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Multitask Learning for Multiple Recognition Tasks: A Framework for
Lower-limb Exoskeleton Robot Applications

Joonhyun Kim!, Seongmin Ha?, Dongbin Shin®, Seoyeon Ham* Jaepil Jang*, and Wansoo Kim>*

Abstract— To control the lower-limb exoskeleton robot effec-
tively, it is essential to accurately recognize user status and envi-
ronmental conditions. Previous studies have typically addressed
these recognition challenges through independent models for
each task, resulting in an inefficient model development process.
In this study, we propose a Multitask learning approach that
can address multiple recognition challenges simultaneously.
This approach can enhance data efficiency by enabling knowl-
edge sharing between each recognition model. We demonstrate
the effectiveness of this approach using Gait phase recognition
(GPR) and Terrain classification (TC) as examples, the most
conventional recognition tasks in lower-limb exoskeleton robots.
We first created a high-performing GPR model that achieved a
Root mean square error (RMSE) value of 2.345 + 0.08% and
then utilized its knowledge-sharing backbone feature network
to learn a TC model with an extremely limited dataset. Using
a limited dataset for the TC model allows us to validate the
data efficiency of our proposed Multitask learning approach.
We compared the accuracy of the proposed TC model against
other TC baseline models. The proposed model achieved 99.5 +
0.044% accuracy with a limited dataset, outperforming other
baseline models, demonstrating its effectiveness in terms of data
efficiency. Future research will focus on extending the Multitask
learning framework to encompass additional recognition tasks.

I. INTRODUCTION

To control the robot effectively, appropriate interaction
with the environment is necessary, requiring accurate recog-
nition of environmental changes. This principle also applies
to lower-limb exoskeleton robots, which are wearable robotic
devices designed to provide support, assistance, and augmen-
tation to human legs, enhancing mobility and strength [1],
[2].

From the perspective of lower-limb exoskeleton robots,
not only the physical world but also the human element is
considered a part of the external environment, which con-
stantly applies force while the robot must assist in directing
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Fig. 1: TC& GPR, the most conventional recognition problems of lower-
limb exoskeleton robot control situation. TC refers to the identification of the
terrain on which the robot’s user is moving, while GPR means recognizing
the user’s gait phase between 0% and 100%.

movement. Since lower-limb exoskeleton robots are always
attached to humans, effectively addressing recognition prob-
lems becomes essential.

This paper focuses on a more effective approach to
handling multiple recognition problems for lower-limb ex-
oskeleton robots. Until now, models solving these recog-
nition problems have been developed separately to work
effectively in each task [3], [4]. However, this presents
challenges in configuring new model structures and data
processing algorithms suitable for each model, which can
be time-consuming and inefficient. Furthermore, collecting
large data samples related to human motion is challenging
due to factors such as organizing separate experimental
protocols, equipment battery longevity, and subject fatigue
[5]. Therefore, achieving high data efficiency is crucial when
developing machine learning models for exoskeleton robots.

To achieve high data efficiency, this paper proposes
a Multitask learning technique that can address multiple
recognition tasks simultaneously. Multitask learning, which
originates from the Representation learning paradigm, is a
machine learning approach that enables a model to efficiently
learn and perform related tasks even with small data samples
by utilizing the knowledge for a particular task to learn
another related task [6].

In this study, we propose a Multitask learning framework
to demonstrate two conventional recognition problems for
lower-limb exoskeleton robots: Gait phase recognition (GPR)
and Terrain classification (TC) as illustrated in Figure|1|[7]-
[9]. GPR is the task of determining the specific phase of



a walking cycle, which is essential for controlling lower-
limb exoskeleton robots during various gait phases. GPR
can be performed in either a discrete or continuous manner.
Discrete GPR focuses on identifying distinct gait events,
such as heel strike, mid-stance, heel off, and swing, while
continuous GPR estimates the ongoing progression of the
gait cycle, offering more detailed information for controlling
the exoskeleton robot [10], [11]. On the other hand, TC is
the task of identifying the type of surface on which the user
is walking, such as stairs, ramps, or level ground, enabling
the robot to adapt its assistance strategy differently to diverse
environmental conditions [12].

We hypothesize that the proposed Multitask learning
framework can enhance the learning effectiveness of the TC
task model, even with smaller data samples, by using a well-
trained GPR model. In order to explore this hypothesis, we
first develop a high-performing GPR Convolutional neural
networks (CNN) model and then utilize some layers of its
network to train other head networks that address a new task,
TC [13].

