
An End-to-End Human Simulator for Task-Oriented Multimodal
Human-Robot Collaboration

Afagh Mehri Shervedani1, Siyu Li1, Natawut Monaikul2, Bahareh Abbasi3, Barbara Di Eugenio2,
and Miloš Žefran1

Abstract— This paper proposes a neural network-based user
simulator that can provide a multimodal interactive environ-
ment for training Reinforcement Learning (RL) agents in
collaborative tasks involving multiple modes of communication.
The simulator is trained on the existing ELDERLY-AT-HOME
corpus and accommodates multiple modalities such as language,
pointing gestures, and haptic-ostensive actions. The paper also
presents a novel multimodal data augmentation approach,
which addresses the challenge of using a limited dataset due to
the expensive and time-consuming nature of collecting human
demonstrations. Overall, the study highlights the potential for
using RL and multimodal user simulators in developing and
improving domestic assistive robots.

I. INTRODUCTION

Assistive robots designed for domestic use can be instru-
mental in enabling older adults and those with disabilities
to maintain their independence by providing assistance with
activities of daily living (ADLs) such as cooking and clean-
ing. These robots typically rely on three primary modules
to perform the sense-plan-act cycle: the Perception Module
processes sensory information, the Execution Module carries
out desired actions, and perhaps the core of the robot,
the Interaction Manager that receives the input from the
Perception Module and determines the most effective course
of action for the robot to take. Figure 1 illustrates the sense-
plan-act cycle.

For a robot to assist in an ADL as a human would, it
must be able to both effectively collaborate on the task
as well as engage naturally in interaction with its user.
This interaction is typically multimodal in nature, seam-
lessly interleaving various modes of communication, such as
language, gestures, facial expressions, and force exchanges.
An Interaction Manager designed for such a human-robot
collaboration must therefore be robust enough to handle these
multiple modalities.

In previous work [1], [2], we developed a novel framework
named Hierarchical Bipartite Action-Transition Networks
(HBATNs) as a basis for an Interaction Manager for assistive
robots participating in what we call the Find task. In this

1A.M. Shervedani, S. Li, and Miloš Žefran are with the Robotics
Laboratory, Department of Electrical and Computer Engineering, University
of Illinois Chicago, Chicago, IL 60607 USA.

2N. Monaikul and B. Di Eugenio are with the Natural Language Pro-
cessing Laboratory, Department of Computer Science, University of Illinois
Chicago, Chicago, IL 60607 USA.

3B. Abbasi is with the Computer Science Department, California State
University Channel Islands, Camarillo, CA 93012 USA.

This work has been supported by the National Science Foundation grants
IIS-1705058 and CMMI-1762924.

task, two participants, one of whom may have limited
mobility, collaborate to locate an object. The design of the
HBATNs draws directly from human demonstrations in our
ELDERLY-AT-HOME corpus [3], which contains annotated
interactions between nursing students (labeled HEL) and
elderly individuals (labeled ELD) receiving assistance with
ADLs. Although the HBATNs provide an optimal policy for
a robot participating in the “Find” task based on human
demonstrations, they were manually constructed and can not
be easily adapted to other tasks.

In our recent study [4], we proposed a more scalable In-
teraction Manager that employs reinforcement learning (RL)
to automatically extract an optimal policy for a robot par-
ticipating in a collaborative task. One significant challenge
in training this agent is building an interactive environment
that can provide the agent with rewards. In task-oriented
collaborative tasks, the interactive environment involves the
human. Since having a human interact with an Artificial
Intelligence (AI) agent during the RL training phase is not
practical, researchers have developed user simulators to sim-
ulate human behavior in such interactions. However, existing
user simulators only support a single modality, which is
language. Therefore, we developed our own user simulator
to imitate human behavior in multimodal interactions. The
simulator needs to interpret a multimodal input and generate
multimodal responses.

In this paper, we propose a novel neural network-based
user simulator that is inspired by Behavioral Cloning [5],
[6] and is trained on the “Find” task demonstrations in
the ELDERLY-AT-HOME corpus. What makes our user
simulator unique is the fact that it accommodates multiple
modalities such as language, pointing gestures, and haptic-
ostensive (H-O) actions [3]. This is a substantial advance in
developing domestic assistive robots as there is currently no
simulator that can provide a multimodal interactive environ-
ment for RL training.

Another significant contribution is our novel multimodal
data augmentation approach, which addresses the challenge
of using a limited dataset due to the expensive and time-
consuming nature of collecting human demonstrations. Our
data augmentation approach effectively takes care of all
modalities involved in the data, making it a valuable resource
for the community. Overall, our study highlights the potential
for using RL and multimodal user simulators in developing
and improving domestic assistive robots, and represents a
significant development for the field.

The rest of the paper is structured as follows. First, we

ar
X

iv
:2

30
4.

00
58

4v
1 

 [
cs

.R
O

] 
 2

 A
pr

 2
02

3



Fig. 1: The Sense-Plan-Act cycle in an assistive robot. See
also [4] for a more detailed illustration.

provide a review of related studies in Section II. We provide
the necessary preliminaries in Section III. Our user simulator
framework is presented in Section IV, and the evaluations are
described in Section V. Finally, we summarize our findings
and provide concluding remarks in Section VI.

