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ABSTRACT

Social Robotics and Human-Robot Interaction (HRI) research relies on different Affective Com-
puting (AC) solutions for sensing, perceiving and understanding human affective behaviour during
interactions. This may include utilising off-the-shelf affect perception models that are pre-trained
on popular affect recognition benchmarks and directly applied to situated interactions. However,
the conditions in situated human-robot interactions differ significantly from the training data and
settings of these models. Thus, there is a need to deepen our understanding of how AC solutions
can be best leveraged, customised and applied for situated HRI. This paper, while critiquing the
existing practices, presents four critical lessons to be noted by the hitchhiker when applying AC for
HRI research. These lessons conclude that: (i) The six basic emotions categories are irrelevant in
situated interactions, (ii) Affect recognition accuracy (%) improvements are unimportant, (iii) Af-
fect recognition does not generalise across contexts, and (iv) Affect recognition alone is insufficient
for adaptation and personalisation. By describing the background and the context for each lesson,
and demonstrating how these lessons have been learnt, this paper aims to enable the hitchhiker to
successfully and insightfully leverage AC solutions for advancing HRI research.

1 Introduction & Background

Social Robotics has emerged as an inherently multi-disciplinary field bringing together research efforts from Affective
Computing (AC), Social Signal Processing (SSP), Computer Vision (CV), Machine Learning (ML) and Human-Robot
Interaction (HRI). Yet, there is a need to develop affect sensing, perception and understanding methodologies targeted
specifically to facilitate social robotics applications. To avoid re-inventing the wheel, researchers within the Human-
Computer Interaction (HCI), HRI and Social Robotics fields often, and rightly so, utilise available off-the-shelf sensing
or perception tools from other domains (such as face and gesture recognition) directly for their in-house studies,
datasets and evaluations. However, these practices hinder progress leading to a lack of novel and domain-specific
(affect) sensing, learning and adaptation algorithms. Furthermore, it impedes measures for reproducibility [[1] due
to a lack of purposeful, naturalistic and publicly available (affect) models, datasets and metrics, which are vital for
comparative evaluation and gathering insights to push the field forward towards real-world adoption.

Recent research discussion around situated affective computing, have emphasised understanding the role of AC re-
search, especially in situated interactions, and in realising social and affective interactions with robots. It is essential
to appreciate what does not work when undertaking situated AC research and what lessons we can learn from these
failures. Furthermore, linking these lessons to HRI researclﬂ it is critical to understand how advances in (affect) sens-
ing, perception and understanding mechanisms influence how individuals interact with social robots. The aim of this
paper, thus, is to provide the hitchhiker with a guide for leveraging AC for HRI research based on the critical lessons
learnt, both from successes and failures, grounded in and distilled from a broader set of AC research studies conducted
under situated interaction settings. Such a guide aims to inform the HRI community, especially the hitchhikers starting

'Discussions following a keynote address at the 3rd Workshop on Applied Multimodal Affect Recognition (AMAR), Interna-
tional Conference on Pattern Recognition (ICPR) 2022.

“Discussions following workshop keynote addresses at IEEE Int’l Conference on Robot & Human Interactive Communication
(RO-MAN’22), and the AAAI Fall Symposium on Artificial Intelligence for Human-Robot Interaction 2022.



Affective Computing for Human-Robot Interaction Research: Four Critical Lessons for the Hitchhiker

PERCEPTION LEARNING ADAPTATION & ACTION

DATA & LABELS

Who is the user?
What is their task?
Where are they?
With whom are
they?

Bl e BEE Feature Performance
research annotation — » Learning  mmmp

extraction evaluation
\ Data , \
acquisition

Visual / depth
processing

‘ Audio
processing

Context- Context-
sensitive - sensitive
interpretation responding

‘extrovert’

arousal’

HOW DID Y«

' : . ’ ’ IN THE LAST SECTION?
Bio-signal
I' | ; rrustoares] | exerren
h processing
‘:1> coreo \ I/ ccc”
1

Figure 1: The pipeline for Affective Computing for Human-Robot Interaction implementations with marked stages of
Perception, Learning, and Adaptation & Action.

their HRI research journey, what to be aware of when applying AC tools for HRI research. Similar recommendations
have been compiled and shared as advice to aspiring experimenters on child-robot interaction in the wild [2].

