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Extending Quantitative Proxemics and Trust to HRI

Fanta Camara Charles Fox

Abstract— Human-robot interaction (HRI) requires quanti-
tative models of proxemics and trust for robots to use in
negotiating with people for space. Hall’s theory of proxemics has
been used for decades to describe social interaction distances
but has lacked detailed quantitative models and generative
explanations to apply to these cases. In the limited case of
autonomous vehicle interactions with pedestrians crossing a
road, a recent model has explained the quantitative sizes of
Hall’s distances to 4% error and their links to the concept
of trust in human interactions. The present study extends this
model by generalising several of its assumptions to cover further
cases including human-human and human-robot interactions.
It tightens the explanations of Hall zones from 4% to 1% error
and fits several more recent empirical HRI results. This may
help to further unify these disparate fields and quantify them to
a level which enables real-world operational HRI applications.

I. INTRODUCTION

Autonomous robotics including autonomous vehicles

(AVs) and service robots are now a reality, spreading from

research to real-world social environments around humans

[40]. Such environments raise new questions about how hu-

mans can trust robots, and how they should share their phys-

ical social spaces during human-robot interactions (HRI).

Social interaction is an important factor in making humans

and robots acceptable and trustworthy to the humans they

assist [4], and has been identified as one of ten major

robotics challenges [43]. Two major challenges within Social

Robotics were defined as modelling social dynamics, and

learning social and moral norms [43]. Robots may be more

accepted by people if they are socially aware, i.e. able to un-

derstand and reproduce these social norms and conventions.

Within these norms, trust is essential for building relation-

ships [26], [35]. Two important factors which influence the

acceptance of humans and robots and are used to assess their

social abilities are proxemics (i.e. interpersonal distances)

and trust.

Robots need a better understanding and models of human

social behaviour, especially nonverbal communication which

plays an important role in human interactions. For instance,

it was shown that people have strong ‘social expectations’

towards robots’ nonverbal cues [5]. This raises concerns: are

robots’ social abilities good enough to interact with humans?

Are they safe? Can we trust them?

Most current models of human social behaviour are based

on qualitative studies and descriptive statistics. These are
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appropriate for reporting scientific findings, but they cannot

be easily operationalised into engineered, robotic decision-

making algorithms. More quantitative and computational

models are thus needed to better understand and prescribe

human-robot interactions, because numerical probabilities

and utilities are needed by most robotics control systems.

The present paper briefly reviews proxemics, trust, and the

recent PTR model [7] which links them quantitatively in the

limited case of pedestrian-autonomous vehicle interactions.

It then extends the PTR model to new, generalised cases

of human-human and human-robot interactions and presents

new results comparing the extended model’s predictions to

empirical data. These links could enable research to be

shared and operationalised between models of proxemics,

trust, and robotic interactions for the first time.

II. REVIEW OF PREVIOUS WORK

A. Review of Proxemics and Trust

This section presents a review of previous work on prox-

emics and trust for HRI, an extensive review of these topics

was introduced in [7].

Proxemics was proposed in the 1960’s by Hall [14], defin-

ing four distinct zones for human interactions: the intimate,

personal, social and public zones. Psychology studies then

measured these zones for human-human interactions, finding

that the intimate zone goes up to 0.45m, the personal ranges

from 0.45m to 1.2m, the social between 1.2m to 3.6m, and

the public beyond 3.6m [21]. These numbers are sometimes

inserted into costmaps for robotic interaction planning algo-

rithms. But we have lacked a theory to generate and explain

these empirical values. Social roboticists have found these

proxemic zones change in size when humans interact with

robots of different heights, appearances, speeds, voices, and

also for different HRI activities [30]. For example, for a

short, 1.35m height, humanoid robot approaching or being

approached by a human, the personal zone shrinks to the

range 0.4m to 0.6m [36].

Trust is commonly defined as ‘trusting a person means

believing that when offered the chance, he or she is not

likely to behave in a way that is damaging to us’ [3], [11].

A question is whether humans can build trust with robots

as they do with other people and through which means. For

instance, a set of questionnaire metrics was designed in [42]

to assess users’ acceptance and use of robots via five HRI

attributes, such as team configuration, team process, context,

task, and system, where trust in automation is defined as

depending on the level of autonomy of a system and also

on its level of intelligence. Thus most HRI trust experiments

have studied only humans’ qualitative acceptance of robots
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Fig. 1: Autonomous vehicle entering pedestrian’s social zone, which can also be viewed and quantified as a trust region.

