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Abstract— Despite significant improvements in robot capa-
bilities, they are likely to fail in human-robot collaborative
tasks due to high unpredictability in human environments
and varying human expectations. In this work, we explore
the role of explanation of failures by a robot in a human-
robot collaborative task. We present a user study incorporating
common failures in collaborative tasks with human assistance
to resolve the failure. In the study, a robot and a human work
together to fill a shelf with objects. Upon encountering a failure,
the robot explains the failure and the resolution to overcome
the failure, either through handovers or humans completing the
task. The study is conducted using different levels of robotic
explanation based on the failure action, failure cause, and action
history, and different strategies in providing the explanation
over the course of repeated interaction. Our results show that
the success in resolving the failures is not only a function of the
level of explanation but also the type of failures. Furthermore,
while novice users rate the robot higher overall in terms of their
satisfaction with the explanation, their satisfaction is not only
a function of the robot’s explanation level at a certain round
but also the prior information they received from the robot.

I. INTRODUCTION

Robots and artificial agents’ capabilities rapidly grow as
they are deployed in real-world environments like factories,
hospitals, and schools. Nevertheless, failures inevitably occur
during task execution and collaboration [1], and with the
increasing use of robots in in-the-wild environments, where
robots are more prone to collaborate with novice and non-
expert users, the study of failures, and mitigating their impact
becomes imminent. While in many failure scenarios, robots
can recover by themselves, there are cases where human
assistance is required to resolve failures for task continuity
[2]. For a non-expert user, understanding why a robot failure
has occurred and if and how they could contribute to the
recovery is essential for smooth human-robot collaboration.

The emergence of studies on robot failures attests to the
evolution of research from exploring people’s perception and
resolution of failures to the robot’s role in identifying and
mitigating them [3]. While the topic has expanded to include
the use of holistic approaches such as explanation, apology,
denial, and promise, that identify, resolve, and mitigate
failures for untrained users [1], [4], [5], few have studied the
effect of these approaches in repeated interactions to the best
of our knowledge [6]. Providing an explanation is a practical
approach to mitigating failures in collaborative scenarios,
particularly when failures require human intervention or
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I can’t pick up the object 
because it doesn’t fit in 
my gripper,  Can you 
hand it over to me?

Fig. 1. The pick and place task: Human places the objects on the table, then
the robot’s goal is to place them on the shelf while providing an explanation
in case a failure occurs. The zoomed views show (top right) two levels of
the shelf and (bottom right) the markers for object placement on the table.

assistance. Advances in the field of Explainable AI (XAI) [7],
and its extension to goal-driven explanations [8] for robots
and agents contribute to research on explanation generation
for failures. Currently, the literature on the topic of resolving
failures via explanations focuses on determining what type of
information should be presented [4] and how the explanations
should be automatically generated [9], [10]. In our research,
we address the missing link between explanation generation
and participant satisfaction in repeated interactions with
recurring failures, for example, do we need to be consistent
with the explanations as the failures reoccur, or should we
provide more details early on and reduce as the interaction
continues?

As a result, we developed a study to understand how
different strategies of providing explanations in repeated
interaction influence non-expert users’ performance and sat-
isfaction. We developed a collaborative pick-and-place task,
where the robot and human had to place objects from
four baskets on a shelf. We counted each basket as one
round of interaction and aimed to have four rounds of
interaction. We designed two types of strategies for providing
the explanations: 1) maintaining the details of the explanation
during the rounds, i.e. fixed strategy and 2) reducing the
details of the explanation, i.e. decaying strategy. To develop
the strategies, we first defined the explanation levels inspired
by the previous work by [4] and labeled them as low, mid,
and high. Subsequently, we conducted a between-subject
user study where participants experienced either of these
strategies in four rounds of interaction. We aimed at eval-
uating how participants’ performance in resolving failures
and satisfaction with the explanations were impacted by
the explanation levels and strategies which lead us to the
following research questions:
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• RQ1: How does explanation level impact participants’ per-
formance in the task and satisfaction with the explanation?

