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Abstract— Agriculture is facing a labor crisis, leading to in-
creased interest in fleets of small, under-canopy robots (agbots)
that can perform precise, targeted actions (e.g., crop scouting,
weeding, fertilization), while being supervised by human oper-
ators remotely. However, farmers are not necessarily experts in
robotics technology and will not adopt technologies that add
to their workload or do not provide an immediate payoff. In
this work, we explore methods for communication between a
remote human operator and multiple agbots and examine the
impact of audio communication on the operator’s preferences
and productivity. We develop a simulation platform where
agbots are deployed across a field, randomly encounter failures,
and call for help from the operator. As the agbots report
errors, various audio communication mechanisms are tested
to convey which robot failed and what type of failure occurs.
The human is tasked with verbally diagnosing the failure while
completing a secondary task. A user study was conducted to
test three audio communication methods: earcons, single-phrase
commands, and full sentence communication. Each participant
completed a survey to determine their preferences and each
method’s overall effectiveness. Our results suggest that the
system using single phrases is the most positively perceived
by participants and may allow for the human to complete
the secondary task more efficiently. The code is available at:
https://github.com/akamboj2/Agbot-Sim.

I. INTRODUCTION

Agriculture is currently facing a human labor crisis [1],
harming profitability and causing negative downstream ef-
fects. As a result, precise actions (e.g., weeding, targeted
pesticides) are not feasible at the scale required for annual
row crops (e.g., corn, soybeans), which dominate the Mid-
west and much of the US. In these settings, agriculture is
only practical with heavy reliance on fertilizers, pesticides,
and herbicides applied with large equipment (e.g., tractors,
combines) [2], [3]. While this equipment is familiar to
farmers and can be automated to alleviate labor concerns [4],
such equipment is capital heavy, requires extra logistical
oversight, introduces new safety risks to workers, and physi-
cally impacts the farm (e.g., soil-compaction, crop damage).

Small agricultural robots (agbots) can help alleviate the
labor crisis and enable precision agriculture. These agbots
are designed to be small, inexpensive, and intelligent, and
have seen growing attention in recent years [5], [6]. To fully
address the labor shortage, these agbots must be both easy
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to use and able to be deployed at scale, where one human is
supervising many robots. Despite growing interest in agbots,
farmers already tend to be overwhelmed with the large
number of equipment and data sources that are constantly
made available to them [7]. From large suppliers automating
their products to new technologies for data collection [8],
farmers are being driven to manage a large set of equipment
each with their own intricacies [1].

Many human-robot interaction (HRI) methodologies fo-
cus on intuitive interface designs that allow for seamless
integration of robots in a society of non-experts [9]–[12].
Simulations are an effective method to test and overcome
barriers preventing adoption of robots [13], [14]. We follow a
design focused simulation methodology to study which type
of auditory interaction most positively influences a user’s
perception and productivity in a remote monitoring setting.
Our simulation stands in for actual agbots navigating fields
of crops. The failure cases and solutions we simulate are
identifiable and previously tested on a physical robot [15].

We consider situations where a fleet of agbots are deployed
in a field and a remote human operator supervises the robots.
As the robots navigate through crop rows, they randomly
encounter failures that require help from the operator. During
each failure, the robot control center will audibly prompt
the operator to provide assistance through verbal commands.
Across experiments, we vary the audible prompt and measure
the operator’s perception of the system and productivity of
completing a secondary task.

Handling failure scenarios is of critical importance for
near-term deployment, as many agriculture tasks and en-
vironments are too complex for current agbots to handle
without at least occasional failure [16]–[18]. This setting
follows the idea of sliding autonomy [19] and recent efforts
to codify the levels of autonomy for field robots [20], which
outlines how agbots with varying autonomous capabilities
can interact with human operators [21]. Failure cases have a
strong effect on the user’s perception and trust in a system,
meaning handling failures largely impacts the overall success
of an HRI system [22].

This research provides insight into the effectiveness and
acceptance of audio communication interfaces when manag-
ing multiple autonomous robot failures. We studied the effect
of earcons, single phrase commands, and full sentence speech
on the user’s perception of the system and their efficacy in
completing a secondary task. We present three contributions:

1) We develop a simulated control center to explore
how humans interact and monitor agricultural robots
deployed across a field, while potentially encountering
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failures that require human assistance.
2) We demonstrate how audio signals (either tones or

natural language) improve an operator’s efficiency and
productivity compared to a traditional visual interface.