[12], [25], [34]. But these qualitative models do not provide

enough information to directly implement them as quantita-

tive control systems for robotics.

B. The PTR Model: Linking Proxemics and Trust

Links between proxemics and trust have been proposed

via a quantitative model, intended for use in the limited

case of an autonomous vehicle, Agent2, interacting with a

pedestrian, Agent1
1, crossing its path [7] as in Fig. 1. In

this model, Physical Trust Requirement (PTR) is defined as

a Boolean property of the physical state of the world (not of

the psychology of the agents) with respect to Agent1 during

an interaction, true if and only if Agent1’s future utility is

affected by an immediate decision made by Agent2.

The model assumes that the two agents are approaching

each other at a right angle, as is the case where one crosses

the other’s path, as in Fig. 1. It then defines the following

three zones based on the PTR:

Crash zone is the region close to Agent1, {d : 0 < d <
dcrash},

dcrash = v2t2 +
v2
2

2µ2g
, (1)

in which a crash is guaranteed and neither party can prevent

it. v2 is Agent2’s speed. The first term depends on Agent2’s

thinking reaction time, t2, and the second term represents

the physical braking distance, µ2 is the coefficient of friction

between Agent2’s tyres and tarmac, and g is gravity [23].

Escape zone is the area where Agent1 is able to choose

their own action to avoid the collision, without needing to

trust Agent2 to behave in any particular way. If w2 is the

width of Agent2, which Agent1 must cross at speed v1 if they

wish to pass first, the escape zone is then {d : descape < d}
with

descape = v2t1 + w2

v2
v1

. (2)

Trust zone is the region {d : dcrash < d < descape} where

the PTR is true. Agent2 can here choose to slow down to

prevent collision, but Agent1 is incapable of making any

action to affect this outcome themselves. This occurs when

1Terminology: In the original model, Agent1 was called ‘the pedestrian’
and Agent2 called ‘the vehicle’. The terms Agent1 and Agent2 are used
throughout the present study to emphasise new generalities.

Agent1 cannot get out of Agent2’s way in time to avoid

collision, but Agent2 is able to slow and yield to prevent

the collision if it chooses to do so.

The zone ratio R = descape/dcrash is a measure of how

much trust (in the PTR sense) is involved in an interaction.

Zones are not symmetric between Agent1 and Agent2.

They describe when Agent1 must trust Agent2. Their roles

must be swapped and the zones recomputed to see when

Agent2 must trust Agent1. The crash, escape, and trust zones

were mapped to Hall’s personal, public, and social zones

respectively, for Agent1 [7], cf. Fig 1. The trust/social zone

is the region in which physical trust is required. This may be

a prerequisite for some types of interactions, with physical

trust being useful to enable the content of the interaction. The

evidence for this mapping came from the observation that if

an autonomous vehicle Agent2 is set to drive at the same

speed as a pedestrian Agent1, the model generates Hall’s

proxemic social zone to within 4% quantitative accuracy.

This unexpected result, found only by studying how an AV

should interact with road-crossing pedestrians, is suggestive

that this scenario may be a special case of a more general

HRI theory of proxemics and trust.

C. Limitations of the PTR Model

The PTR model made three key assumptions which limit

its application to general HRI:

Assumption 1: Agent2 is a wheeled vehicle, having mo-

mentum and a braking time. These dynamics are not appro-

priate for other types of Agent2 such as walking humans and

humanoids.

Assumption 2: The width of Agent2 is much larger than

that of Agent1, so it treated Agent1 as a point and Agent2 as

a rectangle, because a vehicle is bigger than a pedestrian and

most vehicles are rectangular. These geometric assumptions

are not appropriate for two human-like agents of similar size.

Assumption 3: The pedestrian has a goal: to cross the

road. The road crossing is orthogonal to the road. Thus the

pedestrian’s velocity is orthogonal to the vehicle’s. This is

a strong constraint which is not appropriate to general HRI

scenarios. Agent2 might in general approach Agent1 from

any direction, not just at right angles to Agent1’s initial

heading. We are now only interested in explaining the size



Fig. 2: New assumed geometry for the two agents.

of the trust zone which we assume is independent of any

goal for Agent1 other than avoiding a collision.