• RQ2: Which explanation strategy (fixed vs. decaying) leads
to better performance and satisfaction in participants?

II. RELATED WORK

Several studies in the fields of human-robot interaction
(HRI) and collaboration (HRC) have addressed the impor-
tance of understanding the effect of failures on trust [11]
and perception [12], and mitigating its impact through failure
recovery [13], explainability [4], and promise [5]. In [11],
a user study was designed to investigate the effects of a
collaborative robot’s failure on human trust and the impact of
justification strategies. Altogether, the results indicated that
a faulty robot is regarded as far less trustworthy. It is also
shown that the impact of failures was reduced with justifica-
tions when the consequence of failure was less significant.
With the change of trend in using holistic approaches to
identify and resolve failures, one of the approaches used
more commonly in recent years is generating and providing
explanations, studied on both the computational front, e.g.,
XAI [4], [14], and the social front, e.g., behavioral [15].
Several of the research in explainability has been inspired
by the sociocognitive definitions of explanations in various
fields and their social implications [15]. A recent review by
Wallkotter et al. [16] identified three research directions on
the topic that contribute to understanding the explainabil-
ity mechanisms and how they can be integrated into the
interaction context with occasional overlaps with the field
of XAI. On the topic of studying explainability in robot
failures, a study by Das et. al. investigated the types of
explanation that helped non-experts to identify robot failures
and assist the recovery by extending the XAIP algorithms via
introducing failure explanation [4]. The goal was to produce
explanations for unexpected failures in a pick-and-place task
for a robot in a household environment. Failure and solution
identification has been observed to be most effective when
explanations include the context of the failure action and
the history of previous actions. Another study in [14] used
machine-learning models to predict robot grasp failures and
study the tradeoff between accuracy using black-box models
and interpretability using explainable models. They showed
an explanation of predicted faults could contribute to the
efficiency of designing the robot and avoiding future failures.
Diel et al. proposed a causal-based method to develop
explanations for robot failures in collaborative scenarios
[10]. Their approach incorporated learning from a causal

Bayesian network that enabled the robot to generate the
explanation by contrasting a failure state against the closest
successful state and by using a breadth-first search. Beyond
the studies focusing on generating explanation, the effects of
different types and amounts of explanation by an XAI system
on human understanding of the system were discussed in
[17], where an increase in the information contained in the
explanation resulted in the users’ better understanding and
prediction of the system behavior, as well as increased user
performance. However, this came at a cost of increased time
and attention needed by users to comprehend the explanation.

III. DESIGN

A. Collaborative Task Design

We designed a pick-and-place task where a Baxter robot
and a human had the goal of collaboratively picking objects
from a basket and placing them on the shelf (Fig. 1). We
created four baskets, (numbered 1 to 4), each including a
combination of four household items presented in Fig 2. This
resulted in a total of 16 objects that needed to be placed on
the shelf during the whole duration of the experiment. In our
design, each round of the experiment started by picking the
items from one basket, putting them on the table, and placing
them on the shelf, when the task was successfully executed.
The placement of an object was deemed unsuccessful if it
was not placed on the shelf.

We marked each object in the basket with an A, B, C, or
D tag on one face and a fiducial tag [18] on the other to
let the robot detect the object. At the start of each round,
the human collaborator placed all objects from the basket
in corresponding positions as they are marked (see Fig. 1).
For handling each object, the robot executed the following
steps: detect the object, pick it up, carry it, and finally
place it on the shelf. A possible failure could happen at
each step during collaboration with the robot. As result, we
defined the following failures and possible resolutions that
could help complete the task despite a failure. In the next
section, the explanations generated based on these failures
and resolutions are provided.
1) Detect Failure (f0): Robot failed to detect the object on

the table, e.g. not being able to scan the tag.
Resolution Action (r0) Human moves or rotate the object
to ensure the tag is visible to the robot.