3) Our user study provides insight on how well an op-
erator perceives various auditory interaction systems
in a remote robot monitoring setting, indicating which
system will most effectively be adopted.

This paper is organized as follows. We review relevant
literature in Section II. In Section III, we present an overview
of our exploratory study, our hypotheses, and our measures.
Section IV and V discuss the quantitative and qualitative
findings from our user study. Finally, we conclude in Sec-
tion VI.

II. RELATED WORK

A. Audio in Design

Auditory interfaces can be defined as bidirectional, com-
municative connections between two systems using audio,
where audio refers to the production of sound [23]. There
are various methods in which sound can be used for au-
ditory interaction in HRI. In HRI sound either deliberately
communicates an intention, such as speech, notifications, or
semantic-free utterances [24], or comes without intention
such as consequential sound or movement sonification [11].
Using sound to intentionally convey information has many
benefits including reducing visual overload, reinforcing vi-
sual messages, and providing additional information such
as direction or emotion [23]. Our study uses sound as
a primary interface to reduce visual load for the human
operator to complete a visually intensive secondary task.
To the same degree that human-to-human correspondence
involves various modes interaction such as audible, visual,
and tactile, HRI also requires multi-modal interaction for
successful integration of robots into society [25], [26].

Most studies about sound in HRI involve improving a
user’s perception of human-robot dialogue or nonverbal
noises [11], [27], ignoring the wide range of possibilities
that auditory interaction can offer [28]. There are four main
ways data can be encoded into audio: auditory icons, earcons,
sonification and speech [29]. Auditory icons are intuitive
associations between a recognizable sound and a piece of
information, earcons are unintuitive intentionally designed
associations, sonification maps information to variations in
sound, and speech conveys information verbally [29].

We derive three auditory interfaces from the literature:
1) Earcons: An association from noises to a piece of

information. Earcons have often been studied in the
HRI community in multimodal systems [30] such
as autonomous driving [31], adaptive automation of
telerobotic control [26], and healthcare [32].

2) Phrases: A truncated version of complete speech.
We create this interface to balance the benefits of
condensed information while maintaining some psy-
chological or social aspects of speech. Other studies
have also attempted to use some sort of hybrid interface

such as spearcons, sped up speech, [33] or audification,
using data as sounds [23].

3) Sentences: A complete verbal expression most similar
to conversational speech. Most of the literature study-
ing audio in HRI uses this type of verbal dialogue.

B. Audio in Agriculture

A survey on nontraditional human robot interactions in
agriculture highlights some of the benefits of using speech
to improve the usability of technology [17]. Moreover, recent
research efforts also determined that robots have not reached
a level of design that allows for effective communication of
faults by untrained users [9]. Literacy has been a major bar-
rier preventing farmers who cannot read written instructions
from using robots [17]. Many studies attempt to address the
issue by surveying farmers and developing audio interfaces
to assist under-educated farmers in using technology and
communicating with robots [34]. These studies discovered
that the complexity of a robot system is one of the main
challenges farmers face in adapting technology, as employees
lack the necessary skills to operate complicated robots. This
conclusion underscores the importance of an intuitive and
effective human-centered design when it comes to robot
management on an autonomous farm.

C. Communicating Robot Failures Using Audio

Previous user studies on the failure rate in HRI tasks
indicate that direct communication is more important than
conversational dialogue to overcome a misperception error
and complete a task collectively [35], [36]. Thus, task-
oriented robots should focus on concise utterances rather
than lengthy dialogue. This conclusion follows the well-
researched principle of least collaborative effort in grounding
dialogue, i.e. establishing a mutual understanding [37], [38].

However, more detailed speech improves perceived ca-
pability [39]. Restricting the robot’s vocabulary to simple
commands or sounds can negatively impact the robot’s us-
ability. Because of the robot’s limited speech, the human may
underestimate the capability of the robot, thus not utilizing
it to its full extent which is called underperception. In
overperception, the human overestimates the capability of the
robot leading to the human’s expectations not being met, and
therefore the human is less willing to work with the robot.
When a human misperceives a robot’s capabilities, they
misuse it, and their acceptance of the robot decreases which
can decrease the success of the collective HRI task [39].
In general the habitability gap, a mismatch between human
expectations and technologies’ capabilities, limits speech
based human-machine interaction [40].