II. RELATED WORK

Simulators are an important tool in developing robot au-
tonomy through machine learning. The challenge for human-
robot interaction (HRI) and the development of assistive
robots is that the simulators need to model complex hu-
man behavior. Recent work in HRI and human factors has
been successful in describing, understanding, and predict-
ing human decision-making in specific contexts [7]. The
approaches relevant to HRI can be broadly divided into three
categories. One common technique for modeling human be-
havior involves modeling the mechanics of human movement
through equations of motion [8], [9]. Another technique
assumes that the human agent has a reward function nearly
identical to that of the robot. This assumption is frequently
made in the human-robot interaction community [10]. For
example, in a scenario where the human and robot agents
pick a tool from a table, the reward is defined as a function
over the xy-plane. What’s more, many works on human-
robot interactions assume that the human agent is an expert
in interacting with the robot [11], [12], and thus, humans
will always choose actions that are easy for the robot to
understand. Set an example of [12], the human agent’s policy
is a fixed and deterministic function of the robot’s actions.
However, all these techniques impose strong assumptions
on human agents. In our work, we relax some of these
assumptions and model the human agents based on real-
world data.

In the realm of HRI, much attention is on care for
older adults in the home setting. Our previous work [1],
[2] uses HBATNs to model both the robot helper and the
older person simultaneously to maintain the state of task-
driven multimodal interaction and plan subsequent moves.
The behavior of the human has been assumed to consist
of dialogue actions, pointing gestures, and haptic-ostensive
cues. Similar works in the field, such as [13], have introduced
a multimodal action recognition framework that processes
speech and video information separately and then fuses them.
In [14], a timed Petri net is proposed to represent socially
intelligent robot behaviors, emphasizing the importance of
the representation’s ability to model time and asynchronous

events. However, these works have been evaluated using
hand-built human simulators, making it difficult to generalize
to other tasks. In this paper, we build upon the HBATN
framework by providing a more general version of the user
simulator that can perform multimodality in the interactive
environment.

As machine learning rapidly advances, new opportunities
for human-robot interaction (HRI) arise. Recent advance-
ments in intelligent dialogue systems have shown promise in
modeling the dialogue aspect of human agents [15]–[17]. For
example, Li [17] developed a hybrid user simulator capable
of naturally interacting with a dialogue system to perform
end-to-end training. However, when considering scenarios
where humans can perform more than just dialogue, user
simulator research becomes more complex. [18] identified
three ways to model how human changes affect the robot
state: treating humans as part of the environment, having
the robot learn how humans react, or assuming humans have
agency and their own ”theory of mind.” Although the first
two ways provide easier black-box solutions, our approach
that falls into the third category allows for a more nuanced
understanding of human behavior and intentions. However,
training such models is challenging due to limited available
data compared to traditional machine learning. To address
this, we propose a human simulator that has shown promise
in dealing with small datasets.

III. PRELIMINARIES

Our previous studies [1], [2], [4] were developed based
on the ELDERLY-AT-HOME corpus [3], a publicly available
corpus of human-human multimodal interactions. The corpus
involves performing assisted ADLs, such as putting on
shoes and preparing dinner. We developed the framework
of our HBATN and later our RL framework on a subcorpus
consisting of the interactions related to the Find task. That
is, the elderly participant (ELD) would ask for an object, and
the helper (HEL) would try to find it by asking follow-up
questions.

In [1], the Find task is decomposed into a set of subtasks
to identify two main unknowns: the target object (O) and
its location (L). The four main subtasks are determining the
desired object type (Det(OT )), determining a potential loca-
tion to check (Det(L)), opening the location (Open(L)), and
determining the actual object (Det(O)). These are modeled
as Action-Transition Networks (ActNets).

The ActNet is a bipartite graph representing the states
of both participants and their possible multimodal actions,
which are defined as vectors consisting of linguistic features
(the dialogue act (DA) [3] of the utterance, i.e. the speaker’s
intent and object or location words) and physical features
(pointing gestures or haptic-ostensive (H-O) actions). The
HBATN encompass these ActNets allowing a robot to not
only infer the state of its partner but also to plan its next
action accordingly.

Subsequently, in [2], we generalized our model to enable
the robot to be either the ELD or HEL by decomposing
the subtasks into what we call primitive subtasks. In this



new formulation, Det(OT ) and Det(L) establish the object
type and its location (Estab), potentially followed up by
verification (Verify) or questions specifying for more infor-
mation (Spec), and Det(O) confirms the presence or absence
of the desired object (Finish) in the current location or
verify a physical object with the partner. We showed that our
HBATN, equipped with a trained classifier that determines
which subtask the participants are currently in, can model
and perform both HEL and ELD behavior.

Finally, in our most recent study [4], we proposed an
RL approach to extract the optimal policy in human-robot
interaction. This policy replaces the hand-crafted HBATN
policy for our HEL robot. As described in section I, a
major challenge throughout the RL training process is the
interactive environment in which the agent needs to be
placed. As a result, we developed a basic user simulator to
act as the ELD and interact with the RL agent during the
training.