This paper discusses four critical lessons learnt applying AC tools for HRI research, especially for situated interactions.
For each lesson, along with the background understanding, a detailed account is provided of the context under which
the lesson is learnt, with explanations and insights gathered, linking it to an HRI context. These lessons are:

Lesson 1: The six basic emotion [3|] categories (happiness, sadness, surprise, fear, anger and disgust) are (mostly)
irrelevant in situated interactions;

Lesson 2: Affect recognition accuracy (%) improvements are unimportant;

Lesson 3: Affect recognition does not generalise (well) across contexts (e.g., user, task, etc. - using the definition of
context in [4]);

Lesson 4: Affect recognition alone is insufficient for adaptation and personalisation.

The overall pipeline (with the different stages) of AC for HRI implementations is illustrated in Fig.[I] Lesson 1 (Sec-
tion[2) relates to how the user data acquired during the interactions are annotated or labelled, while Lesson 2 (Section[3)
relates to the robot’s perception of the user. Lesson 3 (Section |4)) corresponds to robot learning and Lesson 4 (Sec-
tion[5) corresponds the robot’s adaptation and actions. Section ﬁlmmaﬂses the contributions of this paper as well as
reflects upon the need for a critical review of existing AC solutions of affective HRI studies.

2 Lesson 1: Six Basic Emotion Categories are Mostly Irrelevant

2.1 Background

Within the pipeline of creating an automatic affect recogniser, this lesson relates to the aspect of affect annotations
and labels (see Data & Labels under Fig.[I} Perception). When researchers purchase or acquire commercial social
robots, these robots come with black-box perception capabilities, one of which is usually proudly claimed to enable
‘automatic emotion recognition’ for the robot. For instance, one of the features listed for Pepper Robot is ‘recognising
emotions on your facel’] In such robotic platforms, this means the recognition of the six basic emotion categories,
namely, (neutral+) happiness, sadness, surprise, fear, anger and disgust [3]. However, this works only partially and
under posed expression settings. Real-world interactions are much more complex resulting in the robot struggling to
accurately capture individual expressions, as demonstrated via interactive public demonstrations [5]. But even then,
it is important to evaluate and understand what such categorization of user affective behaviour means for situated
human-robot interactions.

*https://www.gwsrobotics.com/why-pepper-robot
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2.2 Context

Much of AC research employs ML-based automatic affect recognition models trained and benchmarked on publicly
available datasets, acquired outside of situated interaction settings. For example, most CV models undertaking the
task of Facial Expression Recognition (FER) are trained on static images crawled from the internet, with cropped
facial regions where the situational context information has been removed, with crowdsourced labels corresponding
to the aforementioned six basic emotion categories Thus, as soon as these models are embedded in robotic systems
for realistic applications including tutoring and learning, assistance with rehabilitation or physical and mental health,
these models cannot cope with the variation and noise in the input data that they have not encountered in their training.
This results in FER often failing in situated human-robot interactions.

Beyond automatic recognition, the six basic emotion categories are widely used in various HRI studies, even when
these labels do not seem relevant for real-world contexts. One recent example investigating emotion perception using
the basic emotion categories is an HRI-based rehabilitation scenario, as this is expected to improve the experience of
the patients [6]]. In this study, a robotic arm is used to investigate whether and how it can communicate an emotional
state through movements and whether people can attribute these movements to the intended emotional state. It found
that happiness was identified well, but not sadness and anger. However, going beyond these findings, it is important
to understand ‘What does it mean for a robotic arm to display anger?’. Furthermore, it is also important to understand
‘How useful are basic emotion categories for rehabilitation robotics?’ and ‘What implications does this have for HRI,
in general?’.

2.3 Lesson & Insights

A critical evaluation of the questions posed above requires a deeper and fundamental understanding of the situational
and contextual attributes that determine human behaviour during interactions. One needs to go beyond the six basic
emotion categories and start exploring other affect and emotion models and instruments, while also considering how
to use these contemporary models throughout the entire pipeline of study design, data acquisition, data annotation, and
training and evaluation of ML models. In doing so, it is essential to start with fundamental questions, such as ‘Which
emotion or affect model is best suited to represent human behaviour and how do we decide this?’ Additionally, it is
also important to consider ‘Whether we are taking into account situational or contextual aspects?’.