Most literature in communicating HRI failures, including
all the sources discussed thus far, deal with embodied
robots, either in a video or in a physical setting. In our
remote operation settings, detailed speech may not improve
perceived capability as the robot is not as anthropomorphic.
On the other hand, a remote failure communication system
may require more collaborative effort to establish grounding.
In general, strategies that work for humanoid systems do not



Fig. 1: Left: System GUI. The status bar indicates which robots
have failed (stopped behind circles). Here the purple robot is behind
a blue circle (Unrecoverable Failure) and the blue robot is behind
a red circle (Row Collision). The red, green and yellow robots
are unobstructed and continue to traverse their sections of the grid.
The audio system status shows the system is waiting to hear a color
indicating which robot to fix. Right: Experiment setup. The setup
mimics the control center setting on an autonomous farm. The user
is on an isolated desk in front of a TV screen with the GUI and is
given wordsearch puzzles to work on.

transfer over to virtual robotic agents [41]. Therefore, we
further investigate earcon, phrase and sentence communica-
tion systems to better understand how a user perceives such
a remote operation system and what collaborative effort is
needed in the dialogue.

Recent research efforts have made noteworthy progress
in studying HRI in multirobot systems including coordina-
tion [42], user task-switching [43], and scalability [21], [44].
Scalability is especially a concern in failure scenarios of
multi-robot systems due to the exponential growth of state
and action spaces [45]. However, the effects of different
forms of audio on the user’s perception of multi-robot remote
supervision failure scenarios has not been well investigated.

III. METHODS

A. Experimental Design

In order to study the design of an audio interface for agbot
fleet monitoring, we develop an autonomous farm environ-
ment [46] as shown in Figure 1. Five robots represented as
colored triangles navigate up and down columns of the grid
sequentially. Each of the five robots traverses 20% of the
grid and then halts to indicate the completion of the task.
When a failure, represented as a circle, is reached the robot
stops and prompts the user to diagnose the error. Based on
the error case, the human verbally communicates to the robot
on how to resolve the error to reactivate the robot.

We conduct four experiments in a random order on 13 par-
ticipants. Each experiment prompts the participant differently
when a robot fails: earcons, phrases, sentences, and no sound
at all. Tables I-IV, are provided to the participant before each
experiment. After each experiment, we measure the user’s
perception of success and usability of the system through a
survey and their level of productivity through a secondary
task score. The order in which the participant went through
the four different conditions was randomized to reduce the

TABLE I: Scripts for each audio communication modality (refer
to Table IV for earcon mappings and note how the robot’s sentence
structure changes in ”Sentence” to make it similar to conversational
speech)

Earcon Phrase

Robot: “[red]”
Human: “Fix the red robot.”
Robot: “[robot fail]” x 2
Human: “Navigate around.”
Robot: “[robot fixed]”
Robot: “[blue], [green]”
Human: “Fix the blue robot.”
Robot: “[robot fail]” x 1
Human: “Reverse and retry.”
Robot: “[robot fixed]”
Robot: “[green]”
. . .

Robot: “Error at red.”
Human: “Fix the red robot.”
Robot: “Untraversable obstacle.”
Human: “Navigate around.”
Robot: “Error fixed.”
Robot: “Errors at blue, green.”
Human: “Fix the blue robot.”
Robot: “Row collision.”
Human: “Reverse and retry.”
Robot: “Error fixed.”
Robot: “Errors at green.”
. . .

Sentence

Robot: “There is an error at the red robot.”
Human: “Fix the red robot.”
Robot: “The red robot is facing an untraversable obstacle.”
Human: “Navigate around.”
Robot: “The error has been fixed.”
Robot: “There are errors at the following robot blue, green.”
Human: “Fix the blue robot.”
Robot: “Row collision has occurred at the blue robot.”
Human: “Reverse and retry.”
Robot: “The failure has been fixed.”
Robot: “There are still errors at the green robots.”
. . .

bias in the results. To prevent unfamiliarity with the system
from influencing the results, the participant is provided with
a tutorial on how to fix the robots and can practice until
they feel comfortable with the system. The audio system
randomly chosen as the fourth experiment is used in the
tutorial before the experiments, to discourage participants
from considering the tutorial in their survey responses.