III. NEW EXTENSIONS TO THE PTR MODEL

The original PTR model was intended only for pedestrian

road-crossing interactions with vehicles. We here expand its

relevance to explain and predict new types of agents and

scenarios, including human-human and human-humanoid

robot interactions with approaches from arbitrary rather than

orthogonal directions. We extend and generalize the model

to address each of the above assumptions as follows.

Assumption 1: The second term on the right of Eq. (1) is

only applicable to wheeled vehicles as it models their braking

time. If Agent2 is a walking agent, we will now assume

this second term is omitted, as walkers are always in static

equilibrium so can stop instantly once a decision is made.

Models for running agents [20] or finer detailed models of

walkers [28] could insert different braking terms here.

Assumption 2: To allow for interactions between similarly

sized agents, we now modify Eq. (2) to:

descape = v2t1 + (w1 + w2)
v2
v1

, (3)

where w1+w2 is the total distance that Agent1 must travel in

front of Agent2 in order to avoid contact with Agent2. These

widths may now be mapped to Hall’s intimate/personal zones

of the agents, i.e. the ranges at which actual contact may

occur between the agents. Justification for this modification

can be seen in Fig. 2, which shows how Agent1 must move

its center point by half its own width at the start and end of

the path as well as passing by the width of Agent2, to avoid

the minimal possible collision.

Assumption 3: As our focus is now purely on understand-

ing proxemic and trust zones, we now drop the assumption

that Agent1 has a goal location, and consider that they simply

want to avoid being hit by Agent2. We thus want to allow

Agent2 to approach Agent1 from any heading θ, measured

relative to Agent1’s own initial heading as in Fig. 3. The

previous change from rectangular to circular agents is a first

step towards enabling this. We then need to consider the

direction in which Agent1 moves to escape from Agent2.

The best way to escape is always by moving orthogonal

Fig. 3: Possible interaction geometries. Green=Agent1; Pur-

ple= different possible positions and headings for Agent2. (θ
is the angle of Agent2’s approach from Agent1’s perspective.)

to the heading of Agent2
2. There are at least four different

modelling options for whether and how this is possible:

• Option 1: Assume that Agent1 can turn on the spot

instantly to face any direction. In this case, the optimal

strategy is to first turn to a heading orthogonal to

that of Agent2, then walk at speed v1 to escape. This

makes Agent1’s initial heading irrelevant and reduces

the model back to the original assumption of orthogonal

velocities.

• Option 2: Assume that Agent1 can only walk in the

direction of their initial heading. They cannot rotate

at all. By substituting v1 in Eq. (3) for its component

orthogonal to Agent2’s heading, v1| sin(θ)|,

descape = v2t1 + (w1 + w2)
v2

v1| sin(θ)|
(4)

• Option 3: Assume Agent1 can turn on the spot or twist

during forward travel, where turning takes place at up

to maximum angular velocity θ̇. If θ̇ is very fast then it

will behave like Option 1. If θ̇ is very slow then it will

behave like Option 2. Options 1 and 2 are thus special,

limiting cases of Option 3.

• Option 4. Extending Option 3, further available motions

such as sidesteps and stepping backwards could be

added and optimised.

IV. RESULTS

The present section shows some validations of the ex-

tended model by comparing its predictions to data from

2Moving towards Agent2 is obviously useless. Moving away from Agent2
is useless if v1 < v2, but if v1 > v2 then there are no zones at all as it is
trivial to escape. Any other direction is a linear combination of an optimal
orthogonal escape plus one of these useless directions.



(a) No distraction: t1 = t2 = 1.1s. (b) Both distracted: t1 = t2 = 2.1s.

(c) One distracted: t1 = 1.1s and t2 = 2.1s.

Fig. 4: PTR distance and zone predictions for two walking humans at normal speed with different reaction times.

a selection of previously published empirical studies of

interest. Option 2 is chosen to model the direction of Agent1.

This is because it includes some consideration of the initial

heading, unlike option 1, but without requiring a full solution

of option 3 or 4 which may form extensive future work.

