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Abstract— Deep Learning (DL) based methods for object
detection achieve remarkable performance at the cost of com-
putationally expensive training and extensive data labeling.
Robots embodiment can be exploited to mitigate this burden by
acquiring automatically annotated training data via a natural
interaction with a human showing the object of interest, hand-
held. However, learning solely from this data may introduce
biases (the so-called domain shift), and prevents adaptation to
novel tasks. While Weakly-supervised Learning (WSL) offers a
well-established set of techniques to cope with these problems in
general-purpose Computer Vision, its adoption in challenging
robotic domains is still at a preliminary stage. In this work, we
target the scenario of a robot trained in a teacher-learner setting
to detect handheld objects. The aim is to improve detection
performance in different settings by letting the robot explore
the environment with a limited human labeling budget. We
compare several techniques for WSL in detection pipelines to
reduce model re-training costs without compromising accuracy,
proposing solutions which target the considered robotic sce-
nario. We show that the robot can improve adaptation to novel
domains, either by interacting with a human teacher (Active
Learning) or with an autonomous supervision (Semi-supervised
Learning). We integrate our strategies into an on-line detection
method, achieving efficient model update capabilities with few
labels. We experimentally benchmark our method on challeng-
ing robotic object detection tasks under domain shift. Code will
be released for reproducibility at camera-ready stage.

I. INTRODUCTION

In the state-of-the-art, object detection is typically ad-
dressed with DL-based approaches [1], [2] that achieve
remarkable performance. Despite their high accuracy, they
are constrained by requiring long training times and large
annotated datasets, limiting their adoption in such applied
settings where quick adaptation to novel tasks is required.
In Robotics, the embodiment of a robotic agent can be
exploited to interact with the environment, including humans,
to mitigate this burden and actively acquire training data.
Regarding the interaction with humans, past work shows
that a teacher-learner scenario can be exploited to auto-
matically collect labeled images for object recognition [3]
and detection [4]. Specifically, in those works the human
teacher shows an object, while holding it in their hand,
to the robot and 3D information is used to automatically
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collect the location information. However, while effective
and allowing for a natural interaction, this approach supports
limited generalization to novel, unseen, scenarios [4], [5]. A
further possibility is to exploit robots ability to navigate and
autonomously explore the environment, acquiring training
images during operation. Such images come in streams and
can carry useful information, eventually containing the ob-
jects of interest, but they are not labeled. Weakly-supervised
Learning (WSL) [6], is a well-established general purpose
Computer Vision framework which targets learning from
partially-annotated datasets. However, despite initial work in
robotic vision [7], [5] the robotic literature misses a thorough
comparison that investigates advantages and limitations of
existing techniques, especially in the context considered in
this paper. For instance, in [5], the unlabeled images are
processed with a pre-trained model to either select the hard
ones and ask a human expert to help and annotate them
(Active Learning (AL) framework [8]) or add the predic-
tions of the easy ones to the training set (Semi-supervised
Learning (SSL) [9], [6]). These frameworks allow for a
natural interaction with the environment and the human
teacher to improve the visual system and work presented
in [5] effectively reduces the amount of manual annotation,
but it has some limitations. Firstly, the unsupervised data
processing is pool-based [8], that is, all unlabeled images are
evaluated before query selection. This is not suitable for a
robotic system that is exploring the environment and needs to
decide interactively whether to request annotations or not. To
this aim, stream-based techniques [8] are preferable, because
they allow to process images frame by frame and to make
individual query decisions on-line. This strategy, however,
might yield to lower accuracy since queries are constructed
using limited information on the unlabeled set [8]. Moreover,
the pre-trained detection method in [5] iterates multiple times
over the unlabeled data, which, while allowing to refine the
data selection, slows down learning. Finally, while succeed-
ing in reducing the human effort required for refinement, [5]
still needs a relatively high number of manual annotations,
which prevents its adoption in on-line applications.