The user simulator we developed in [4], which we call the
Basic User Simulator Model (BUS Model) was good enough
to provide the right intent to the HEL agent. However,
improving such a user simulator is still a challenging research
question. The rest of this paper is focused on our approach
to making the user simulator more accurate. We call our
improved model the Generic User Simulator Model (GUS
Model).

IV. USER SIMULATOR FRAMEWORK

A. Feature Extraction

In this work, we extend our previous works and introduce
an end-to-end model to predict the state of the world that
includes the ELD state as well as the ELD’s next move.

Our model is implicitly supposed to act as the ELD.
However, our analysis of the data revealed that HEL could
take consecutive moves. In order to address those cases
where the HEL is taking more than one move, the model
should determine whether or not the ELD will take an action
in the subsequent move. In summary, the model’s objective
is twofold: (1) To predict the ELD’s next action and whether
it will occur. The ELD’s move is determined by the ELD’s
DA and the ELD’s action. (2) To determine the state of the
world. The state of the world is determined by the ELD’s
belief of the HEL’s knowledge of object type, location, and
object.

In order to effectively train our end-to-end model, we
must first determine what information can aid the model
to decide the ELD’s state and its action. The following
items summarize the important points that should be taken
into account when selecting the features and how we have
featurized and annotated our collected human-human data.

• For determining whether the HEL is going to take
consecutive moves or not, we need to know the previous
actor (the current actor is the HEL). This information
can be represented as a vector of length two. If the trial
has not been started yet and the current actor, HEL, is
initiating the trial, both elements are 0. If the HEL is not

going to take consecutive moves, the previous actor is
ELD and the first element of the vector is 1. Otherwise,
the second element is 1.

• It is important to know whether or not an object type
or location has been uttered. These can be represented
by binary features.

• The model also needs to have information on the ELD’s
previous state. We propose the following representation
for it: (1) ELD’s belief of HEL’s knowledge of OT ,
which can be one of three values (ELD believes HEL
does not know the target OT → 0, ELD believes HEL
knows the target OT → 1, or ELD believes HEL is
thinking of a different OT → 2), (2) ELD’s belief
of HEL’s knowledge of L, and (3) ELD’s belief of
HEL’s knowledge of O. We extracted all the meaningful
possible combinations of these three parameters which
would give us 13 distinct combinations as follows: (1)
state (0, 0, 0), (2) state (0, 1, 0), (3) state (0, 2, 0), (4)
state (1, 0, 0), (5) state (1, 0, 1), (6) state (1, 0, 2), (7)
state (1, 1, 0), (8) state (1, 1, 1), (9) state (1, 1, 2), (10)
state (1, 2, 0), (11) state (2, 0, 0), (12) state (2, 1, 0),
(13) state (2, 2, 0). We use one-hot encoding, a one-hot
encoded vector of size thirteen, for representing these
states. The elaborated description for obtaining these
states is provided in section V-B.

• Another piece of information to consider is whether
a pointing gesture has been performed by the HEL.
If so, whether the target is an object or a location.
This is a categorical feature translated into a vector of
size five. The first two elements of the vector are 0
if a pointing gesture hasn’t been performed. The first
element is 1 if the HEl points to a location, otherwise,
if the HEL points to an object, the second element is 1.
The last three elements of the vector determine if the
location or the object HEL points to matches the ELD’s
location/object. If the third element of this vector is 1,
the HEL points to the same location/object as the ELD,
otherwise, if the fourth element is 1, the HEL points to
the wrong location/object. If the fifth element is 1, that
means the HEL points to the right object type but not
the correct specific object. For example, imagine that
the ELD asks for a small bowl and the HEL points to
a large bowl in response; the vector (0, 1, 0, 0, 1) is the
indication of the HEL’s pointing gesture.

• Likewise, in the case of H-O actions, we must ascertain
whether the action has taken place and whether it was
directed toward an object or a location. In addition,
we also require the type of H-O (opening or closing a
location, touching a location or an object, taking out an
object, holding an object). This is a categorical feature, a
vector of size ten. The first five elements are interpreted
exactly the same as the pointing gesture vector. The
second half of the H-O action vector determines which
of the five different H-O actions has been performed by
one-hot encoding those action types.

• We also add the current HEL’s action and the current
HEL’s utterance (DA tag), which are both categorical



features represented by vectors of size nine and fourteen
respectively. The HEL action classes are categorized as
follows: (1) No action, (2) Request OT , (3) Request
L, (4) Verify OT , (5) Verify L, (6) Verify O, (7)
Acknowledge, (8) Yes, (9) No. The DA classes are
categorized as follows: (1) No utterance, (2) Instruct, (3)
Acknowledge, (4) Query-w, (5) Query-yn, (6) Reply-w,
(7) Reply-y, (8) Reply-n, (9) Check, (10) Explain, (11)
Align, (12) State-y, (13) State-n, (14) State. These were
the DAs chosen to annotate the ”ELDERLY-AT-HOME”
corpus [3].

• In addition to the current HEL info, our model relies on
the information from the previous actions from the ELD.
Here we use the ELD’s action and ELD’s DA which
are both categorical features represented by vectors of
size seven and fourteen respectively. The ELD’s action
classes are categorized as follows: (1) No action, (2)
Give OT , (3) Give L, (4) Give OT , L, (5) Acknowledge,
(6) Yes, (7) No. The ELD’s DA classes are the same as
HEL’s.