B. Failure Cases

In an attempt to recreate realistic failures from the agri-
cultural domain, we consider three common failure cases:
row collision, obstacle, and unrecoverable failure, detailed
in Table II. The above failures can be reliably detected on
the field and are assumed to be solvable from the operator’s
commands [15], [18].

The participant addresses each of the failure cases using
certain verbal commands shown in Table III. Although the
one-to-one mapping from failures to solutions can easily be
automated without a human operator, such a system can
be extended to a scenario where the human operator must
make an informed decision. Even in the current system,
the operator chooses the order in which to fix multiple
robot failures, which is not a trivial task for humans or
planners [21]. Nonetheless, knowing how or which robot
to address is unrelated to the type of auditory prompt the
participant hears, thus the triviality of the system does not
discount the merit from a user-centered design perspective.

As this study focuses on the impact of audio communica-
tion on perception and productivity, the number and type of



TABLE II: Failure types with description and recovery solution.

Failure Type

Row Collision Description: The robot deviates from the
center line and crashes into crops due to
navigation failures.
Solution: Reverse and replan the path that
tracks the center line.

Obstacle Description: The robot encounters obstacles,
which obstruct the center line, but still has
room around to plan a collision free path.
Solution: Navigate around the obstacle and
continue the robot’s original trajectory.

Unrecoverable Failure Description: The robot is in some failure
scenarios where it cannot continue without
human intervention, e,g, a fully blocked path.
Solution: Send a human to the field to assist
the robot to recover.

TABLE III: User commands for the different failure modes

Failure # GUI Icon Failure Type Solution

1 ow Row Collision “reverse and retry”
2 ow Obstacle “navigate around”
3 ow Unrecoverable Failure “sending human”

failures is kept constant. There are exactly 15 failures in each
simulation, five of each failure type. However, the location of
each failure is randomly sampled from a uniform distribution
across the grid to simulate more realistic failure scenarios.
A failure is not visible on the grid until a robot reaches it,
inhibiting the participant from anticipating a failure.

C. Audio Signals

The verbal interaction from the human to the robot remains
constant throughout all the simulations, but the auditory
interaction from the robot to the human will change as
described in Tables I. When one or more robots fail, the
system will prompt the participant with audio indicating
the colors of the failed robots. The participant will have to
verbally say a color to indicate which robot they wish to fix,
and the system will indicate which type of failure the robot is
facing. The participant then must say the correct command
to fix the system. Once fixed, the system will notify the
participant that the robot has been fixed and continue with
the simulation until another robot fails.

To keep the amount of information conveyed by each au-
dio system constant, we developed a mapping from earcons
to robot colors, shown in Table IV. To convey what type
of failure the robot is at, the system plays a coin noise to
indicate the failure number shown in Table III: once for row
collision, twice for obstacle, and thrice for unrecoverable
failure. Before the earcon experiment, an earcon tutorial
program played each of the earcons and their definitions as
described in Table IV.

In the no sound experiment, the participants can only refer
to the visual GUI to find out if a failure has occurred, which
robot has encountered the failure, and what type of failure the
robot is facing. Since the participant had no audio prompt,
they would have to occasionally look up from the secondary
task to address the failures. The GUI shows all the necessary

TABLE IV: Earcon mappings from sound to meaning

Robot Red Green Blue Purple Yellow

Sound Siren Leaves Rustle Splash Violin Taxi Honk

Condition Robot fixed Robot fail

Sound Ready Coin

information conveyed by the audio prompts, as described in
Figure 1.

D. Secondary Task and Productivity

In an autonomous robot control center setting, the op-
erator is unlikely to fully focus on monitoring the robots.
Instead, the operator would be completing other tasks and
be prompted when a robot needs attention. As a controlled
secondary task, a wordsearch puzzle is used in our experi-
ment, which asks a participant to find given words going in
various linear directions in a grid of letters. The wordsearch
puzzle serves as a visual stimulus and cognitive load that
the participant can engage with as it does not interfere with
the auditory interaction of the system we wish to study. It
is very easy for beginners to learn and does not give an
advantage to those with more cultural knowledge or math
practice (in contrast to crossword puzzles or math questions).
Many psychology studies use word search puzzles to study
distraction or multitasking [47], [48].