In this paper, we study how WSL techniques can be
used to exploit the robot interaction with the environment
and the human teacher to update and improve performance
of object detection models previously trained with data of
handheld objects. We focus on the stream-based scenario
with the aim of increasing the human labeling efficiency
of weakly-supervised on-line object detection. Moreover, we
consider the case in which only one pass over the unlabeled
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data is allowed. The main contributions of this work are
as follows. We present and empirically evaluate several AL
techniques for detection, typically used in general purpose
computer vision. We compare pool-based and stream-based
AL in challenging robotic scenarios and propose a solution
to overcome limitations of the latter. We also consider the
case where no human labeling is allowed for adaptation.
Specifically, we investigate the domain shift effects occurring
when using a model trained on data of handheld objects
in different settings and how wrongly self-annotated data
can degrade accuracy in those cases. Finally, we propose
an SSL sampling method to overcome this problem and we
empirically demonstrate that, in case no labeling is allowed,
it can effectively improve model performance. This paper is
organized as follows: we introduce WSL in Sec. II and we
cover related work in Sec. III. In Sec. IV, we present our
efficient detection methods, which are analyzed and validated
in Sec. V. Sec. VI concludes the paper.

II. BACKGROUND

The supervised learning approach to object detection is
centered on learning the detector function from an annotated
(supervised) dataset Sn = {(xi, Yi)}ni=1 of images (xi) and
corresponding bounding boxes and labels annotations (Yi).
The methods described in Sec. III-A fall in this category.
They contributed to a clear progress in detection accu-
racy and prediction speed. However, they need expensively-
annotated large-scale datasets to be optimized. This property
does not meet the robotic requirement for a detector to
adapt to a variety of tasks, potentially unknown a-priori, in
a short time span. However, while large annotated datasets
might not be available, plenty of unsupervised images are
usually accessible to robots. In this context, a training set
Sn = L ∪ U is typically composed of a labeled subset
L = {(xi, Yi)}nL

i=1 and an unlabeled subset U = {xi}nU
i=1.

WSL allows the agent to select unsupervised images from U
and acquire their labels semi-autonomously for updating the
detector, minimizing human effort and improving accuracy.
WSL includes several subclasses of methods, depending on
the label-acquisition mechanism [9], [6]. The most relevant
for this work are Active and Semi-supervised Learning.
Active Learning. AL [8] interactively queries unsupervised
examples for expert labeling to minimize human annotation
and maximize accuracy. Unlabeled examples are chosen from
U according to a scoring function and a sampling strategy.
Their labels are then queried to an expert, and newly-
annotated examples are added to L for training. If all images
in U are accessible at selection time, sampling is referred to
as pool-based. Otherwise, if only one candidate from U is
accessible, sampling becomes a binary decision on keeping
or dropping it and is called stream-based. The AL selection
criterion we focus on is uncertainty sampling, which picks
the examples the model is least confident about.
Semi-supervised Learning. In SSL [6], unlabeled images
are annotated by the detector itself with no human interven-
tion, propagating predicted labels to high-confidence regions
of the input space by exploiting the geometry of the input

data distribution. This technique is effective if the detector
is not overconfident of its predictions and if the confidence
threshold for propagating predicted labels is strict enough.

III. RELATED WORK

A. Object Detection

Early approaches to object detection were based on feature
dictionaries [10] or specific kinds of image descriptors [11].
Feature vectors were separately classified by supervised
learning methods. Despite yielding limited accuracy, these
approaches had the advantage of being parsimonious in
terms of computations and dataset size. More recently,
object detection experienced significant progress thanks to
the introduction of DL-based methods. This determined
clear improvements in terms of predictive performance,
mainly due to the powerful representation capabilities of
deep networks. Such approaches include two-stage detectors
based on Region Proposal Networks (RPNs) [12] (like e.g.
Faster R-CNN [12] and Mask R-CNN [1]) and related
extensions [13], [14], [15]. These methods employ a deep
network to perform (i) region candidates predictions, (ii) per-
region feature extraction and (iii) region classification and
refinement. Alternative end-to-end approaches include one-
stage detectors, which replace the RPN with a fixed, dense
grid of candidate bounding boxes. One such example is
SSD [16], [17], achieving accuracies competitive with the
RPN-based Faster R-CNN and high frame rate. Another one-
stage method, RetinaNet [18], rebalances foreground and
background examples through the so-called Focal Loss.