Two contemporary instruments that can be used, instead of the six basic categories of emotions, are the Self-
Assessment Manikin (SAM) [[7, 8] and the Geneva Emotion Wheel (GEW) [9]. SAM is a picture-based questionnaire
to independently evaluate the affect dimensions of arousal (activation), valence (pleasure) and dominance (sense of
control), and it can be used for subjective assessment of participant/user affective responses [8]. The GEW, on the other
hand, has been proposed as ‘a theoretically derived and empirically tested instrument to measure emotional reactions
to objects, events, and situations’ [9]. The participant/user can indicate the emotion they experienced by choosing a
single emotion with the corresponding intensity or a blend of multiple emotions (out of 20 emotion families). Robotics
and HRI researchers have started to successfully use SAM and GEW in their works, for example, to evaluate patients’
emotions induced by a robotic hand rehabilitation platform [10], to classify the expression of emotion on robots [[11]]
and to measure perceived affect in HRI [12]].

In the context of dyadic human-human interactions vs. human-agent interactions, Song et al. [13]] report that facial
reaction prediction and personality recognition performance for ML models are better for human-human interaction
data. This finding indeed has implications for HRI research and brings forth further questions that, as a community,
we would need to investigate. These include, but are not limited to, ‘Do we display affect differently in HRI?’, and Do
we need different affect or emotion models for HRI that capture both qualitative and quantitative aspects of human
as well as robot behaviours?’. In order to answer these questions, a promising direction is to take a data-driven
approach, similar to the pioneering study by Jam et al. [14] that aims at developing a data-driven categorical taxonomy
of emotional expressions in real-world HRI.

3 Lesson 2: Affect Recognition Accuracy (%) improvements are unimportant

3.1 Background

Within the pipeline of creating an automatic affect recogniser, this lesson relates to the aspect of affect sensing (see
Performance Evaluation under Fig. [I). The majority of the work towards automatic affect recognition focuses on
achieving results that are considered ‘excellent’ or ‘very good’ in terms of the evaluation metric used. For many
researchers ‘success’ is then equivalent to either obtaining a recognition accuracy of >= 75% on a dataset that perhaps
other researchers have not yet worked or published on, or improving the state-of-the-art (SOTA) recognition accuracy



Affective Computing for Human-Robot Interaction Research: Four Critical Lessons for the Hitchhiker

Figure 2: TIllustrating the differences in participants’ left hand when playing the ‘Memory Break’ game in Virtual
Reality (VR) at Level I - Easy (left) vs. Level 3 - Hard (right).

by >= 2 — 3% on a benchmark that others have widely reported on to be able to claim that their method is ‘better’
than the current SOTA results. However, benchmark datasets, even the ones that claim to be obtained in-the-wild,
are usually stripped of context. Such datasets, for instance, contain static facial images or even videos of people
without much interaction taking place. When we move away from recognising affect on such in-the-wild but idealised
benchmark datasets to actual interaction studies with humans, we are faced with a much higher level of complexity.

3.2 Context

To exemplify how relying on affect recognition accuracy (%) improvements may be unimportant and insufficient in
HRI context, we look at ‘Gamified Cognitive Training’, as an example, as it relates to one of our study [13]] undertaken
in 2016 — 2017. This study investigated how the affect dimensions of arousal and valence were linked to Working
Memory (WM) performance of 30 participants when playing a custom video game, ‘Memory Break’, on Desktop vs.
in Virtual Reality (VR), in two separate sessions, one for each interaction mode. Both game modes were designed
to have three difficulty levels to evoke different levels of arousal while maintaining the same memory load. The
WM capacity baseline of participants were measured using relevant measures while the participants self-reported their
affective states and completed the Game Experience Questionnaire (GEQ) [16]]. Our analyses showed an improvement
in participants’ WM performance when playing in VR mode, with a significant effect in those with a low WM capacity.
Significantly higher levels of valence and arousal were self-reported when playing the VR version of the game.

To sense the participants’ affective states, a heart-rate sensor was attached to their chest recording their heart activity
and an Electromyography (EMG) armband was placed on the forearm that was used for interacting with the game
environment. However, we had missed one important factor. As seen in Fig. 2] when the difficulty level of the game
increased to ‘hard’ (Level 3), the tension was clearly observable on their hand that was resting on their lap. Post-
study, we observed this to be the trend for all participants. Unfortunately, that hand did not have any sensor placed
on it to measure the tension manifested, which meant we missed crucial information that could aid the recognition of
participants’ arousal and valence. Despite extracting features from other sensors and experimenting with various ML
techniques for classifying arousal and valence, the recognition results did not look promising. Ultimately, accuracy
(%) improvement in this context was unimportant because we were not measuring and analysing the most relevant
signals.