2) Pick Failure (f1): Robot failed to pick up an object, e.g.
not fitting in the gripper, based on its placement or size.
Resolution Action (r1): Human picks up and hands over
the object to the robot.

(a) Sponge 10g (left),
Toy 25g (right)

(b) Pen box 500g (left),
Pen box-heavy 750g (right)

(c) Heavy box 1 725g (left),
Heavy box 2 1000g (right)

(d) Cloth box 710g,
Flat box 130g

(e) Random Box 2 580g (left)
Random Box 1-3 35g (right)

Fig. 2. Objects as they were required to be placed in front of the robot
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Fig. 3. Description of human-robot collaborative task with the robot and
human action spaces. Arrows in green represent transitions due to action
success. Arrow in red represents transitions due to action failure.

3) Carry Failure (f2): Robot failed to carry an object, e.g.
weight beyond the limit robot can handle.
Resolution Action (r2): Robot hands over the object to
the human and the human places it on the shelf.

4) Place Failure (f3): Robot failed to place an object, e.g.
the desired destination is beyond the robot’s reach.
Resolution Action (r3): Robot hands over the object to
the human, and they place it at the desired location.

Fig. 3 shows the workflow for placement of an object with
possible failures denoted in red, which was accompanied by
an explanation from the robot and resolved from the human
side. In the task design, we included 7 objects for which the
robot successfully executes all steps and 9 objects involving
some robotic failures, spread out across the four rounds as
shown in Table II. We are not intentionally incorporating
the detection failures (f0), but as they might occur due to
the way the object is placed on the table, we provide the
appropriate resolution. For any other unintended failure (f4),

TABLE II
ROUND-WISE DESCRIPTION

Round Object Object Robotic Action-Success Resolution

No. Type Pick Carry Place

1

A Sponge ✓ ✓ ✓ None
B Cloth-Bag X X - r1 & r2
C Random-Box1 ✓ ✓ ✓ None
D Pen-Box ✓ ✓ X r3

2

A Heavy-Box1 ✓ X - r2
B Random-Box2 ✓ ✓ ✓ None
C Flat-Box X ✓ ✓ r1
D Toy ✓ ✓ ✓ None

3

A Pen-Box ✓ ✓ X r3
B Pen-Box-Heavy ✓ X - r2
C Toy ✓ ✓ ✓ None
D Random-Box3 ✓ ✓ ✓ None

4

A Flat-Box X ✓ ✓ r1
B Sponge ✓ ✓ ✓ None
C Pen-Box ✓ ✓ X r3
D Heavy-Box2 X X - r1 & r2

the resolution (r4) in the form of asking the human to place
the object on the shelf was also integrated.

B. Explainability Mechanisms

We considered three verbal explanation levels: low,
medium, and high. Additionally, we included a nonverbal
baseline to complement the explanations as a result of
initial pilot studies where we noticed users needed some
baseline behaviors to understand the failures, particularly
when given low-level explanations. As a result, we designed
the following explanation levels inspired by [4] and Table I
presents each explanation for each failure type.
• Low Level: Based on action-based explanation in [19].

After the failure, the robot states the failure action and its
resolution.

• Medium Level: Based on context-based explanation in
[19]. Post failure, the robot states the failed action and
the cause of failure, followed by a resolution statement.