A. Two Walking Humans

We first show that the extended model can numerically re-

produce and explain Hall’s original observations of proxemic

zone sizes for interactions between two walking humans

(unlike the previous study’s [7] with a walking human and

autonomous vehicle). By choosing the realistic parameters:

t1 = t2 = 1.1s, v1 = 1.1m/s, w1 = w2 = 1.19m,

found by optimisation, the extended model then generates

values dcrash = 1.21m and descape = 3.59m, matching

Hall’s data, as shown by the vertical line in Fig. 4a, where

v1 = v2 = 1.1m/s [21]. This result from the extended model

shows a better fit to Hall zones, with an error of less than

1% compared to the previous model’s 4% error [7]. The

zone ratio is found to be RH−H = 3 [7]. This will serve as

a comparator for the following experiments.

B. Distracted Walking Human Interactions

We next model the effect of distraction on the walking

humans – such as attending to headphones, phones, or bill-

boards – by increasing their reaction times in the model by

1s [10]. With both distracted, Fig. 4b shows that their crash

zone size then increases from 1.21m to 2.31m and the escape

zone is also increased from 3.59m to 4.69m, therefore the

zone ratio RH−H reduces to 2.03. With only one distracted,

Fig. 4c shows that the crash zone size increases from 1.21m

to 2.31m but the escape zone starts at 3.59m as in Sect. IV-

A, leading to a smaller trust zone size in this case. The zone

ratio, RH−H ≈ 1.55, is much smaller than the comparator.

These findings are consistent with and explain empirical data

that there is more distance, less trust, and hence less social

interactions between distracted people [37].

C. Walking Human vs Humanoid Robot

We now consider human-robot interactions. Fig. 5a shows

predicted zone sizes for a human walker interacting with two

different humanoids, NAO (∼0.6m tall) and PR2 (∼1.4m

tall). The parameters used are: t1 = 1.1s, t2 = 0.5s,

v1 = 1.1m/s, w1 = 1.19m, w2 = 0.4m. With NAO at speed



(a) Human - Humanoid interaction. (b) Reaction time.

(c) Coefficient of friction.

Fig. 5: Human-robot interactions. (5a) shows the PTR distance and zone predictions for a walking human interacting with

humanoid robots at different speeds. (5b) and (5c) show the implied parameters for an interacting robot.

v2 = 0.3m/s, the model predicts zone sizes: dcrash = 0.15m

and descape = 0.76m. For PR2, having speed v2 = 1.0m/s,

zone sizes are: dcrash = 0.5m and descape = 2.54m.

The sizes found for these human-robot interactions are

much smaller than for human-human interactions, which is

consistent with and matches closely results from previous

empirical experiments with humanoid robots [18], [36], [39].

The zone ratios RH−NAO = 5.06 and RH−PR2 = 4.62 are

much bigger than the comparator from above. This explains

existing empirical results that humans may be more sociable

and friendly with humanoids than human strangers [16], and

that people might not perceive robots as ‘social entities’

having an intimate zone [38].

D. Effects of Different Approach Headings

Fig. 6 shows the predicted escape distance for different

approach headings between Agent1 and Agent2. In the HRI

case, the prediction matches the previous result for a PR2

robot at 90◦ with descape = 2.54m, assuming the following

parameters: t1 = 1.1s, t2 = 0.5s, v1 = 1.1m/s, v2 = 1m/s,

w1 = 1.19m and w2 = 0.4m. In the HHI scenario, the

parameters are as follows: t1 = t2 = 1.1s, v1 = v2 = 1.1m/s,

Fig. 6: Example of predicted escape distance for different

interaction angles between Agent1 and Agent2.



= 1m/s and w1 = w2 = 1.19m, and the prediction at

90◦ closely matches Hall’s zone, with descape = 3.59m.

The results of this extended model match and explain re-

cent empirical data that descape i.e. public zone may be

noncircular [15] while dcrash i.e. personal zone is always

circular [29]. This is because descape is a function of v1
(Eq. 3) and v2 while dcrash depends only on v2 (Eq. 1). The

escape distance goes to infinity as θ → 0◦ and θ → 180◦

because it is impossible for Agent1 to escape if their heading

is constrained to be the same as Agent2’s.