B. Efficient Object Detection for Robotics

Despite their high accuracy, the approaches described
above typically require (i) long training time and (ii) large-
scale annotated datasets for adaptation to novel tasks. These
aspects limit their adoption in Robotics.
Computational efficiency. A well-known issue of DL-based
pipelines is that they suffer from catastrophic forgetting
when optimized on new data [19]. This limitation implies
retraining these models on the full dataset, causing long
adaptation time. To address this issue, a recent work for
robotic object detection leverages fast classifiers to enable
on-line adaptation [20], [21]. Specifically, in [21], an efficient
multi-stage pipeline is proposed by combining DL-based
RPNs and feature extractors (namely, based on Faster R-
CNN or Mask R-CNN) with large-scale Kernel classifiers
[22], [23], [24]. According to this approach, the feature
extractor is pre-trained off-line on a large representative
dataset, yielding a powerful and transferable learned repre-
sentation, which is kept fixed during on-line operation. The
actual regions classification is performed by the integration
of an efficient hard-negatives bootstrapping approach (the
Minibootstrap [21]) with a set of Kernel-based FALKON
classifiers [22], [23].
Labeling efficiency. Labeling efficiency is another key
requirement for robotic object detection. The broad class of
WSL methods [9], [6] provides a rich set of tools towards
this goal in general purpose Computer Vision, in particular



AL and SSL – introduced in Sec. II. After successful
applications to deep object classification [25], [26], [27],
AL has been recently applied also to object detection [28],
[29], [30]. For instance, recently, detection-specific image
scoring functions (like e.g., localization tightness and sta-
bility [31]) have been proposed. Instead, when no further
annotation is allowed to exploit the unsupervised samples,
SSL techniques can be used. Similarly to AL, also SSL
has been recently applied to object detection. For instance,
in [32], SSL is employed for dataset augmentation and
training object detectors. Moreover, the authors point out
that vanilla SSL can degrade accuracy in presence of domain
shift. We also observed the same issue in our robotic setting
and we propose a simple yet effective solution in Sec IV-D.
Recent approaches integrate both AL and SSL techniques
into the same detection pipeline, such as Self-supervised
Sample Mining [33], [34] (SSM). SSM sorts unsupervised
images into separate candidate sets for further AL and SSL
processing, according to the predictive confidence scores
of the underlying DL-based detection model [13]. Another
related field in Computer Vision is Unsupervised Domain
adaptation for object detection [35]. Specifically, the pseudo-
labeling approach [36], [37] proposes to adapt a detection
model to novel and unknown domains (i.e., datasets) by using
confident model predictions as pseudo-ground truth.

The aforementioned approaches have been proposed and
benchmarked on general purpose Computer Vision datasets.
However evaluation of WSL techniques on robotic scenarios
is still at an initial stage (e.g., see [7], [5]). For instance,
in [5], SSM is extended to enable on-line adaptive object
detection for Robotics, by integrating the WSL sample selec-
tion strategy with the on-line object detection method [21].
However, [5] still requires a relatively large number of
manual annotations, does not investigate the effect of severe
domain shift in self-supervision and focuses on a pool-based
processing. While showing encouraging results, all these
limitations prevent its adoption in on-line applications. In this
work, we present an empirical analysis of different general
purpose computer vision AL and SSL techniques in a chal-
lenging robotic scenario, targeting a low annotation budget
regime. We focus on how WSL techniques can be used to
exploit the robot interaction with the environment and the
human teacher to update and improve performance of object
detection models previously trained with data of handheld
objects. Moreover, we propose solutions to overcome the
aforementioned limitations, improving the AL performance
and addressing the SSL failure cases under domain shift,
increasing overall labeling efficiency.