TABLE I
FAILURE-WISE EXPLANATION LEVELS

Level f0 f1 f2 f3 f4

Zero
(Non-
verbal)

Shakes its head to show
unable to find the object

Tries to get the object in its
gripper, shakes its head at
failure, and moves the arm
to the handover position

Moves the arm down with
the object in the gripper,
conveying it fails to carry
it, shakes head and moves
to the handover position

Stops arm near the lower
level of the shelf, shakes
head and move the arm to
the handover position

Shakes head

Resolution Nothing Nothing Nothing Nothing Nothing

Low “I can’t detect the object” “I can’t pick up the object” “I can’t carry the object” “I can’t place the object” “I failed to handle the ob-
ject”

Resolution “Move it” “Hand it to me” “Carry it for me” “Place it for me” “Place it for me”

Medium “I can’t detect the object
because the tag is not visi-
ble to me”

“I can’t pick up the object
because it doesn’t fit in my
gripper”

“I can’t carry the object
because it is too heavy for
my arm”

“I can’t place the object
because the destination is
out of my arm’s reach”

“I failed to handle the
object because an unex-
pected failure happened”

Resolution “Can you move it within
my field of view?”

“Can you hand it over to
me?”

“Can you carry the object
for me?”

“Can you place the object
for me?”

“Can you place the object
for me?”

High “I scanned all the objects
and can’t detect the object
I am looking for, because
probably the tag is not vis-
ible to me”

“I can detect the object, but
I can’t pick it up because it
doesn’t fit in my gripper”

“I can pick up the object,
but I can’t carry it because
it is too heavy for my arm”

“I can carry the object, but
I can’t place it because the
destination is out of my
arm’s reach”

“I can detect the object but
I failed to handle it be-
cause an unexpected fail-
ure happened”

Resolution “Can you move it within
my field of view to make
sure I see the tag?”

“Can you hand it over to
me by placing it in my
gripper?”

“Can you carry the object
for me and place it on the
shelf?”

“Can you place the object
on the shelf location that is
out of my reach?”

“Can you finish placing
the object for me?”



• High Level: Based on context-based + history-based ex-
planation in [19]. After failure, the robot states the previous
successfully completed action, the current failure action,
and its cause. The resolution statement also includes the
resolution action.
Informed by our pilot studies, we included a nonverbal

baseline to help with identifying the failure in lower expla-
nation levels.
• Zero (Nonverbal): This only includes the robot head shak-

ing at each failure with more specific robotic actions based
on the failure type.

C. Interaction Details

The Baxter robot was programmed in ROS and only used
its left arm. More detail on the technical developments and
the interaction is available in [20] and the accompanying
video with this work. Each round started with the robot
receiving verbal confirmation that all objects are placed on
the table, where the robot proceeded to pick up the objects
by following the action sequence depicted in Fig. 3. Once
a failure occurred, the robot exhibited non-verbal actions
described in Table I. followed by an explanation based on
the current strategy and waiting for the human to resolve the
failure before moving to the next step. If the failure was not
resolved in a predefined amount of time, the robot repeated
itself up to five times spaced with three-second intervals. The
system is autonomous, but the experimenter (unbeknown to
the participant) made the decision to move to the next step
when they failed to complete the task after five repetitions
(something that might happen in low explanation cases). To
avoid handover failures, the human-to-robot handover was
completed after the robot received a verbal confirmation to
close its gripper after the human handed over the object, and
the robot-to-human handover used sufficient pull-force, in
line with a prior study [21].

IV. METHODOLOGY

A. Experiment Design

We investigated two explanation strategies (fixed and
decaying) using the three levels of explanations (low, mid,
and high). For the fixed explanation strategy, we tested each
explanation level using the three conditions: C1, C2, and
C3 presented in Table III. For the decaying explanation
strategy, we focused on the rate of decay. Given four rounds
of interactions, we defined two types of decay: slow (D1)
and rapid (D2). Slow decay was implemented by reducing
the level of explanation once per round, which resulted in
the following combination: high, medium, low, and none. In
Rapid decay, the explanation was reduced from high to low
and keep it in a low level as presented in Table III.