B. Data Annotation

The Find task data in the ELDERLY-AT-HOME corpus [3]
was previously transcribed and annotated for DAs, pointing
gestures, and H-O actions. As explained in section IV-A,
we need to provide the network with additional features
for training our user simulator. We performed additional
annotations for ELD beliefs of HEL’s knowledge of OT ,
L, and O, and ELD and HEL actions based on the classes
introduced for each feature in the previous section.

ELD’s perceptions of HEL’s knowledge of OT , L, or O
were objectively determined based on the heuristic that ELD
updates its beliefs whenever HEL demonstrates knowledge
or lack thereof of these entities. For instance, ELD assumes
that HEL is unaware of the OT or L until HEL acknowledges
ELD’s description of it or takes action to confirm it. If
HEL selects the wrong OT or L when ELD has specified
a particular one, ELD assumes that HEL is thinking of a
different OT or L. For example, if ELD points to a small
bowl and says ”Get me that bowl,” but HEL asks ”That
bowl?” while pointing to a large bowl, ELD believes that
HEL is thinking of a different bowl.

Two annotators labeled the actions of ELD and HEL.
As the labeling of action did not follow a strict guideline
and was, therefore, more open to interpretation, the inter-
annotator agreement was measured for both types of actions
using Cohen’s kappa. To test the reliability of the annota-
tion, 40 random ELD actions and 40 random HEL actions
were chosen from the data set, and both annotators labeled
them independently before labeling the remaining actions.
The results showed a high level of agreement between the
annotators for both ELD actions (κ = 1.0) and HEL actions
(κ = 0.81), indicating that the action labels are reliable.

C. Data Augmentation

The data collected during the Find task was suitable
for building a strong basis to train the user simulator;

however, there were very no instances or few instances
in which ELD believed HEL had the wrong OT or L in
mind or did not know the OT . This lack of variation is
not surprising, as the interactions between the two humans
were relatively straightforward. However, since we propose
this user simulator as the main component of the interactive
environment for the RL training, and as we expect the HEL
agent, trained with reinforcement learning, to make mistakes,
we need to augment the data to include examples of missing
or infrequent states.

To increase the number of instances in which ELD believes
HEL does not know the OT , states (0,0,0) and (0,1,0), we
sample instances in which ELD believes HEL knows the
OT and replace HEL’s utterance and action with an example
of requesting the OT (see Fig. 2a). The ELD then gives
instructions on OT again.

To increase the number of instances in which ELD believes
HEL has the wrong OT in mind, states (2, 0, 0) and (2, 1,
0), we sample instances in which HEL mentions the target
OT in their utterance and replace it with an incorrect one
(see Fig. 2b). The ELD then gives instructions on OT again.

We also increase the number of instances in which ELD
believes HEL is not thinking of the same L or O, states
(1, 2, 0) and (1, 1, 2), by sampling instances in which
HEL’s utterance or action includes an object or location and
replacing it with an incorrect one. In each case, ELD would
then give the correct OT or L again (see Fig. 2c). These
synthetic examples will help the user simulator respond
appropriately to mistakes made by the HEL agent.

In our previous study [4], we executed the data augmen-
tation only for ELD’s output states. However, after carefully
examining the data, we observed that only the first nine
state combinations mentioned previously are included in the
input states whereas all thirteen combinations could be seen
in ELD’s output states even if they are rare. That being
said, state combinations 10 to 13 are meaningful and highly
likely to happen during an interaction between the user
simulator and the HEL robot agent. Not seeing all possible
meaningful inputs during the training, causes the model to
be too specific and not able to handle all possible situations
it may encounter. It also makes the final accuracy evaluations
not accurate because the model has been trained, validated,
and tested on inputs that do not offer enough variation. Thus,
we augment the data points in such a way that all thirteen
state combinations are covered in inputs so that we make our
model more accurate and flexible.

To synthesize the input state where in the previous move
ELD believed HEL had the wrong O in mind, state (1,1,2),
we randomly choose some instances where the input state
is (1,1,1), i.e. in the previous move ELD believed HEL had
the correct O in mind, and change the ELD’s previous move
accordingly. For that, ELD would inform the HEL about
the object again. So we replace the previous ELD’s DA and
action with “Instruct” and “Give Specific OT ” respectively.
We should point out that later on, we combined actions ”Give
Specific OT ” and ”Give OT ” into one single class as during
the interaction with the HEL, these two actions convey the



same message and only the difference in ELD’s state matters
when ELD announces either the object type or the specific
object during the interaction with HEL.

To synthesize the input states where in the previous move
ELD believed HEL had the information about OT and L
but had wrong OT and/or wrong L in mind, states (1,2,0),
(2,1,0), (2,2,0), we randomly sample our data points where in
the previous move ELD believed HEL had the right OT and
L in mind and change the ELD’s previous move accordingly.
For state (1,2,0), ELD would inform the HEL about the
location again, so we replace the previous ELD’s DA and
action with “Instruct” and “Give L” respectively. Similarly,
for the state (2,1,0), ELD would inform the HEL about the
object type again, so we replace the previous ELD’s DA and
action with “Instruct” and “Give OT ” respectively. Lastly,
for the state (2,2,0), ELD would inform the HEL about both
object type and location again, so we replace the previous
ELD’s DA and action with “Instruct” and “Give OT , L”
respectively.