Dividing the participant’s awareness across different
senses allows us to measure their productivity when switch-
ing attention between the two tasks at hand. The participant
was put in a constant quiet environment such that the system
was their only audio stimuli, as shown in Figure 1. User
studies with physical robots often have auditory background
that could affect the user’s perception of the system [49].
However, our distraction-free environment isolates the au-
dio’s effect on the participant’s perception of the system and
success in solving the wordsearch puzzles.

The productivity score of each experiment is the measure
of how many words the participant found divided by the
total time of the simulation (the simulation stops when all
five robots reach the end of their last column of crop).
This words per minute score is robust to small technical
inconsistencies or pauses in the system as well as how the
participant divides their attention. If the system momentarily
glitches, then the participant has another second to think and
find words. If the participant only focuses on finding words,
the number of failed robots will increase (and eventually
come to a complete standstill), thus increasing the time
that the simulation takes to complete, which would give
them a low productivity rate. On the other hand, if the
participant does not focus on finding words at all and only
focuses on the robots, they will find less words and receive
a low productivity rate. Overall, the system encourages the
participant to address both the wordsearch task and the robot
failure task at the same time, which strengthens our findings
on how audio affects efficiency when faced with a visually
intensive task. At the beginning of the study, each participant



was made aware of this metric and that they should focus
on both the simulation and word search.

E. Participants

A total of 13 participants voluntarily performed the IRB
approved user study, each signing a consent form beforehand.
Each of the simulations took approximately eight minutes to
run, but with the explanations and tutorial the entire process
took around one hour. Every participant was a university
affiliate; however, they had varying degrees of previous
experience in robotics, with an average experience of 3.4
on a scale of 1 (unfamiliar) to 5 (expert).

F. Survey Questions

The survey asked a few background questions before
the experiment was conducted. After each experiment, the
participant was asked to rate the following questions on a 7
point Likert scale:
Q1: It was easy to diagnose and fix the errors in this system.
Q2: I was successful at guiding robots passed their failures.
Q3: This system was overwhelming to use.

The questions were created for the purpose of this design
experiment, since most standard HRI questionnaires are
designed for physical experiments. However, our questions
relate to the competence dimension of RoSAS [50] and
the likeability dimension of Godspeed [51], which are two
common HRI metrics.

After all audio systems were tested, the participant was
asked to rank the notification methods from 1 to 4 (best to
worse) and to leave feedback on the overall system.

G. Hypotheses

The following three hypotheses were developed and tested:
H1: Any audio interface will facilitate better success,

usability, and productivity over a purely visual method.
In a control center setting, the human will likely be

addressing robot failures while operating other systems at
once, which in our study is analogous to the word search
puzzle. The sound notification acts as an interrupt, grabbing
the participant’s attention as necessary which allows them to
maximize the time they spend on the puzzle. With the purely
visual interface, the participant must look up at the GUI oc-
casionally to check for errors, which may disrupt their focus
more frequently and result in them negatively perceiving the
system and performing worse on the secondary task.

During the control experiment with no sound prompts,
the participant gets to choose when to look up and address
robot failures. One could argue that with sound notification a
participant’s train of thought is interrupted, so looking up on
their own might improve their performance. However, with
sound notification, the participant can fully address a robot’s
issue without ever looking up at the screen. Thus even if
they loose their thought process, their eyes may still be on
the word search and they still may be able to recognize words
while addressing the failures.

H2: Single phrase communication provides the best
user perceived success, usability, and capability of the
system.

Speech capability improves the perception of social ability
in a robot [39]. However, the principle of least collaborative
effort indicates that minimal effort is socially perceived the
best [37] in task-oriented HRI dialogue. Neither of these find-
ings have been tested on a remote HRI task. We hypothesize
that the phrase system provides the most intuitive balance
between a socially well perceived yet efficient system.

H3: Single phrase communication will result in the
most significant improvement in productivity when a user
is completing a secondary task.