IV. METHODS

In this work, a robot is asked to detect a set of object
instances in an unconstrained environment (referred to as
TARGET). A first detection model is trained during a
brief interaction with a human, in a teacher-learner scenario,
like e.g. in [4] where objects are handheld (the TARGET-
LABELED). Then, the robot autonomously explores the
environment, acquiring a stream of images in a new setting,

Fig. 1. Overview of the proposed pipeline. Refer to Sec. IV-A for details.

where automatic annotation is not possible. Therefore, these
images are not labeled (TARGET-UNLABELED) and are
used to adapt the detector on-line exploiting the robot in-
teraction with the environment and the human teacher. In
the next sections, we present the proposed pipeline (Sec. IV-
A) and the learning protocol (Sec. IV-B). Then, we present
all the considered AL and SSL techniques and the proposed
approaches (Sec. IV-C and IV-D, respectively).

A. Pipeline Description

The proposed WSL pipeline (see Fig. 1) is composed of
four main modules: (i) the On-line Object Detection, (ii) the
Scoring function, (iii) the AL Selection policy, and (iv) the
SS Selection policy.

On-line Object Detection (OOD). For this module,
we follow the method proposed in [21], but considering
the implementation presented in [38] and [39]. This is
an on-line learning approach consisting of two stages:
(i) region proposals and feature extraction, and (ii) region
classification and bounding-box refinement. The first stage
relies on layers from Mask R-CNN [1] (specifically, the
convolutional layers, the RPN [40] and the RoI Align
layer [1]). In particular, this part is used to extract a set of
Regions of Interest (RoIs) from an image and encode them
into a set of features. The second stage is composed of a set
of FALKON [22] binary classifiers (one for each class of
the TARGET) and Regularized Least Squares (RLS) [41],
respectively for the classification and the refinement of the
proposed RoIs. Classifiers are trained with an approximate
bootstrapping approach, called Minibootstrap [21], which
addresses the well-known issue of background-foreground
class imbalance in object detection [42], while maintaining
a short training time. In this work, the adoption of OOD
permits to achieve a convenient speed/accuracy trade-off,
since it allows to maintain a competitive accuracy with other



DCNN-based approaches with a fraction of the optimization
time required (seconds or minutes) [21], [38].

Scoring function. This function assigns a confidence
score to the predictions for the images in the TARGET-
UNLABELED. This score is then used by the AL and
SS Selection policies to decide which images need to be
manually annotated or can be considered as pseudo-ground
truth. For this part, we employ the Cross-Image Validation
(CIV) proposed in SSM [33]. CIV stitches predicted image
patches from the TARGET-UNLABELED on random
images, sampled from TARGET-LABELED. Then, it
executes the detector on the stitched images and computes
a consistency score from the obtained confidence scores [33].

AL and SS Selection policies. Given the predicted de-
tections obtained by the OOD and the consistency score
computed by the Scoring function, these two policies decide
whether an image of the TARGET-UNLABELED is queried
for annotation or the predicted detections are confident
enough to be used for self-supervision. Our main contribution
relies on these last two components. Firstly, we target a
stream-based scenario, since it is more suitable for on-
line applications. Secondly, we consider a robotic setting
with low annotation budget and a large domain shift of
the TARGET-UNLABELED with respect to the TARGET-
LABELED. Specifically, for the AL Selection policy, we con-
sider several AL techniques, comparing their performance
on the considered robotic setting and proposing a solution to
enforce diversity during sampling. The adopted AL baselines
and the proposed solution are listed in Sec. IV-C. Instead,
for the SS Selection policy, we consider a stream-based
baseline and a novel strategy to overcome issues caused
by the domain shift, both described in Sec. IV-D. Finally,
another major difference with respect to previous work [5]
is that we consider the case in which only one pass over
the TARGET-UNLABELED data is allowed, while typically
in standard Computer Vision, and also in [5], an iterative
process is used. This aspect is crucial for speeding up WSL.
However, it makes detector refinement more challenging.