To synthesize the input states where in the previous move
ELD believed HEL had the wrong OT in mind and didn’t
have any other information about L and O, state (2,0,0),
we take random samples where in the previous move ELD
believed HEL had the correct OT in mind and change the
previous ELD’s DA and action to “Instruct” and “Give OT ”
respectively.

With this data augmentation scheme, we increase our data
points from 693 to 1932.

(a) Generating “ELD believes HEL does not know OT ”

(b) Generating “ELD believes HEL has the wrong OT in mind”

(c) Generating “ELD believes HEL is not thinking of the same L or O”.

Fig. 2: Examples of augmenting the data with unseen or rare
states

D. Model Architecture and Training

Our model is a neural network consisting of three fully
connected (dense) layers, and a dropout layer (ratio=0.2) to
prevent overfitting and improve the ability of the model to
generalize better. We utilized the Cross-Entropy loss function
and Adam optimizer during training. The training process
lasted for a maximum of 100 epochs, but we also evaluated
the model’s performance on the validation set while training
to allow for early stopping. The inputs to the neural network
were the features described earlier, while the outputs were

the ELD’s next state, dialogue act, and action, which were
manually annotated in the data. We implemented the model
using the PyTorch library [19].

V. EVALUATION

A. Model Evaluation on Data

The model was trained on 80% of data (a total of 1548
data points). About 10% of the data (a total of 183 data
points) was used for validation purposes during the training
to early stop the training before over-fitting happens. The
rest of the data (a total number of 201 data points) was used
for evaluating the performance of the fully trained model.

In addition to overall accuracy, we evaluated the model on
the classification accuracy of each individual output of the
model; i.e. the classification accuracy for (1) the predicted
ELD’s action; (2) the predicted ELD’s DA; (3) the predicted
ELD’s state, the ELD’s belief of the HEL’s (OT , L,O).

We should point out that the scores we reported in [4]
were based on testing the BUS model on the original test
set, not the augmented test data. However, testing the BUS
model on the augmented data would give us similar results.

Here, we report the accuracy results of BUS and GUS
models tested on the original and augmented test data sets.
The results are summarized in table I.

Overall Acc. Action Acc. DA Acc. State Acc.

BUS Model,
Org. Test Data

46.27% 52.22% 53.73% 83.58%

BUS Model,
Aug. Test Data

45.83% 56.77% 51.04% 68.75%

GUS Model,
Org. Test Data

66.67% 81.82% 72.73 93.94%

GUS Model,
Aug. Test Data

70.85% 77.89% 75.38 89.44%

TABLE I: Classification Accuracy of BUS and GUS Models

The results in table I show a great improvement from the
BUS model to the GUS model. This significant improvement
results from the changes we made to our feature extraction,
data augmentation, and the model architecture itself that can
be summarized as (1) changing the ELD’s state represen-
tation as explained in detail in section IV-A, (2) Giving
information about ELD’s previous DA and action as input to
the model, (3) Augmenting ELD’s input states as explained
in detail in section IV-C, (4) Adding layers to the network
architecture and removing nonlinear ReLU activation func-
tion from the network, (5) Not executing sample re-weighting
since the class imbalance issue is already resolved by proper
data augmentation and we don’t want to overdo re-weighting
because of the limited amount of data we have. Considering
the small amount of data, re-weighting actually affects the
performance of our model adversely.

To further analyze the evaluation results reported in table I,
we investigate the corresponding confusion matrices. Before
moving forward with the confusion matrices, one should
remember that as explained in section IV-A, our trained
model is supposed to also decide whether or not the ELD
will take a move. If that’s the case when the HEL is taking



NoUtt Inst Ack Q-w Q-yn R-w R-y R-n Chk Exp Algn St-y St-n St
No Utt 67.79% 0% 0% 0% 0% 1.69% 16.95% 0% 0% 0% 0% 6.78% 0% 0%

Inst 12% 46% 0% 0% 0% 12% 0% 30% 0% 0% 0% 0% 9.09% 0%
Ack 0% 0% 66.67% 0% 0% 0% 0% 0% 0% 0% 0% 33.33% 0% 0%
Q-w − − − − − − − − − − − − − −
Q-yn − − − − − − − − − − − − − −
R-w 0% 2.32% 0% 0% 0% 93.03% 4.65% 0% 0% 0% 0% 0% 0% 0%
R-y 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
R-n 0% 20% 0% 0% 0% 0% 0% 80% 0% 0% 0% 0% 0% 0%
Chk − − − − − − − − − − − − − −
Exp − − − − − − − − − − − − − −
Algn − − − − − − − − − − − − − −
St-y 20% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 80% 0% 0%
St-n 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
St − − − − − − − − − − − − − −

TABLE II: DA Classification Confusion Matrix. Cells with − indicate that there were no such DA labels in the evaluation
data set and the model did not predict any of such DAs.