We hypothesize that in the control center scenario the
participant will not want to be interrupted from the word-
search with a lengthy description of the problem nor hold a
conversation with the system. However, they may appreciate
more easily interpretable feedback than an earcon which
they have to map to a robot color. Thus, the single-word
communication system will likely provide the best balance
between the two extremes.

IV. RESULTS

The survey results are shown in Table V. As predicted in
H1, the system with no sound performs the worst in every
metric. As the observations are independent and errors can
be assumed to be normally distributed, we ran ANOVA and
paired T-tests to verify the results. Using the type of audio
system as the treatment groups, ANOVA was performed on
the results of each question, with the following findings: Q1
(p � 0.001), Q2 (p = 0.03), and Q3 (p � 0.001). Each
result is significant with α = 0.05 which supports H1.

To verify H2, a visual comparison of the results in Figure 2
show the mean scores and standard error for each question
of each system. The survey results show that the user most
positively perceives the system prompting them with phrases.
To test if these results are significant, paired T-tests were
performed on each question of the survey results between
the phrase system and the two other audio systems. These
results are statistically significant (α = 0.05) as shown by
the p-values in Table VI. Looking at the rankings provided
by the user (Table V), phrase was ranked better than each of
the other methods, which indicates that the user had the most
positive impression of the phrase system. H2 is supported by
the data.

TABLE V: Average productivity score (words per minute) and
survey responses

Audio Type Prod. Score Q1 Q2 Q3 Rank

Earcon 1.49 5.54 6.15 2.62 2.23
Phrase 1.73 6.54 6.77 1.85 1.38

Sentence 1.56 5.85 5.85 3.00 2.62
No Sound 1.44 3.85 5.46 4.62 3.77

TABLE VI: P-values of Paired T-tests

Question Phrase and Earcon Phrase and Sentence

Q1 0.003 0.041
Q2 0.013 0.008
Q3 0.013 0.014



Fig. 2: Mean survey responses

Fig. 3: Mean word search score and p-values of paired T-tests

The results of the secondary task are aggregated in Table
V, and the mean of the phrase system performs slightly
higher than the rest. However, ANOVA was performed across
the different auditory interaction systems and indicated that
the results are not statistically significant (p = 0.78), thus H3
is not supported. We further performed paired T-tests on the
productivity scores with the phrase system and every other
system and display the significance values in Figure 3.

V. DISCUSSION

A. Explanation of Results

The data supporting H2 indicates the phrase system most
positively affected people’s perception of the robots, meaning
from a user-centered standpoint it is best suited for complet-
ing a human robot teleoperation task, such as fixing failures.
Phrase notifications were perceived as easiest to use (Q1),
most successful (Q2), and least overwhelming (Q3) and was
ranked the best. One reason why sentence performed worse
than phrase and earcon could be that the user overperceived
the system as capable of more than it actually is since it is
closer to full natural language processing. These unrealistic
expectations would increase the chances of an HRI task
failure as the human may try to have the system do more than
it is capable of, as discovered in [39]. For example, in this
study the participant often tried to interrupt the system in the
middle of the sentence and was forced to repeat when it failed
to register the command, making the participant frustrated.
In general, imagine how many ways a human operator with

minimal robotics experience may attempt to use a system
when it seems capable of full natural language processing.
Intuitively, it also follows that in a task-oriented remote
monitoring setting the robot does not need to have much
conversational or social dialogue to be positively perceived
by the participant.

Another explanation of why the phrase system scored the
best is every other system may have a larger cognitive load on
the participant. The earcon system required the participant to
learn the mapping between earcons and robot colors during
the experiment. Instead of looking at the GUI to see which
robot failed, the participant usually would look at the Earcon
Table IV to determine which robot failed. After the first few
failures, the participant remembered the mappings and did
not have to look away from the wordsearch to fix robot
failures. The sentence system required the largest cognitive
load out of the three audio systems. One participant reported
they would “never want a system to speak in full sentences as
it is highly frustrating.” Communicating one small piece of
information took the sentence system a few seconds longer
than necessary. Such behavior distracted the participant from
the wordsearch task and often led the participant to speak
before the system was done speaking. When the system
did not register their response, they had to speak again.
Comprehending a full sentence and being cognizant of when
the system finishes the sentence increased the cognitive load
on the participant. Finally, the no sound system involved the
largest cognitive load overall, since the participant always
had to remember to look up from the wordsearch to address
the failures. During the audio experiments, the participant
rarely took their eyes off the word search, which highlights
how audio can aid an HRI interface and reiterates H1.