B. Hypotheses

Prior research on the topic of XAI and explainability in
robotics has shown mixed results in how humans perceive
explanations. In the study by Das et. al. [4], explanations
that encompassed context and history of past successful
interactions were able to improve failure identification and

TABLE III
EXPERIMENTAL CONDITIONS

ID Details Round 1 Round 2 Round 3 Round 4

C1 Fixed-Low Low Low Low Low
C2 Fixed-Medium Mid Mid Mid Mid
C3 Fixed-High High High High High
D1 Decay-Slow High Mid Low None
D2 Decay-Rapid High Low Low Low

failure. Their context-based including history corresponds to
our high-level explanation. On the other hand, with regard to
our first research question, we have the following hypotheses:
• H1a: participants show better performance e.g. shorter

task resolution time and successfully resolving the failure
in the high explanation level compared to low and mid-
levels.

• H1b: participants are more satisfied when given more
detailed explanations compared to lower or intermediate
explanations.

Given our second research question, we hypothesize:
• H2a: In final rounds, participants’ performance and satis-

faction in decaying conditions (with low explanations) is
better than the fixed-low explanation condition.

• H2b: In final rounds, participants have comparable perfor-
mance and satisfaction in decaying conditions (with low
explanations) compared to fixed-high explanation condi-
tions (with high explanations).
For H2a, we specifically focus on Low-level explanations

in round 3 and expect participants to perform better in
the decaying conditions (D1, D2) compared to the fixed
low explanation condition C1 as they were given higher
explanations in the previous rounds. We also compare the
performance in round 3 of C3 with (D1, D2) for which we
expect participants to have similar perceptions and perfor-
mances compared to C3, despite the low level of explanation,
as they have already been exposed to higher explanations in
earlier rounds (H2b). The level of explanation is a between-
subject variable for fixed strategy conditions (C1, C2, and
C3). The level of explanation also varies within the decaying
strategy conditions (D1 and D2) as it changes both between
conditions and within the decaying conditions. The depen-
dent variables are participants’ performance in the task and
their explanation satisfaction rating.

C. Measures
In line with our hypotheses, the measures for this ex-

periment were participants’ performance and participants’
satisfaction, collected through multiple variables and after
the completion of each round of interaction.

1) Participants’ performance: We measure the perfor-
mance over two dimensions corresponding to the instances
where failure occurs, 1) the time they take to intervene and
resolve a failure, 2) their success rate in resolving the failure,
e.g. placing the object on the shelf.

Failure resolution time: Tres is calculated from when
the robot completes the explanation statement to when the
participant completes the resolution, e.g. placing the object
on the shelf.



Success rate of failure resolution: This is a measure of
the successful resolution of each failure and it is measured
differently depending on the type of failure as presented in
the Collaborative Task Design section.

2) Participants perception: The participant’s perception
was measured using an explanation satisfaction survey and
some task-related questions. The task-related questions in-
cluded more open-ended questions, designed to understand
participants’ approaches to resolving the failure beyond the
robot’s explanations. We are not reporting the qualitative
analyses of the responses in this paper.

Explanation satisfaction scale: To measure how partic-
ipants were satisfied with the explanations at each round,
we asked them to respond to 8 questions after completing
each round. The questions were originally introduced and
evaluated in [22]. They define explanation satisfaction as
“the degree to which users feel that they understand the AI
system or process being explained to them”. The questions
were derived from the psychological literature on expla-
nation and include several key attributes of explanations:
understandability, feeling of satisfaction, sufficiency of detail,
completeness, usefulness, accuracy, trustworthiness.

D. Participants and Procedure

We recruited sixty-nine participants via advertisement on
campus. Our main criterion was that the participants had
no prior experience in physical collaboration with a robot.
Twelve participants had to be excluded from the analysis due
to unaccounted robot failures beyond the failures designed
for the experiment. The final sample size was N = 55 (M =
26.63, SD = 7.42) (21 Female, 33 Male, 1 Other) resulting
in 11 participants per condition. At the start, the participants
filled out the consent form for data and video collection
and reading procedural instructions. They were briefed about
their role to place objects on the table and the robot’s role
to pick them up and place them on the shelf; however, no
mention of the possible failures and related resolutions was
presented. After the completion of the experiment, they were
given a debriefing sheet describing the aim of the study.