E. Measuring Human Beliefs About Robots

It is possible to measure human’s beliefs about robots’

proxemic behaviour via implied parameters from the model

and experimental data. For example by optimising the reac-

tion time of the robot (Fig. 5b) or its coefficient of friction

(Fig. 5c) to best fit results from human interaction. Assuming

v1 = v2 = 1.1m/s, t1 = 1.5s, w1 + w2 = 2m, µ = 1.0
and g = 9.8m/s2, as in Fig. 5b, the best reaction time for

this case would be t2 ≈ 1.075s if the robot wants to behave

like a human and reproduce Hall’s empirical zones. Similarly

the coefficient of friction is found by keeping the previous

parameters except µ which becomes unknown and by now

setting t1 = t2 = 1.1s. Fig. 5c shows that the best coefficient

of friction for the robot would then be µ = 0.6. This should

enable roboticists to learn and program their robots with the

best parameters, with the possibility to vary the parameters

for different people and in different environments. Current

HRI proxemics results may suggest that humans have this

natural ability to measure a robot’s parameters and thus adapt

their behaviour accordingly.

V. DISCUSSION

The new extensions generalise the unification of proxemics

and trust previously presented in the special case of AV-

pedestrian interactions, to more general HRI interactions.

This was achieved by modifying the assumptions to allow

interactions between agents of similar sizes, approaching

at arbitrary angles, and by removing the need for a goal

location. The new model was validated by successfully fitting

and explaining varied classical recent empirical proxemics

and trust results.

We have here simulated two identical walking agents, but

in the real world it is unlikely that two humans will share the

same exact behavioural parameters. This new model could

help to better understand proxemics and trust dynamics by

simulating agents with differing parameters, without the costs

or hazards associated with human experiments. The model

for two walkers at normal walking speed is also valid for

walkers at higher speeds e.g. 2.2m/s because the form of the

equations scale, though for runners new dynamic equilibrium

terms may be needed to model their stopping distance. In

some cases, such as interactions with large cars, the old

rectangular vehicle geometry may have to be restored and

more complex equations used to compute shape overlaps and

collisions. Future work should replace the use of Option 2

with a full solutions to Option 3 then 4.

Some possible applications for this work include:

Social Robotics: People are ‘the big problem with self-

driving cars’ [6]. AVs are one case of social robots, which

must understand social dynamics and norms, especially in

crowded and mixed pedestrian-vehicle areas, in order to ne-

gotiate for space safely [33]. These negotiations are typically

competitive rather than collaborative, with the aim of each

agent being to get to their own destination quickly rather than

to specifically interact with the other. Other forms of Social

Robotics such as interactions with service and assistive

robots may also benefit from quantitative understanding of

proxemics and trust [17], [22], [24]. Unlike AVs, interaction

with these robots is often cooperative.

Gaming & Extended Reality (XR) seeks to understand hu-

man proxemics in simulations of crowds, both for improving

realism of video games and movie special effects, and for

serious games such as simulations of evacuations, human

locomotion in obstructed environments or group interactions

in immersive virtual environments [1], [9], [31], [32].

Behavioural & Social Sciences: As trustors, humans are

known to be more trusting (and gullible) depending on

personality and environmental factors, and neuroscientific

factors such as oxytocin hormones which may be physically

transmitted through physical proximity [19]. As trustees, hu-

mans also maintain different reputations for trustworthiness,

as studied by social network theorists [2], [41]. Hall zones

are known to change in size across different human cultures

[13]. Future work may need to take account of and replicate

these factors for different human cultures. The Covid-19

pandemic has put a focus on human-human physical social

interactions via the concept of social distancing. This is

the encouragement or enforcement of a minimum proxemic

distance between people when meeting. This requires hard

numerical distance limits to be decided but there is a debate

about what this distance should be. If the distance is too

small, infections may be transmitted. A meta-review [8]

found that 1m distance reduces transmission risk by 86%;

2m by 93%; and 3m by 96%. Others argue that if social

distance is too large, trust will be harder to build [27].

An analogous debate to human-robot trust exists here, with

arguments that physical proximity is sometimes needed to

build human-human trust which may be jeopardized through

social distancing and remote working. For example many

workers are happy to hold technical meetings online but want

to meet physically and closely to make contacts and deals

which require trust.
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