No Act Give OT Give L Give OT , L Ack Yes No
No Act 74.08% 0% 0% 0% 0% 25.92% 0%

Give OT 8.82% 69.12% 0% 0% 0% 22.06% 0%
Give L 10% 0% 83.33% 0% 0% 6.67% 0%

Give OT , L − − − − − − −
Ack 0% 0% 0% 0% 66.67% 33.33% 0%
Yes 0% 3.12% 0% 0% 0% 96.88% 0%
No 0% 11.11% 0% 0% 0% 0% 88.89%

TABLE III: Action Classification Confusion Matrix. Cells with − indicate that there were no such Action labels in the
evaluation data set and the model did not predict any of such Actions.

two consecutive moves, the model would output 0 and None
as the predicted ELD’s action and DA respectively.

The DA confusion matrix in table II shows that the main
confusion is due to wrongly classified “Instruct” DAs as
“Reply-n”. One justification for this confusion is the limited
number of data, and on top of that is the imbalanced classes.
However, going over the annotated data, we see that most of
the time when the ELD responds to a verification question
or OT /L query (“Query-yn/Cehck” and “Query-w” DAs
respectively), s/he carries on with giving further instructions.
That means in many cases where ELD’s utterances are
labeled as “Reply-n”, they could also be interpreted as
“Instruct” and eventually convey the same intent to the HEL.
For instance, the HEL verifies the OT by asking the ELD
“Did you say a pot?”, and the ELD replies with “No, get me
a bowl.”. The ELD’s DA could be labeled as either “Reply-n”
or ”Instruct”, but what matters here is that the HEL receives
the same intent from ELD.

Going through the confusion matrix in table II, we observe
that the rest of the DA classes are either classified very well
or confused with classes that don’t influence the overall out-
come of the network. For instance, the DA “Acknowledge”
is correctly classified in 66.67% of the cases and has been
classified as “State-y” in 33.33% of the cases. However,
this misclassification doesn’t affect the message that HEL
receives.

Analysis of the action confusion (the results presented
in table III) shows that 22.06% of the ”Give OT ” samples
are wrongly classified as “Yes”. This is again due to the
limited number of data points available as well as imbalanced

classes. However, analogous to our explanation above, this
misclassification could be because of those cases where the
ELD responds to a verification question and continues by
giving instructions. For example, the HEL verifies the L by
asking the ELD “Did you say that cabinet?”, and the ELD
replies with “Yes, get me the silverware.”. The ELD’s action
could be labeled as either ”Yes” or ”Give OT ”. In either
case, the HEL would receive the same message.

We also observe that 33.33% of the “Acknowledge”
classes are misclassified as “Yes” actions. Again, because
these two actions are inherently very similar, this misclassi-
fication doesn’t affect the message that HEL receives.

In summary, many wrong DA and action classifications
are due to the fact that distinguishing DA classes like
“Instruct”, “Reply-y”, “Reply-n”, “State-y”, “State-n”, and
action classes such as “Give OT ”, “Give L”, “Acknowledge”,
“Yes”, and “No” would be very difficult. This happens
because in our available data, most of the cases where the
ELD responds to a “Query-yn” question, start with saying
yes, no, acknowledging, and then guiding the HEL towards
a location and/or giving information about the object.

B. Model Evaluation on HBATN

To further investigate how realistic our model performance
is, we compare its performance to our previously developed
HBATN model. It is important whether or not the GUS model
acts similarly to HBATNs because our HBATN is carefully
hand-crafted by human annotators who based their insights
in the data. For the purpose of this comparison, we would
need to have the response of our trained model to variant



Input HBATN Output GUS Output
Establish(OT ) (0, 0, Inst)/(0, 0, Qw) (1, ∗, Inst)/(1, ∗, Rw) (1, 0, Rw)

Verify(OT ) (1, 0, Chk)/(1, 0, Qyn) (∗, 0, Ry)/(∗, 0, Rn)/(1, 0, Inst)/(1, 0, Rw) (1, 0, Ry)/(1, 1, Rn)/(1, 0, Inst)/(1, ∗, Rw)
Specify(OT ) (∗, 0, Qw) (∗, 0, Inst)/(∗, 0, Rw) (∗, 0, Rw)

TABLE IV: GUS performance evaluations for Det(OT ) subtask. (∗) represents 0 or 1.

Input HBATN Output GUS Output
Establish(L) (∗, 0, Inst)/(∗, 0, Qw) (∗, ∗, Inst)/(∗, ∗, Rw) (∗, ∗, Inst)/(∗, ∗, Rw)/(∗, ∗, Ry)/(∗, ∗, Rn)

Verify(L) (0, 0,−)/(0, ∗, Chk)/
(0, ∗, Qyn)

(0, ∗, Ry)/(0, ∗, Rn)/(∗, ∗,−)/
(∗, ∗, Rw)/(∗, ∗, Inst)

(0, ∗, Sty)/(0, ∗, Ry)/(0, ∗, Rn)

Specify(L) (∗, 1, Qw) (∗, ∗, Inst)/(∗, ∗, Rw) (0, ∗, Inst)/(0, ∗, Rn)/(∗, ∗,−)

TABLE V: GUS performance evaluations for Det(L) subtask. (∗) represents 0 or 1.