To validate our proposed framework, we compare the
performance of our proposed TC model with that of other
baseline models learned without a feature network. The
comparison is conducted using a limited dataset to effectively
validate data efficiency. As a result, the proposed model
outperformed the other baseline models, demonstrating its
potential to overcome data scarcity and tackle additional
recognition challenges in lower-limb exoskeleton robots.

The remainder of this paper is organized as follows:
Section II introduces the background and motivation for
our research, focusing on the concept of Multitask learning
and its application in lower-limb exoskeleton robots. Section
IIT presents the proposed Multitask model implementation,
detailing the input pipelining algorithm, model structure,
labeling process for the GPR model, and training procedures.
Section IV covers the experiments & results to evaluate the
proposed approach. Finally, Sections V presents the conclu-
sion, including a summary and the potential implications of
our research, along with future research directions.

II. BACKGROUND & MOTIVATION
A. What is Multitask Learning?

Traditional machine learning typically involves extracting
features from raw data and making predictions based on these
features [14]. In the past, most features were extracted using
expert domain knowledge, which meant that developing a
high-performance machine learning algorithm required an
expert familiar with the problem to create an appropriate
feature representation. This feature engineering process was
labor-intensive and relied more on understanding the data
than on the quantity of data, making it difficult to fully utilize
big data.

However, recent advancements in Deep neural net-
works(DNN) have enabled the extraction of rich represen-
tation features that surpass human domain knowledge [15].
By utilizing big data, models can achieve high performance
in feature extraction, allowing the model to extract the

Fig. 2: In the field of computer vision, a shared feature representation
network enables the efficient execution of various tasks. The examples show
that multiple tasks being performed using the same mask R-CNN feature
representation network. By leveraging the shared feature representation,
tasks such as human keypoint estimation, image segmentation, bounding
box generation, and image classification can be performed efficiently.

necessary characteristics for a given task without requiring
high-level domain expertise.

This well-trained DNN model has another potential ad-
vantage: it can share a feature network between tasks.
Feature networks of well-trained models can be beneficial
for learning related tasks in terms of data efficiency and
model performance. This process, known as Representation
learning, involves applying the feature network to other
related tasks [6].

Multitask learning is one of the learning paradigms within
the representation paradigm. It involves implementing a
model that allows a shared feature network to perform
multiple tasks simultaneously, resulting in benefits in terms
of data efficiency.

The field of computer vision has been the most successful
in applying Multitask learning by using CNNs. By making
the convolutional kernel’s weight a learnable parameter and
updating it through backpropagation, CNNs can create rich
and characteristic feature representations of data. Performing
Multitask learning with these feature representations enables
the simultaneous tackling of various computer vision tasks,
such as creating bounding boxes, segmentation, key point
estimation, and image captioning, more efficiently [16]-[19],
as described in Figure [2]

B. Application to Lower-limb Exoskeleton Robots

To effectively control lower-limb exoskeleton robots, en-
vironmental recognition problems must be addressed. Due to
the nature of lower-limb exoskeleton robots, they are always
attached to the wearer’s body, and from the robot’s perspec-
tive, humans are also part of the environment. Therefore,
these recognition problems become even more crucial to
consider.

Collecting large amounts of data related to human motion
can be challenging, leading to inefficiencies and additional
resources when developing separate models for each recogni-
tion problem. Achieving high data efficiency is critical when
developing machine learning models for exoskeleton robots.
Therefore, we develop the Multitask learning framework that
could be an attractive solution to the data efficiency issue
[20]. Multitask learning allows the model to utilize the al-
ready learned features and apply them to other related tasks,
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(b) This illustration presents the overall model architecture and depicts the flow of
input data as it passes through the model. The GPR head network connects to the 9th
convolutional block of the feature network, while the TC head network links to the
2nd convolutional block of the same feature network, as detailed in Table The
head network consists of an MLP structure, consisting of two and three nodes in the
Output Layer, respectively.

Fig. 3: Illustration of the Input pipelining algorithm and Model structure

resulting in improved data efficiency and model performance.

By enabling information sharing between different tasks,
we hypothesize that the cost required for learning new tasks
could be reduced. We demonstrate this by using GPR and
TC tasks as examples and proving the effectiveness of our
Multitask learning approach, the details of implementation
will be covered in the remainder of this paper.