V. RESULTS

To prepare the data, first, we evaluated the internal con-
sistency of the questionnaires using Cronbach’s alpha. The
explanation satisfaction questionnaire presented high internal

consistency with Cronbach’s α = 0.79, α = 0.91, α = 0.92,
and α = 0.92 for each round, respectively.

A. Impact of Explanation Level
To investigate H1a and H1b, we only looked at the first

round of interaction and grouped participants into groups of
low, mid, and high explanation levels. This implied grouping
the participants in conditions C3, D1, and D2 into High-level,
C2 into Mid-level, and C1 into Low-level. This decision was
made to get a baseline for the explanation levels, additionally,
to analyze strategies we need multiple rounds of interaction
which we address in the next section.

Given that each failure type required a different resolution
and intervention to resolve that failure successfully, we ana-
lyzed the performances separately for each failure type. Table
IV(a) shows the success rate in resolving the failures for each
failure type in all three levels. For carry failures, Fisher’s
exact test p = 0.0023 shows a significant difference between
the low, mid, and high explanation levels in successfully
resolving the failure (Fig. 4a). According to post hoc tests
p = 0.0022 this difference is significant between High-
level compared to the Mid-level. For place failure (Fig 4c),
according to Fisher’s exact test p = 0.0339, participants that
received the High-level explanation were significantly more
successful than the ones receiving the Low-level explanation.

For our second measure of analyzing performance, we
looked at the time participants took to resolve failure cases.
For pick and place failures, we observed no significant
difference in the resolution times based on the explanation
levels. For carry failures, Kruskal-Wallis chi-squared test
H(2) = x, p = 0.0075 indicated that the resolution time
significantly differed based on the explanation level. Post
hoc tests and Figure 4b show the difference is significant
between Low-level and Mid-level p = 0.0061, and Mid-level
and High-level p = 0.045.

Results for H1a: Overall, the results partially support
H1a, where we expected participants to perform better in
High-level explanations compared to Mid and Low-level.
However, the analyses show that failure type and how
much the immediate resolution could be inferred from the
environment, irrespective of the explanation, are important
factors in the participants’ performance.

Results for H1b: Regarding H1b, we analyzed partici-
pants’ responses to the explanation satisfaction questionnaire
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Fig. 4. Performance in terms of success rate and resolution time for round 1



TABLE IV
SUCCESS RATE IN FAILURE RESOLUTION

Explanation Failures

Level Pick Carry Place

Low 100% 81.82% 18.18%
Medium 100% 54.55% 27.27%

High 100% 96.97% 60.61%

(a) Round 1

Explanation Explanation Failures

Strategy Level Pick Carry Place

C1 Low 100% 100% 18.18%
C2 Medium 100% 100% 45.45%
C3 High 100% 100% 72.73%
D1 Low 100% 72.72% 18.18%
D2 Low 100% 81.82% 36.36%

(b) Round 3

Explanation Explanation Failures

Strategy Level Pick Carry Place

C1 Low 100% 90.91% 18.18%
C2 Medium 100% 100% 36.36%
C3 High 100% 100% 72.73%
D1 Low 100% 100% 45.45%
D2 Low 100% 90.91% 63.63%

(c) Round 4

after the first round. Kruskal-Wallis chi-squared test indi-
cated no significant difference in the explanation satisfaction
between the explanation levels H(2) = 2.47, p = 0.2903,
rejecting our hypothesis. The distribution of the satisfaction
rating in round 1 is presented in Fig. 7a.

B. Impact of Explanation Strategy

To analyze the impact of the explanation strategy, we
looked at participants’ performance and satisfaction ratings
in rounds 3 and 4 for conditions C1, C2, C3, D1, and D2. In
H2a, we are comparing the final round performances in the
decaying conditions, i.e. D1 and D2, versus the fixed condi-
tion C1. In round three of these conditions, participants are
receiving Low-level explanations with different a priori. In
round four, participants are receiving Low-level explanations
in conditions C1 and D2, and Zero-level explanations in D1.