3.3 Lesson & Insights

The lesson that can be learnt from the ‘Gamified Cognitive Training’ study (and other relevant ones) is that accuracy
or accuracy improvements (%) are unimportant, especially when we are not capturing and analysing the most relevant
signals and cues. Expressly, undertaking human studies in situated interactions, where we aim to sense affect, requires
several pilot study iterations, until we are sure about where to place the different sensors, measuring the right signals
and cues related to the affect displayed. In other words, we should study the expressions and display of affect before
we sense them. This is mainly due to two reasons. Firstly, in the human-machine interaction context, humans shape
machine behaviour and vice-versa [[17]. This often results in the emergence of new human behaviour, unforeseen in
the original study or interface design. Secondly, when analysing affect and emotions, there is, at times, non-verbal
and emotional leakage. At times, inner feelings of a person might be revealed or expressed more intensely in a certain
modality or channel [18] (usually the less dominant one), which might be different from the one observers focus
on, for example, controlling what is being said while expressing differently through nonverbal behaviour. In light of
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Figure 3: Predictions of (deep) ML models trained on publicly available facial expression, facial affect and facial
Action Unit (AU) datasets when used on data acquired under work-like settings and tasks.

these, in situated interactions where we aim to measure and analyse socio-emotional behaviours, we need to reflect on
critical questions such as ‘Are we placing the sensors in the right places?’, and 'Are we measuring the most relevant
signals?’.

With these aspects in mind, a possible direction for HRI research can be to adopt rich multi-modal sensing, not nec-
essarily to improve accuracy, but also to ensure that different aspects of user affect and behaviour manifestations are
captured and investigated. This is particularly important for emerging research areas that cannot simply rely on previ-
ous research findings. For instance, mental wellbeing evaluation in children via child-robot interactions requires
an investigation of different aspects of child multi-modal behaviour (questionnaire responses, free-from speech con-
tent, nonverbal head, face or audio behaviours and physiological reactions), going beyond what children report or say.
However, it is important to note that not many social robots are equipped with high-resolution sensing or have the
capabilities to enable such rich multi-modal perception. A possible solution may be to create ‘hacks’, for example,
by 3D printing and additional sensor placement (see on how a 3D printed headset is used with high-resolution
cameras).

4 Lesson 3: Affect Recognition Does Not Generalise Well Across Contexts

4.1 Background

Openly available facial affect datasets used for training FER models generally contain displays of young and middle-
aged adults. Facial affect data from sensitive user groups such as children, adolescents, and older adults are relatively
less accessible due to various challenges including ethical and privacy concerns. This imbalance in data causes these
models to not generalise well on other user groups such as the elderly or children and, in turn, results in biased
algorithms for facial affect analysis and prediction. In addition to encoding demographic bias, currently available facial
expression datasets are also biased towards certain affect labels such as “neutral”, “anger” and “happiness”, compared
to other affective states such as “annoyance” [24]. Thus, models trained on most common benchmark datasets for
facial affect recognition are: (i) more accurate for young and middle-aged adults; and (ii) mostly predicting affect in
terms of basic emotion categories; despite the fact that this might not fit well the application context [24]].

4.2 Context

To appreciate the challenges relating to applying generalised affect recognition models, it is important to consider
how these models may perform with under-represented (in traditional affect perception benchmarks) populations. In
this context, the EU Horizon 2020 WorkingAgeﬂ project is aimed at studying and promoting healthy habits in working
environments, focusing on people aged over 45. By gathering a better understanding of wellbeing at work and of fac-
tors that may inhibit or deteriorate prolonged employment, it created an integrated digital solution, the WorkingAge
of Wellbeing (WAOW) Tool, to support workers’ wellbeing in three types of working environments: office, tele-
working, and manufacturing. Within the WAOW Tool pipeline of creating an automatic system that analyses worker
psycho-social conditions, worker physical conditions and the working environment, and personalises via appropriate
recommendations, customisable by the user [23]], this lesson relates to the aspect of affect sensing and recognition (see
Fig. [T} Perception).

*https://www.workingage.eu/
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As a part of the WorkingAge project, we first introduced a multi-site data collection protocol for acquiring human
behavioural data under simulated working conditions with three work-like tasks: the N-back task, the video confer-
ence task and the operation game. With this, we acquired the first human working facial behaviour dataset called
WorkingAge DB [26] which was collected in four different sites across three countries in Europe (Germany, Italy, and
the UK). Implementing (deep) ML models (for example, ResNet-50), trained on publicly available facial expression
(e.g., RAF-DB [27]), facial affect (e.g., AffectNet [28]]) and facial AU (e.g., BP4D [29]) datasets, and applying these
models on facial data acquired under work-like settings and tasks, results in evaluations similar to those illustrated in
Fig.[3] It can be clearly seen that such models have no knowledge about context, and provide labels such as ‘surprise’
and ‘negative valence’ when the person is focused on the task.