III. MULTITASK LEARNING IMPLEMENTATION
A. Input Pipelining Algorithm

In order to implement the Multitask learning approach, we
first develop an input pipelining algorithm that is suited for
CNN models. The algorithm we propose in this paper has an
input data format of batch size x (6 channels x 200 records
x number of IMUs). This format can be viewed as a three-
dimensional input value in the form of an image with six
channels, which is expected to work well with convolutional
kernels.

Our research prioritizes user convenience by using only
one IMU sensor attached to the left thigh, resulting in an
input data format of batch size x (6 channels x 200 records
x 1 IMU). The input pipelining algorithm consists of four
steps, which are detailed below, and the overall process is
illustrated in Figure [3a

1) Feature Selection: Features are selected by choosing
orientation-free features, linear acceleration, and angular
velocity values along the x,y,z axes in the IMU sensor’s

IS IC | OC | KS | Pooling OS
Block 1 | 6x200x1 6 10 | 5x1 2x1 10x98x1
Block 2 | 10x98x1 | 10 | 20 | 5x1 2x1 20x47x1
Block 3 | 20x47x1 | 20 | 20 | 3xl - 20x45x1
Block 4 | 20x45x1 | 20 30 3x1 - 30x43x1
Block 5 | 30x43x1 | 30 | 30 | 3xl - 30x41x1
Block 6 | 30x41x1 | 30 | 40 | 3xl - 40x39x1
Block 7 | 40x39x1 | 40 | 40 | 3xI - 40%x37x1
Block 8 | 40x37x1 | 40 50 3x1 - 50x35x1
Block 9 | 50x35x1 | 50 | 50 | 3x1 - 50x33x1

TABLE I: Feature network structure of the GPR model detailing Input
size(IS) and Output size(OS), Input channel(IC) and Output channel(OC),
Kernel size(KC), Pooling, and Output size(OS) for each block.

IS IC | OC | KS | Pooling oS
Block 1 6x200x1 6 10 5x1 2x1 10x98x1
Block 2 | 10x98x1 | 10 | 20 | 5x1 2x1 20x47x1

TABLE II: Feature network structure of the TC model

local reference frame. This ensures that the feature values
are detected consistently, regardless of the user’s standing
direction.

2) Data Stacking: Data is stacked over a time window T
seconds and then segmented in a 2D grid-like format. The
accumulated data over a set duration are then used as input
data. The variable T seconds can be used to augment the
data, allowing for more flexibility in data representation and
potentially enhancing model performance. The T values for
data augmentation are 1.5, 1.6, and 1.7.

3) Up/Down Sampling: Up/Down sampling is performed
to maintain a constant input data size of 200 records,
ensuring consistency across different input samples.

4) Smoothing & Normalization: To smooth the data and
prevent discrete points from negatively impacting learning,
an moving average filter is implemented. Additionally, to en-
sure the model’s robustness against a variety of environmen-
tal conditions, min-max scaling is performed on the linear
acceleration and angular velocity values. This is necessary
because the magnification of these values could vary even
with a slight twist in the IMU sensor attachment area.

B. Model Structure

In order to design a model capable of handling multiple
tasks simultaneously, we construct the model with two main
components: the backbone feature network and the head
network. The backbone feature network is responsible for
reflecting feature information between tasks, while the head
network performs a specific task.

The backbone feature network consists of convolutional
blocks, which include convolutional kernels, batch normal-
izations, Rectified linear unit (ReLU) activation functions,
and maxpooling layers. Each convolutional block extracts
and processes features from the input data, with output
dimensions varying depending on specific block configura-
tions, as detailed in Tables [[] and [[I]

The head network is a Multi layer perceptron (MLP)
structure comprising fully connected layers and activation
functions. Both models use ReLU as the activation function
in the hidden layers, while in the output layer, the TC model
utilizes softmax, and the GPR model utilizes ReLLU. The head
network processes the features from the backbone feature



network and maps them to the desired output spaces, such
as GPR or TC.

Figure [3b] provides an overview of the overall model
architecture. The GPR head network connects to the 9th
convolutional block of the feature network, while the TC
head network links to the 2nd convolutional block of the
feature network. As a result, the two models share two
convolutional block networks.

C. Labeling Algorithm for GPR Model

The TC task does not require an additional labeling
process since data collection was carried out separately for
each terrain type. However, the GPR task we aim to address
in this paper is the continuous GPR task, ranging from 0%
to 100%, so a well-designed labeling algorithm is required
to create a high performance GPR task model.