The percentages for the success rates in rounds 3 and
round 4 are presented in Table IV-(b),(c). For pick and carry
failures, participants showed success rates above 80% in
all conditions. For place failures, while we observed better

performances in D1 and D2 conditions compared to C1 as
shown in Fig. 5c, the difference was not significantly dif-
ferent. Regarding the failure resolution times in round 3, no
significant difference was observed for pick and carry failures
between C1, D1, and D2 conditions. However, for place
failures, Kruskal-Wallis chi-squared test indicated that there
was an overall difference in the resolution times between
the three conditions H(2) = 2.47, p = 0.2903. The pairwise
comparison confirmed that this difference was significant
between C1 and D2 conditions H(2) = 2.47, p = 0.0386.

Furthermore, we explored the data in round 4, where the
explanation level for condition D1 was reduced to baseline
or none. As shown in Fig. 6, the performances for the
D1 condition have decreased for all failure types, with a
significant difference for place failure cases. By only looking
at the performances for place failures in condition D1, we
observe that after three rounds of interaction, participants
were still not ready to resolve the failures without any
explanation. Furthermore, the explanation satisfaction ratings
for rounds 3 and 4 are presented in Fig. 7b, and 7c, and show
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Fig. 5. Performance in terms of success rate and resolution time for round 3
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Fig. 6. Performance in terms of success rate and resolution time for round 4
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Fig. 7. Explanation satisfaction ratings for all rounds

no significant difference between the discussed conditions.
Results for H2a and H2b: Overall, based on the perfor-

mance and satisfaction results in the last rounds, we reject
H2a. However, we can accept H2b, proving that participants
in the last rounds of decaying explanation conditions; i.e. D1
and D2, showed comparable performances to the fixed-high
explanation, i.e. C3.

VI. DISCUSSION

A. Impact of Explanation Level

We observed that there is a significant effect of explanation
level on the participants’ performance. Participants showed
an overall higher success rate in resolving failures when
given context-based high-level explanations with the history
of past successful actions which was also evident from
the shorter time in resolving the failures and completing
the task. This is aligned with the results from [4], where
participants watched videos of the failures and respective
explanations and their performance was evaluated based
on success in identifying the cause of the failure and its
resolution. Nevertheless, we noticed that the results are not
generalizable over different types of failures. For example,
participants have shown above 80% success rates in resolving
pick failures irrespective of the given level of explanation.
One reason lies in the nature of the failure to pick an object,
which regardless of its cause, e.g. size, shape, or slippery
edges, can be easily detected by a collaborator.

On the other hand, the performances in resolving carry and
place failures exhibited some significant differences based on
explanation level. We identify that in carry failure cases, the
cause was not explicit, i.e. object weight was beyond the
robot arm’s limit. However, in contrast to our expectations,
participants in Mid-level conditions, had the worst perfor-
mances compared to Low and High-levels (Fig. 4a, 4b). This
finding contributes to the argument that giving additional
information without pointing to a cause or resolution can
hinder human performance which is also aligned with Tha-
gard’s theory of explanatory coherence [23], where people
prefer simpler explanations with fewer causes and more
general explanations. In place failure cases, we observed
significant performance improvement with the increase of
explanation (Fig. 4c, 4d). Several factors could contribute to
this, including the harder detection of the resolution without
receiving the appropriate explanation. It is plausible that

participants understood the robot’s failure to place the object
on the shelf, however, they missed the exact reason, i.e., the
inaccessibility of the lower shelf, and managed to place the
object on the upper shelf, which was not the goal.