B. Learning Protocol

The learning process is divided into: (i) Supervised phase
(represented by the light blue arrows in Fig. 1), and (ii)
Weakly-supervised phase (represented by the orange arrows
in Fig. 1). Both phases rely on pre-trained Mask R-CNN’s
weights as feature extractor for the OOD. Those weights
remain fixed, while model training and adaptation is per-
formed by optimizing on the new data only the second
stage of the OOD, i.e., (i) the FALKON classifiers with
the Minibootstrap technique and (ii) the RLS box-refinement
model (see Sec. IV-A for details). The Supervised phase is
performed within a few seconds of interaction with a human
on the TARGET-LABELED, yielding a first detection model
(the seed model). In this phase the human shows the objects
to the robot, handling them in their hand and annotations are
automatically collected. Then, in the WSL phase, the SSL

pseudo-ground truth and AL queries are selected from the
TARGET-UNLABELED as described in Sec. IV-A, using
the seed model’s confidence scores. Finally, they are added
to the dataset which is used to re-train the on-line detector.

C. Active Learning Strategies

For AL selection, we considered both (i) stream-based
approaches, which are the focus of this work, being suited
to robotic scenarios, and (ii) pool-based ones.

A simple, yet often effective, pool-based strategy is to
sample uniformly at random the images with a confidence
score below a threshold (Uniform random in Sec. V).
Another diversity sampling strategy is to execute k-means
clustering [41] on the image-level features and select the
resulting cluster centers (K-means-based AL in Sec. V).
In our analysis, we report results for both strategies.

In stream-based AL settings, a simple selection strategy
involves confidence score thresholding followed by coin
flipping [33] for implementing uncertainty and diversity sam-
pling, respectively (coin-flip AL in Sec. V). Another,
more practical, solution is to exploit temporal coherence
in image sequences to enforce sampling diversity [43].
Leveraging temporal coherence is particularly suitable for
on-line robotic tasks, since data, coming in streams, needs
to be acquired sequentially and is therefore highly temporally
correlated. To this aim, we consider the Fixed temporal
window strategy, which employs a temporal window of
fixed size ∆ so that if frame t is selected, any other frame
within [t−∆, t+∆] can no longer be considered for selection.
While enforcing diversity, this strategy, by using a fixed ∆,
does not take into account: (i) the exploration session dura-
tion, that is, the size nU of TARGET-UNLABELED, which
might be known a-priori even in stream-based scenarios, and
(ii) the available manual annotation budget k. We show in
Sec. V-B that this results in poor performance for low k when
the TARGET-UNLABELED is redundant.

To overcome this limitation, we propose to use an adaptive
temporal window size, defined as

∆nU ,k =
nU · α
k

and referred to as Adaptive temporal window in
Sec. V. This strategy allows to tailor the strictness (window
size) of the temporal diversity-enforcing sampling to the
overall amount of available unsupervised data nU , while at
the same time ensuring to make full use of the available
budget k. For instance, given a budget k, the adaptive
window size grows linearly with nU in order to cover the
entire duration of the exploration session. α ∈ (0, k) ⊆ R
is a hyperparameter accounting for the proportion of AL
candidates with respect to nU , which is unknown a priori.

D. Semi-supervised Learning Strategies

For SS selection, we consider two stream-based baselines.
The first is the SS baseline, which selects all the images
passing CIV as pseudo ground truth. However, we show
in Sec. V-C that under domain shift this leads to model
degradation due to the abundance of false negatives. For



Fig. 2. Example images of the datasets used for this work: a) ICWT dataset; b) POIS in TABLE-TOP dataset; c) WHITE in TABLE-TOP dataset; d)
HO-3D; e) YCB-Video training set, f) YCB-Video test set.

this reason, in this work, we propose a more conservative
strategy, namely SS pos. only, which only selects pos-
itive predictions and leaves out negative ones. In Sec. V-C,
we show that our approach successfully counteracts severe
model degradation.