We label the gait phase by utilizing an a Force sensitive
resistor (FSR) insole sensor worn on the left foot. The FSR
insole sensor functions as a foot switch sensor, attaching to
both the front and back of the foot, enabling the identification
of four distinct gait phase sections: swing, heel strike, mid-
stance, and heel off, as illustrated in Figure 4b]fid

Within the entire gait phase, post-processing is performed
to identify the Foot lifting points (FLP) and the Foot stepping
points (FSP). In one gait phase cycle, FLP refers to the
moment when the foot detaches from the ground for the
first time, and FSP refers to the moment when the foot
attaches to the ground for the first time. The detected FLP
points are fixed at 0% (or 100%) in the entire gait percentage
section, and the FSP points are fixed at 40%. The entire gait
percentage section is then linearly and iteratively labeled, as
illustrated in Figure

To prevent an increase in bias error due to the discretized
point between 100% and 0%, the labeled phase values are
converted into two continuous phase variables, x and y, using
the following Equations [T}

__ gait percentage X 27

0 100 ’
x=cos(0), (D
y =sin(6).

These continuous phase variables, x and y, can then be used
to represent the gait phase in a cyclic manner without any
discrete point, as described in Figure @

To recover the original gait phase percentage from the
phase variables x and y, the following Equation 2] can be
used :

Y
X

100

2
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By using this transformation, the GPR task can be learned
for the entire gait cycle effectively, as illustrated in Figure
[6al The source of the Equation [TJ2] are from [21]

gait percentage = ((tan*1 ( ) +27£> mod 271:) X

100%

50%

A

(a) Gait phase output conversion by changing coordinate system: The inherent
discontinuity in gait phase output (100% equals 0%) is resolved by converting the
signal to (X, y) coordinates for gait phase representation. The illustration and concepts
were obtained from [21].
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(b) LW terrain gait phase labeling illustration: Using FSR sensors, four discrete phase
sections are identified. Based on the left foot, FLP and FSP are assigned 0% (or 100%)
and 40%, respectively. Labels are then assigned linearly and iteratively throughout the
gait cycle.
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(c) FSR sensor values for three terrain types, along with corresponding phase variable
and percentage labeling. Phase events after the swing section vary based on terrain
conditions. Original gait percentages range from 0% to 100%, but they are scaled down
to 0 to 1 for representation alongside FSR values in the graph.

Fig. 4: Illustration of the labeling process based on phase variables derived
from FSR sensor values.

D. Training Process

The training process for implementing the Multitask model
consists of two stages: first, training a GPR model, and then
training a TC model using the feature network of the GPR
model.

Initially, we develop a well-performing GPR model using
the designed labeling and input pipelining algorithms. Once
the GPR model has achieved satisfactory performance, we



connect the input of the TC head network to the output of
the GPR model’s second convolutional layer. To enable the
model to perform both tasks simultaneously, the weights of
the backbone network are kept constant, and only the head
network is trained.

All the hyperparameters required for training are described
in Table [Tt

Task GPR TC
Optimizer Adam Adam
Learning rate 0.0001 0.0001
loss Function MeanSquaredError | CrossEntropy
Batch Size 128 128
Epoch 20 10

TABLE III: Hyperparameters used for training the GPR and TC models,
including the optimizer, learning rate, loss function, batch size, and number
of epochs.

IV. EXPERIMENTS AND RESULTS
A. Data Recording Process

1) Subjects: The experiment involved two healthy male
participants. Information about the two subjects is provided
in Table [V}

Age(years) | Height(m) | Weight(kg)
1 26 1.71 65
2 34 1.73 72

TABLE IV: Physical characteristics of the subjects, including age, height,
and weight.

2) Sensors: We utilized an Inertial measurement unit
(IMU) (47x30x13mm, Xsens Mtw Awinda) and FSR insole
sensor (90x270x5.3mm, Hexar humancare). The IMU was
attached to the left thigh, approximately 17cm above the
knee, and the FSR was attached to the left foot, Both
sensors data were synchronized at 50Hz using the Robot
operating system(ROS, Ubuntu 20.04, Noetic) environment,
as described in Figure [5a]

3) Recording Protocol: Data was collected under four dif-
ferent speed conditions and three different terrain conditions.
The speed conditions were 70, 90, 110, and 130 Beats per
minute (BPM), while the terrain conditions included Level-
ground walking (LW), Stair ascent (SA), and Stair descent
(SD). Data was gathered on a 35-meter-long flat surface and
a 4.2-meter-long staircase with a 29.05°angle, as illustrated

in Figure [5b]
B. Training & Test Dataset Setting

The training and test dataset settings differed for the GPR
and TC task models. For the GPR model, which requires
the model to form a rich feature representation network, we
randomly split the train and test datasets in a 9:1 ratio.