The participants preferred the earcon system over the full
sentence system. One participant found “it was helpful to
have an association between the sounds and the robots that
needed fixing.” However, all comments about the sentence
system given by the participants were negative. Furthermore,
if we remove the worst performing participants (the outliers)
from our analysis, the earcon system performs better than the
sentence system in all measures. This indicates that earcon
system may be a slightly better design than the sentence
system from the user’s perspective, however this wasn’t
statistically analyzed as the phrase methodology was much
more positively regarded than both the other methods.

The larger cognitive load amongst the no sound, earcon,
and full sentence conditions is most likely why the single
phrase mechanism was the best. This cognitive load may
be the effort grounding dialogue literature refers to in the
principle of least collaborative effort [37], [38]. Our study
extends this principle to remote robot HRI for multitasking,
and shows communicating the most information in the least
amount of sound is a good design choice. However, too little
sound like the earcons requires the participant to still do some
work to extract the information themselves so the system
must take that into account.



B. Limitations

To our surprise, the devised secondary task and its re-
lated metric did not produce significant results, leaving
H3 unsupported. We hypothesized that the phrase system
will improve the user’s capability and increase productivity.
Although H3 was not statistically supported, on average the
phrase system provides a higher productivity (Figure 3),
which can inform future studies investigating multitasking
using audio and visual tasks. One simple explanation for
the lack of significance is the small sample size that was
tested. Another explanation is the imperfect speech recogni-
tion system occasionally mishearing what the human said.
Such mistakes required the participant to say the command
repeatedly until the robot understood them, and was often
exacerbated by participants who’s first language was not
English. Having to repeat commands likely decreased the
participants productivity enough to negate any significant
increase in productivity across the sound systems. Future
studies may consider having participants who are farmers for
a more realistic participant group. Additionally, they may use
a Wizard of Oz approach to prevent technical imperfections
from influencing the results. However, this adjustment is
less realistic as misunderstandings are inevitable in modern
systems especially in noisy environments.

C. Broader Impact

The support for H1 shows audio can make a significant
difference in a user’s perceived usability and success with
the system when multitasking, and H2 proves that concise
phrases is better than detailed verbal descriptions or simple
sound cues. Thus, human-robot monitoring interfaces can
benefit from audio over visual communication even if it
cannot develop fully autonomous conversational AI systems.
We study the agriculture setting; however, the design can
be extended to other applications. Remote operation is also
being used in the healthcare [52] and manufacturing [53]. Im-
proving usability of robot systems allows robots to become
more accessible and widespread. Enabling more people to
manage multiple robots while still being able to focus on
other tasks, will improve the overall productivity and quality
of society.

VI. CONCLUSION

In this paper, we studied how remote supervision of an
agricultural robot through speech and audio signals affects
a user’s perception of the system and productivity in a
secondary task. Understanding this relationship would allow
robotics research to focus on developing systems that match
a user’s perception to improve the overall human-robot
interaction. The results indicate that the average user is
most likely to find single phrase notifications of a multirobot
remote operation interface the easiest to interact with.

Although productivity was not improved significantly by
the phrase system, it did improve participant’s perception.
This result indicates that the participant’s perception in this
remote robot management scenario had a more noticeable
effect on informing the design of the system than the

participant’s productivity with the system, which under-
scores the necessity of human-centered design. We found
that participants preferred a system that communicated with
simple phrases, followed by simple sound communication.
Full sentence communication was ranked last by participants.
These findings match our intuition that full natural language
understanding capabilities may not be needed in remote
robot monitoring systems as people often found them more
annoying than helpful.

Understanding the optimal interface and communication
mechanisms for agricultural robots will help design technol-
ogy and robots that are easy to use by non-experts. What
seems intuitive to an academic may not be as easy to use
for a person with minimal robotics experience. Thus, the
applied survey methodology is ideal for alleviating different
experience levels and assuring the accessibility of technology
to all types of users. By improving the design of such fleet
management systems, we may increase the likelihood of
adoption, paving the way for agbots to be deployed at scale.
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