Input HBATN Output GUS Output
Specify(OT ) (∗, 0, Qw) (∗, 0, Inst)/(∗, 0, Rw) (∗, ∗, Inst)/(∗, ∗, Rw)/(∗, 0, Ry)/(∗, ∗, Rn)

Verify(O) (∗, 0,−)/(∗, 0, Chk)/
(∗, 0, Qyn)/(∗, ∗, St)

(∗, 0, Ry)/(∗, 0, Rn)/(∗, 0, Rw)/(∗, 0, Inst) (∗, 0, Ry)/(∗, 0, Rn)/(∗, ∗, Inst)

Finish(L) (∗, ∗, Sty)(∗, ∗, St)/
(∗, ∗, Stn)

(0, 0, Ack) (0, 0, Ry)/(0, 0, Sty)

TABLE VI: GUS performance evaluations for Det(O) subtask. (∗) represents 0 or 1.

inputs.
To generate different meaningful inputs for our GUS

model, we employ an automatic approach. Before moving
to explain the approach itself, we need to lay some ground
rules as follows:

• For the ELD’s state representation, ELD’s belief of
HEL’s knowledge of OT cannot change from 0 to 1
or 2 before ELD utters the OT .

• ELD’s belief of HEL’s knowledge of L cannot change
from 0 to 1 or 2 before ELD utters the L.

• ELD’s belief of HEL’s knowledge of O cannot change
from 0 to 1 or 2 before ELD’s belief of HEL’s knowl-
edge of OT turns to 1.

• ELD’s belief of HEL’s knowledge of O can change from
0 to 1 or 2 before ELD’s belief of HEL’s knowledge of
L turns to 1.

• HEL cannot verify OT and L before ELD announces
them.

• HEL only performs pointing and H-O actions for
OT /L/O verifications.

The ground rules associated with the ELD’s state repre-
sentation would give us thirteen distinct meaningful combi-
nations which we explained in detail in section IV-A. After
combining those states with other inputs, by applying the
rest of the ground rules to all combinations, we generate all
meaningful inputs automatically.

Subsequently, we put our GUS model in different states we
previously had extracted from our HBATN [2] by applying
different inputs to the model and finally we compare the
GUS model outputs to those of HBATN.

The results of comparing our GUS model to the HBATN
are summarized in tables IV, V, VI. In the (a, b, c) tuple
which represents the input or the output, c stands for the
HEL DA (input) or ELD DA (output), a and b also determine
whether or not the OT and L have been uttered respec-

tively. Each input/output also includes ELD’s previous state,
“pointing/H-O” actions, ELD’s previous DA and action, and
HEL’s DA and action features. We omitted these parameters
in our table representations for simplicity. However, we care-
fully mapped our automatically generated inputs to different
HBATN states for these comparisons.

Our comparisons illustrate that the GUS outputs greatly
match the HBATNs. There are only a few minor differences
that don’t affect the interaction between the ELD and the
HEL and their intents. For example, our GUS model confuses
“Instruct” and “Reply-w” DAs in some cases such as in
table IV, the primitive subtask “Establish(OT )” where it
only outputs “Reply-w” for all “Instruct/Reply-w”-labeled
outputs. For the HEL it doesn’t matter if the utterance is
labeled as either one because both DAs transfer the same
message.

In some other instances, such as in table V, the
primitive subtask “Specify(OT )”, our GUS model outputs
“Instruct/Reply-y/Reply-n” DAs for “Instruct”-labeled out-
puts. This again is not a fatal error because the action the
GUS model outputs as the ELD’s action would provide
instructions about the OT or L. In table VI, for the primitive
subtask “Finish(L)”, the GUS model confuses “Acknowl-
edge” DA with “Reply-y/State-y”. This is also negligible due
to the similar inherent that these DAs carry. Nevertheless, this
is the final action in the interaction and wouldn’t affect the
interaction at all.

We should also point out that our GUS model differs from
the HBATNs in some cases where the ELD in HBATNs utters
or doesn’t utter the OT or L. In a few cases, the GUS model
utters OT or L when the ELD in HBATNs doesn’t or vice
versa. This minor error is due to applying machine learning
approaches to build an artificial intelligence agent as our
user simulator. Although these minor errors could make the
interaction longer or unsuccessful in very few cases, our GUS



model would still be superior to the hand-crafted framework.
The reader may refer to our previous study for an elaborated
explanation of the interaction between our user simulator and
Reinforcement Learning HEL agent [4] which demonstrates
that our user simulator can be successfully used in practice
for the RL training of assistive robots.

VI. CONCLUSION

This paper introduces a new user simulator that uses a
neural network to provide a diverse interactive environment
for training RL agents in collaborative tasks with multi-
ple modes of communication. The user simulator is based
on the “Find” task demonstrations from the ELDERLY-
AT-HOME interaction corpus. It is capable of interpreting
and responding to multiple modalities, such as language,
pointing gestures, and haptic-ostensive actions. The primary
contribution of the study is the creation of a user simulator
that can provide a multimodal interactive environment for RL
training, which has not been done before. The secondary con-
tribution is a novel multimodal data augmentation approach
that effectively overcomes the challenges of using limited
and sparse human demonstrations to develop intelligent data-
driven agents. The developed simulator has been evaluated
both to test its ability to represent the training data and to
compare its performance with the manually crafted HBATN
models. The results show a very good performance of the
simulator and suggest that it can be successfully used in the
RL training of domestic assistive robots.