On the other hand, in the case of TC, we conducted the ex-
periment under extremely limited training data conditions to
effectively validate the model’s performance. This approach
allowed us to assess data efficiency in scenarios resembling
real-world situations where acquiring large amounts of data
may not be practical. The training dataset for TC was created

:2:ROS

lecting
IMU & FSR Value
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Xsens Awinda APl %
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(a) The Xsens mtw awinda dongle connected to the laptop receives sensor values
from the Inertial measurement unit(IMU) and transmits them to the Robot operating
system(ROS) environment via the API. The insole Force sensitive resistor(FSR) sensor
circuit is connected to an arduino mega board, and its sensor values are communicated
with the ROS through the rosserial_arduino package.

(b) This picture illustrates the terrains used in our experiments:Level-ground walk-
ing(LW), Stair ascent(SA), and Stair descent(SD). Data was collected on a 35m long
flat surface and a 4.2m long staircase with a 29.05°angle.

Fig. 5: Illustration of the data recording process.

by randomly selecting five step cycles from each terrain,
totaling only 15 step cycles. The test dataset consisted of
the remaining data not included in the 15 selected steps.

Both the TC and GPR models used five random seed
values to split the training and test sets randomly.

C. Data Efficiency Validation

The primary goal of this paper is to verify whether the
knowledge obtained from a well-trained GPR model can
facilitate learning for the new TC task. To effectively demon-
strate this data efficiency, we evaluated the performance of
the TC model by comparing it with three different model
cases:

e Model 1: A model trained for the TC task using a
pretrained feature network from the GPR.

o Model 2: A model with the same structure as Model 1
but trained from scratch without a pretrained network.

e Model 3: A head network model, MLP.

By comparing the performance of Model 1, which utilizes the
GPR feature network, with the performance of the two other
baseline models that do not, we validated the data efficiency
of our Multitask learning approach.

D. Results

The entire learning results are illustrated in Figure [6] and
detailed in Figure [7} The GPR model achieved an average



Phase Variable X & Y
°
2

3
8

Phase Percentage ()

o B8 8 8 8

300
Records (50Hz)

Predict : X
Predict : Y

Predict

500

Label X
— Label Y

= Label

600

(a) Output results of the well-trained GPR model. gait percentage values are
obtained by applying Equation@to phase variable x and y values.

Train Detaset
120

100 R

MSE Loss
2

25 50 75 100

Epoch

125

160

175

—— Training Deteset Loss %

200

50 75

Test Dataset

—+— Test Datsst Loss

100 128
Epoch

150

X0

(b) This figure demonstrates the MSE loss values for gait phase training
and test dataset, with the trained gait phase recognition model achieving an
RMSE below 3%, indicating well-performing model.The detailed loss values
for GPR model can be found in Figurem
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(c) This figure illustrates the accuracy performance of the three model cases for Terrain
classification. It can be seen that our proposed Model 1 achieved 99.5 + 0.044% accuracy,
outperforming the other two baseline models with performance of 93.5 £+ 0.031% and
79.5 £ 0.013%, respectively. The detailed accuracy performance values for each model
can be found in Figure m
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with model 1 demonstrating the fastest reduction in loss value. The detailed loss values
for each model can be found in Figurem

Fig. 6: An overview of the training results and performance of our proposed Multitask learning approach. Figure@ illustrates the actual output visualization
of the GPR model, while Figure @ presents the average MSE loss values for the GPR model on the training and test datasets. The comparison of accuracy
performance and cross-entropy loss performance for the three TC model cases is depicted in Figures and@