V. EXPERIMENTS

The objective of our experiments is to evaluate the per-
formance of the presented WSL techniques in improving
detection performance under domain shift. Specifically, we
consider the scenario of a robot previously trained with
human interaction to detect handheld objects. We aim to
generalize to a different setting (i.e., a table top) by exploiting
the unlabeled data collected by the robot during autonomous
exploration (Weakly-supervised phase in Sec. IV-B).

A. Experimental Setup

For the OOD, the weights of the Feature extractor are
learned by training Mask R-CNN on the MS COCO [44]
dataset. ResNet50 [45] has been considered as Mask
R-CNN’s convolutional backbone (we use the available
pre-trained Mask R-CNN weights1). During Supervised
and Weakly-supervised phases, the feature extractor is
fixed, while the FALKON classifiers and RLS are updated
as explained in Sec. IV-B (we relied on [21] for hyper-
parameters selection). This allows to achieve a training time
of few seconds or minutes for each learning step.
Given the aforementioned target scenario, in our experiments
we consider two different cases of domain adaptation from
handheld (Supervised phase) to table-top objects (Weakly-
supervised phase). Specifically, we adapt (i) from iCubWorld
Transformations [3] (iCWT) to a set of sequences depicting
a subset of iCWT’s objects on a table-top (TABLE-TOP)
and (ii) from HO-3D [46] to YCB-Video [47].

From iCWT to TABLE-TOP (iCubWorld domain). iCWT
contains images for 200 handheld objects. Each object is
demonstrated by a human teacher to the robot (as in [4]) and
is acquired with different sequences representing specific
viewpoint transformations: 2D rotation (2D ROT), generic

1https://github.com/facebookresearch/
maskrcnn-benchmark/blob/master/MODEL_ZOO.md

rotation (3D ROT), translation (TRANSL), scaling (SCALE)
and all transformations (MIX) (see [3]). For the Supervised
phase, we employ a subset of the iCWT, considering 21 of
the total 200 objects. All the transformations, except from
MIX, are considered, resulting in a TARGET-LABELED of
size nL ∼6K. The TABLE-TOP depicts the same 21 objects
randomly placed on a table with two different tablecloths:
(i) pink/white pois (POIS) and (ii) white (WHITE). The two
datasets contain the same objects, but with an important
domain shift: iCWT frames include the hand of the teacher,
whereas TABLE-TOP has different backgrounds and light
conditions and depicts objects on a table. Refer to Fig. 2
for a visual representation of the domain shift. For the
Weakly-supervised phase, we consider the WHITE sequence
as TARGET-UNLABELED while we leave the POIS
sequence as test set to evaluate performance. These two sets
are respectively of size ∼2K and ∼1K.

From HO-3D to YCB-Video (YCB domain). Similarly,
in HO-3D and YCB-Video, objects from the YCB [48]
dataset are presented handheld by a human and in table-top
sequences, respectively. Specifically, YCB-Video presents
sequences for 21 objects while in HO-3D a subset of 9 of
those objects are considered. Note that for our experiments
we do not consider the labels for the remaining 12 objects
in YCB-Video. For the Supervised phase, we take from
HO-3D at most four sequences for each object resulting in
a TARGET-LABELED of size nL ∼20K. For the Weakly-
supervised phase, we consider a set of ∼11.3K frames
obtained by extracting one image every ten from the total
80 training video sequences available in the YCB-Video. As
test set, instead, we consider the ∼3K keyframe [47] images
chosen from the remaining 12 sequences in the YCB-Video.

Evaluation metrics. We report performance in terms of
mAP (mean Average Precision) at the IoU (Intersection over
Union) threshold set to 0.5, as defined for Pascal VOC 2007
(see [49]). Specifically, we repeat each experiment for three
trials and we present the results, reporting the mean and the
standard deviation of the obtained accuracy2.

2All experiments have been executed on a machine equipped with Intel
Xeon E5-2690 v4 CPUs @2.60GHz, and an NVIDIA Tesla P100 GPU.

https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/MODEL_ZOO.md
https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/MODEL_ZOO.md


Fig. 3. mAP comparison of pool-based (red) and stream-based (green)
AL strategies with varying query budgets for iCubWorld (a) and YCB (b)
domains.