Overall our findings guide us to further investigate factors
such as failure type, with respect to its severity and infor-
mation availability as critical factors in estimating the need
for explanation and generating the appropriate explanation
upon failure. While the literature on robot failures and trust
evaluation considers failure severity to be an important factor
that influences trust [24], we further observe that situational
awareness [25] and the information availability play an
important role too. As a result, we conclude that: 1) if people
can understand the failure and its resolution from the onset
of failure, their performance is not influenced by the amount
of provided explanations, and 2) more explanation does not
automatically lead to better performance.

B. Impact of Explanation Strategy

To understand how different explanation strategies per-
formed, we analyzed participants’ performances in later
rounds, i.e., 3 and 4. In round 3, conditions C1, D1, and D2
had low-level explanations with different prior explanation
levels. We observed that for carry failures, performances
were not significantly impacted by the explanation strategy.
At this point, participants were already familiarized with
the cause of this type of failure and resolution, and given
their quite high success rate in the first round, they just
kept improving. On the other hand, we noticed that for
place failure, where the High-level explanation was crucial
to understanding the resolution, having a prior High-level
explanation in conditions D1 and D2 improved the success
rate. Consequently, the same improvement was observed in
completing the task in a shorter time which was significant
between conditions C1 and D2. Overall, we conclude that
in a repeated interaction scenario, a user responds better to
a low level of explanation after being exposed to a higher
level of explanation in prior rounds. This presents a strong
justification for explanation strategies that reduce the level of
explanations which reduces the overall task completion time.
Considering the results in condition D1, which included a
Zero-level explanation in round 4, we conclude that not only
the rate of reducing the explanation is important, but also the
baseline where the explanation level reduces to.



C. Limitations and Future Work

Due to the exploratory nature of the study, we limited the
number of possible conditions via pilot testing. Nevertheless,
testing 5 conditions with 55 participants restricted us from
drawing firm conclusions. While we observed some trends in
the satisfaction ratings, having more participants wille enable
us to surpass participants’ personal differences. This study
was the first step in identifying the variables involved in how
non-expert users perceive explanations after robot failures
and the findings help us to improve our understanding
of robotic failures and explanations strategies. Next, we
plan to isolate some of these variables to determine the
optimal adaptation that leads to higher human satisfaction
and performance. to better evaluate how humans perceive the
explanation and what type of adaptation is needed. We are
extending the research by analyzing the dataset composed of
participants’ behaviors from their participation in the study
when encountering failures. We are aiming at using social
cues to recognize if participants have detected the failures
[26] and utilize that information in a closed-loop system to
adapt the explanation in response to the human’s reaction
to the failure. Furthermore, we plan to conduct more user
studies, investigating the conditions showing high varieties in
performance and satisfaction ratings in more detail, including
a detailed comparison of conditions C1, D1, and D2.

VII. CONCLUSION

In this work, we investigate what levels of explanation
and what explanation strategies in repeated interactions help
non-experts to assist a robot to recover from failures in a
collaborative task. We introduce two types of explanation
strategies in the context of repeated interactions i.e. fixed
and decaying and designed a collaborative task i.e., picking
and placing objects from a table to shelves, where we
incorporated three types of commonly occurring failures in
such tasks. A user study with 55 participants evaluated three
variations of the fixed and two variations of the decaying
strategies, with failures in four rounds of interaction. The
results portrayed a bigger picture of how participants’ per-
formances in resolving the failures and their satisfaction with
the robot’s explanation is a function of types of failure, level
of explanation, and strategy. We observed, for failures with
a more explicit resolution, the level of explanation did not
influence participants’ performance or satisfaction. However,
for failures where the cause of the failure contributed to
resolving it, performance in the task and satisfaction were
directly impacted by the context of the explanation. With
regard to explanation strategies, we noticed that specifically
for complex failures that can be resolved with the high
explanation, we can aim for decaying strategies, where we
can avoid repetitions and reduce overall collaboration times.
However, more modalities could be incorporated to decide
the reduction rates, e.g. success rate in the previous rounds.
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