GPR MSE loss TC Accuracy
Epoch | Traning Loss  Test Loss Epoch | Model I  Model 2 Model 3
1 11528 32.73 1 0.5705 0.7186 0.7207
2 28.62 23.95 2 0.9244 0.8589 0.7538
3 21.32 17.95 3 0.9802 0.8877 0.7669
4 16.84 15.88 4 0.9879 0.8964 0.7752
5 14.14 13.91 5 0.9887 0.9052 0.7807
6 12.39 12.17 6 | 0.9955 09114 0.7870
7 11.00 10.27 7 0.9955 0.9172 0.7911
8 10.00 8.74 8 0.9966 0.9244 0.7997
9 9.25 8.05 9| 09970  0.9287  0.7956
10 8.58 8.66 10 0.9950 0.9347 0.7948
11 8.06 8.08
12 7.61 771 TC CRE loss
13 722 7.96 Epoch | Model 1 Model2 Model 3
14 6.93 6.55 T | 1.0488 08239 06297
15 6.63 6.51 2| 01877 0583 05523
16 6.35 6.26 3 0.0596 0.4384 0.5360
17 617 5.83 4| 00382 03601 05145
18 5.04 6.00 5| 00378 03132 05021
19 576 5.3 6| 00169 02819 04978
20 555 550 7| 00155 02583 04870
8 0.0123 0.2381 0.4774
9 0.0104 0.2218 0.4716
10 0.0144 0.2081 0.4718

Fig. 7: Performance summary of TC & GPR models in a table format.
For GPR, the overall model learning is demonstrated to be well-performed
through the MSE loss value. In the case of TC, the accuracy and cross-
entropy loss values are used to compare the performances of the three
models. Model 1, which shares the feature network between tasks, exhibits
the best performance.

RMSE value of 2.345 £ 0.08% on the final epoch, indicating
well-performing recognition performance.

The TC model, which utilized the feature networks of the
GPR model, achieved a final accuracy of 99.5 4+ 0.044%,
outperforming the other two baseline models’ performance

93.5 £ 0.031%, 79.5 £+ 0.013%. Under limited dataset
conditions, the comparison results demonstrate the potential
for data efficiency in our Multitask learning approach, as the
TC model utilizing the feature network of the GPR model
surpassed the performance of the other two baseline models.
These results suggest that by utilizing a knowledge-sharing
backbone feature network for solving multiple tasks, the
model can achieve improved data efficiency compared to
relying on independent models for each recognition task in
the context of lower-limb exoskeleton robots.

The successful recognition performance of the CNN model
in human walking movement data indicated that appropriate
feature extraction was being carried out through functional
operations of the convolutional kernel within the data of hu-
man movement [13]. The success of our proposed Multitask
learning approach can be interpreted in a similar context. It
suggests that the feature extraction within the convolutional
layers for both tasks may involve similar functional opera-
tions related to human gait and environmental interactions.

Although our results demonstrate the effectiveness of our
approach for addressing recognition challenges in lower-
limb exoskeleton robots, its applicability is limited by the
simplicity of the TC task. To further validate our approach,
future studies should involve a wider variety of tasks that
better represent real-world scenarios. The Multitask learning
approach could be extended to broader recognition problems,
such as Human activity recognition(HAR) [22].



V. CONCLUSIONS

In this study, we first designed a suitable input pipelining
algorithm for CNN models and converted the input data into
a three-dimensional format in the form of an image with six
channels, which is expected to work well with convolutional
kernels (Figure [3a). To handle multiple tasks simultaneously,
we designed and trained a CNN model to have sufficient
feature representation power and enable sharing of features
between the two tasks (Figure [3b] Table [[and[II). We labeled
the gait phase values linearly between 0-100% using FSR
sensors (Figure and utilized Equation [T]2] to prevent bias
error caused by discrete points between 100% and 0%. The
training process was carried out with the hyperparameter
settings in Table [[Il} we first trained the GPR model and
then connected a portion of its feature network to the TC
head network to learn the TC task. To demonstrate the data
efficiency of our Multitask learning approach, we compared
the accuracy and cross-entropy loss performance index of the
proposed TC model to other baseline models, showcasing the
potential data efficiency of our Multitask learning approach.
As a results, the GPR model, created using our designed
approach, exhibited well-trained performance with an RMSE
value of 2.345 £ 0.08%. and the TC model, which utilized
the GPR model’s feature network, achieved an accuracy
of 99.5 4+ 0.044% outperforming the other two baseline
models. Through this comparison process, we were able
to demonstrate the effectiveness of Multitask learning in
achieving data efficiency. (Figure [6] and

By examining the utility of Multitask learning approaches
in more complex tasks, future research can investigate the
generalizability of our framework across different tasks and
enhance the adaptability of lower-limb exoskeleton robots in
real-world settings.
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