B. Active Learning Sampling Strategy Evaluation

In this section, we compare the AL techniques de-
scribed in Sec. IV considering different manual annota-
tion budgets for both iCubWorld and YCB domains. To
this aim, we report in Fig. 3a and b the mAP trends
obtained by increasing the AL query budget during the
Weakly-supervised phase. Specifically, we report in red
shades the performance obtained by the pool-based strategies
(namely, k-means-based AL and Uniform random
from Sec. IV), and in green shades the stream-based ones
(namely, Coin-flip AL, Fixed temporal window,
and the proposed Adaptive temporal window from
Sec. IV). We empirically set the fixed temporal window size
as ∆ = 6 and the adaptive temporal window hyperparameter
as α = 0.5 for the iCubWorld domain and α = 0.4 for the
YCB domain. As it can be observed in Fig. 3a, for iCubWorld
domain the pool-based methods achieve the best mAP trends.
Notably, we observe that the Uniform random baseline is
almost as effective as k-means based-AL and they both
present an early steep slope for limited manual annotation
budgets. These two aspects are due to the fact that the
considered TABLE-TOP dataset in the iCubWorld domain,
contains sequences of similar (and thus redundant) frames
which need to be properly filtered during data selection. This
aspect of the dataset is also the main cause for the poor
performance obtained by the two stream-based techniques:
Coin-flip AL and Fixed temporal window, for
low numbers of manual annotations. Indeed, while being
more suited for a robotic application, by reasoning only on
a frame-by-frame fashion, they lack global information on

TABLE I
RESULTS OBTAINED BY SS BASELINE (2nd COLUMN) AND SS

POSITIVES (3rd COLUMN) FOR LARGE (1st ROW) AND SMALL (2nd

ROW) DOMAIN SHIFT FROM THE SUPERVISED (1st COLUMN) TO THE

WEAKLY-SUPERVISED PHASE.

Sup. phase
(mAP(%))

SS baseline
(mAP(%))

SS pos. only
(mAP(%))

SS
samples

Large DS 48.8 ± 0.3 37.9 ± 1.8 50.9 ± 0.06 ∼ 12%
Small DS 40.3 ± 0.9 47.1 ± 0.1 46.6 ± 0.2 ∼ 35%

the whole data distribution, which turns out to be a critical
drawback especially for limited manual annotation bud-
gets. However, for higher budgets, the Fixed temporal
window baseline achieves accuracies closer to the pool-
based ones. Finally, the proposed Adaptive temporal
window presents the best mAP trend, among the stream-
based approaches, especially for low annotation budgets and
it closely matches the pool-based ones. On the contrary, as
it can be observed in Fig. 3b, for the YCB domain the pool-
based methods, the Fixed and the Adaptive temporal
window present similar mAP trends. Specifically, the pro-
posed Adaptive temporal window has the steepest
slope. This is due to the fact that the YCB-Video dataset,
differently from the TABLE-TOP, presents less redundant
sequences and a smarter data selection based on temporal
coherence provides the best performance.
Finally, it is important to note that the proposed Adaptive
temporal window stream-based approach achieves sig-
nificantly higher mAP values, than other stream-based tech-
niques, for low annotation budgets for both domains. This
makes it the most successful stream-based approach in such
regime, which is the target of the presented work.

C. Semi-supervised Learning Evaluation

In this section, we investigate the impact of domain shift
from handheld objects to table-top datasets when no labeling
is allowed (i.e., SSL). To this aim, we report in Tab. I
the results of applying the SS baseline (as defined in
Sec. IV) in the two following scenarios:

• Large domain shift. In this case (Large DS row in
Tab. I), we consider the scenario in which the TARGET-
UNLABELED presents a completely different set-
ting (i.e., a table top) with respect to the TARGET-
LABELED (i.e., hand-held). To this end we used the
two datasets described in Sec. V-A.