REFERENCES

[1] B. Abbasi, N. Monaikul, Z. Rysbek, B. Di Eugenio, and M. Žefran,
“A multimodal human-robot interaction manager for assistive robots,”
in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2019, pp. 6756–6762.

[2] N. Monaikul, B. Abbasi, Z. Rysbek, B. Di Eugenio, and M. Žefran,
“Role switching in task-oriented multimodal human-robot collabo-
ration,” in 2020 29th IEEE International Conference on Robot and
Human Interactive Communication (RO-MAN). IEEE, 2020, pp.
1150–1156.

[3] L. Chen, M. Javaid, B. Di Eugenio, and M. Žefran, “The roles and
recognition of haptic-ostensive actions in collaborative multimodal
human–human dialogues,” Computer Speech & Language, vol. 34,
no. 1, pp. 201–231, 2015.

[4] A. M. Shervedani, S. Li, N. Monaikul, B. Abbasi, B. Di Eugenio, and
M. Zefran, “Multimodal reinforcement learning for robots collaborat-
ing with humans,” arXiv preprint arXiv:2303.07265, 2023.

[5] I. Bratko, T. Urbančič, and C. Sammut, “Behavioural cloning: phe-
nomena, results and problems,” IFAC Proceedings Volumes, vol. 28,
no. 21, pp. 143–149, 1995.

[6] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from obser-
vation,” in Proceedings of the 27th International Joint Conference on
Artificial Intelligence, 2018, pp. 4950–4957.

[7] M. A. Goodrich, A. C. Schultz et al., “Human–robot interaction: a
survey,” Foundations and Trends® in Human–Computer Interaction,
vol. 1, no. 3, pp. 203–275, 2008.

[8] L. Peternel, W. Kim, J. Babic, and A. Ajoudani, “Towards er-
gonomic control of human-robot co-manipulation and handover,” in
2017 IEEE-RAS 17th International Conference on Humanoid Robotics
(Humanoids). Birmingham: IEEE, Nov. 2017, pp. 55–60.

[9] Z. Erickson, V. Gangaram, A. Kapusta, C. K. Liu, and C. C.
Kemp, “Assistive gym: A physics simulation framework for assistive
robotics,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 10 169–10 176.

[10] S. Nikolaidis, J. Forlizzi, D. Hsu, J. Shah, and S. Srinivasa, “Math-
ematical models of adaptation in human-robot collaboration,” arXiv
preprint arXiv:1707.02586, 2017.

[11] X. Wu, L. Xiao, Y. Sun, J. Zhang, T. Ma, and L. He, “A survey
of human-in-the-loop for machine learning,” Future Generation Com-
puter Systems, 2022.

[12] A.-N. Sharkawy, “Human-robot interaction: Applications,” in 1st IFSA
Winter Conference on Automation, Robotics & Communications for
Industry 4.0 (ARCI’2021), 2021, pp. 98–103.

[13] C. M. Ranieri, G. V. Nardari, A. H. M. Pinto, D. C. Tozadore,
and R. A. F. Romero, “Lara: A robotic framework for human-robot
interaction on indoor environments,” in 2018 Latin American Robotic
Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018
Workshop on Robotics in Education (WRE). IEEE, 2018, pp. 376–
382.

[14] C. Chao and A. L. Thomaz, “Timing in multimodal turn-taking
interactions: Control and analysis using timed petri nets,” Journal of
Human-Robot Interaction, vol. 1, no. 1, pp. 4–25, 2012.

[15] L. El Asri, J. He, and K. Suleman, “A sequence-to-sequence model
for user simulation in spoken dialogue systems,” Interspeech 2016, pp.
1151–1155, 2016.

[16] F. Kreyssig, I. Casanueva, P. Budzianowski, and M. Gasic, “Neural
user simulation for corpus-based policy optimisation of spoken dia-
logue systems,” in Proceedings of the 19th Annual SIGdial Meeting
on Discourse and Dialogue, 2018, pp. 60–69.

[17] X. Li, Y.-N. Chen, L. Li, J. Gao, and A. Celikyilmaz, “End-to-end
task-completion neural dialogue systems,” in Proceedings of the Eighth
International Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), 2017, pp. 733–743.

[18] R. Choudhury, G. Swamy, D. Hadfield-Menell, and A. D. Dragan,
“On the utility of model learning in hri,” in 2019 14th ACM/IEEE
International Conference on Human-Robot Interaction (HRI). IEEE,
2019, pp. 317–325.

[19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative
style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	I Introduction
	II Related Work
	III Preliminaries
	IV User Simulator Framework
	IV-A Feature Extraction
	IV-B Data Annotation
	IV-C Data Augmentation
	IV-D Model Architecture and Training

	V Evaluation
	V-A Model Evaluation on Data
	V-B Model Evaluation on HBATN

	VI Conclusion
	References

