where the robot places the
object on a table [30].

Other limitations of our work include the assumption that
the receiver’s position is known, and that we don’t detect
if the user actually picked up the object from the robot’s
gripper. These limitations can be addressed with perception
modules for detecting people [22], predicting the object



transfer point [31], and checking grip forces to detect if the
object has been picked up [32].

Future work should consider situations where the human
receiver is walking instead of sitting, or extend our previous
work on human-to-robot handovers [5] into on-the-go han-
dovers. For such handovers, the robot would need to keep the
target object in-sight as much as possible [33], and a faster
gripper might be needed. It may also be useful to utilize
a projection method such as augmented reality to make the
robot’s intent accessible to the users [34].
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