• Small domain shift. In this case (Small DS
row in Tab. I), TARGET-LABELED and TARGET-
UNLABELED present similar conditions. The only dif-
ference in the latter one is that the objects are presented,
unlabeled, with different view poses. To this aim, we
considered as TARGET a 30-object identification task
from iCWT. For each object, we then use the TRANSL
sequence (∼2K images) as TARGET-LABELED and
the union of the 2D ROT, 3D ROT, and SCALE se-
quences (∼6K images) as the TARGET-UNLABELED.
We test on the MIX sequences of all the objects (∼4.5K
images).



Note that, in this experiment, we use the iCubWorld domain
only because the explicit sub-division in different viewpoint
transformations of iCWT allows to control the dataset split
in TARGET-LABELED and TARGET-UNLABELED such
that they present similar, but not identical, conditions. This
allows to precisely identify the Small DS setting.

Tab. I reports the results obtained in both cases. For each
row, we report the mAP (represented as mean and standard
deviation of the different repetitions) after the Supervised
phase (first column) and after the Weakly-supervised phase
for both SS baseline and SS pos. only (second and
third columns). Moreover, in the fourth column we report the
average percentage of samples selected by the SS process
over the total. As it can be observed, adding self-supervised
data with SS baseline, with small domain shift, results
in an improvement in accuracy. On the contrary, with a larger
domain shift, it leads to a significant accuracy deterioration.
A reason for this phenomenon can be identified by analyzing
the pseudo-ground truth generated by the SS process. We
report in Fig. 4 some representative images depicting in
green the region proposal candidates classified as background
by the detection system and that are therefore added as
negative samples to the dataset by the SS baseline. The
actual detections which instead are considered as positive
samples in the SS process are shown in red. It can be
noticed that, with large domain shift, only few objects are
correctly detected and therefore added to the training set
as positives, while most others are false negatives which
are automatically annotated as background samples. Clearly,
retraining the detection model with such a poorly-labeled
dataset leads to the sharp performance decay shown in Tab. I.
This confirms similar findings from the literature [36], in
the considered setting. Note that, we empirically noticed
that lowering the confidence threshold used to determine a
positive prediction is not suitable since, while not ensuring
less false negatives, it leads to imprecise predictions, with a
similar negative effect on the subsequent training. In Sec. IV,
we introduce the SS pos. only to address this issue.
This more conservative strategy includes only the regions
predicted as positive in the SS dataset, while the others
are filtered away, avoiding adding false negatives. Third
column in Tab. I shows that this strategy, does not modify
the basline in case of Small DS where SS data is already
reliable. However, for Large DS, not only effectively removes
wrong labels from the dataset, recovering from the two-digits
accuracy decay, but also successfully yields a performance
improvement of ∼2 points. Moreover, it allows to drastically
reduce the standard deviation of the obtained accuracy, from
1.8% to 0.06%, being less sensitive to statistical fluctuations.
This demonstrates that, in cases when no human manual
annotation is allowed, a robot trained to detect handheld
objects can explore the new domain, self-annotating the
newly collected data and improving detection performance.

VI. CONCLUSIONS

In this paper, we target the scenario of a robot trained
with human interaction to detect handheld objects, aiming

Fig. 4. Example predictions on the TARGET-UNLABELED before model
adaptation, selected by the SS Baseline for SS as positives (red boxes)
and negatives (green boxes).

to improve detection performance in different settings with
autonomous exploration and limited human intervention. We
empirically demonstrate that general purpose WSL tech-
niques are unsuitable for challenging robotic scenarios and
we propose solutions to both (i) enforce diversity sampling
for AL queries and (ii) improve strong positives selection for
SSL under severe domain shift. Finally, we build on previous
work [5], presenting and empirically evaluating a stream-
based weakly-supervised on-line object detection pipeline
for Robotics, which exploit the robot interaction with the
environment and the human teacher to update and improve
performance of the visual system. It significantly alleviates
the annotation burden for on-line model adaptation to novel
settings while maximizing accuracy.
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