Having seen these results, we decided to train ML models specifically with the data acquired in work-like settings.
Thus, in [26], we implemented and compared a set of (deep) ML methods using the facial data from WorkingAge
DB for automatic prediction of worker periodical facial affect while also investigating how task type, recording site,
gender, and feature representations affected model performance. Our results showed that worker affect can be inferred
from their facial behaviours using data acquired in work-like settings, and models pre-trained on naturalistic datasets
are useful for prediction but are insufficient on their own. Context, specifically the task type and task setting, influenced
the affect recognition performance [26].

4.3 Lesson & Insights

HCI and HRI studies are prone to adopting off-the-shelf affect recognition toolkits, that are pre-trained on publicly
available benchmark datasets, as means to an end, for the quick modelling of user affective behaviour. For instance,
in the HRI context, Mathur et al. [30] investigated how to model user empathy elicited by a robot storyteller. For this,
they employed an open-source off-the-shelf toolkit (OpenFace 2.2.0 [31]]) that is widely used by various researchers
within the AC, HRI and HCI communities. OpenFace enables the extraction of eye gaze directions, the presence (and
intensity) of 17 facial AUs, facial landmarks and head pose coordinates, amongst other features. However, as we
learnt from the WorkingAge study [26]], for facial affect recognition in specific contexts such as work-like settings, we
cannot simply rely on generic off-the-shelf toolkits. Such models are ignorant of context and will not generalise well
to real-world settings where many factors (such as ethnic or cultural background, gender, age, and the task, amongst
others) influence human expressivity and nonverbal behaviour.

Thus, when analysing human affective behaviour using off-the-shelf toolkits and models, several critical questions
need to be considered. These include, but are not limited to: ‘How well are we taking into account the contextual
aspects of the interaction?’, and ‘Are we considering person-specific aspects impacting the interacitons?’. To address
these questions, we need to focus on personalisation rather than generalisation, considering person-specific aspects
when modelling user affective behaviour. For example, [32] presents a personalised learning companion that uses
children’s verbal and nonverbal affective cues to modulate their engagement levels. Facial features extracted using
the off-the-shelf Affdex toolkit [33]] are used for arousal prediction which, in turn, defines state space features for an
Reinforcement Learning (RL)-based personalisation algorithm. More recently, in [34] we introduced and adapted the
Continual Learning (CL) paradigm for Affective Robotics where a robot acquires and integrates knowledge incremen-
tally about changing data conditions, and showed how it can be utilised in practice for adaptive HRI [35]]. Furthermore,
the series of LEAP-HR]E] workshops, that we have been organizing since 2021, also emphasised the need to move away
from generalisation and focus more on lifelong learning and personalisation, particularly when it comes to long-term
HRI where novelty effect is no longer present [36].

Additionally, we also need to consider other relevant questions such as ‘Are we investigating for whom the trained
models work well, and why?’, ‘How do these models work for specific user groups like children and elderly?’, and
‘What are we doing to ensure that predictions from these models are not biased?’. To date, there are many publicly
available benchmark datasets for expression and affect recognition, however, none of these datasets have been acquired
considering a fair distribution across the human population. Recent studies on a number of publicly available bench-
mark datasets such as RAF-DB [27]] and CelebA [37]] have shown that ML models for FER trained on such datasets are
biased [38]]. Despite several bias mitigation strategies [23| 38} 139] for addressing biased model predictions in the AC
context (see [24] for a review), how bias in affect prediction models impacts HRI and user experience, engagement
and trust, and how to achieve fairer affective robotics remain open research problems that need multi-disciplinary
community efforts at the level of datasets, annotations, benchmarking and reproducibility.

>https://leap-hri.github.io/
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5 Lesson 4: Affect recognition alone is insufficient for adaptation and personalisation

5.1 Background

Within the pipeline for creating an automatic affect recogniser, this lesson relates to the aspect of adaptation (see
Fig.|l} Adaptation & Action). Affect recognition is only one of the affective cognitive architecture modules for achiev-
ing emotionally intelligent autonomous robots that are capable of perception, learning, action, adaptation, and even
anticipation [40]]. One of the most common techniques for robot learning and adaptation is learning with the human-
in-the-loop, or Interactive Reinforcement Learning (IRL), that focuses on sensing and incorporating user interactive
(verbal, social and affective) feedback [41} 142,143, 1441145.146| 147, 148]. IRL with explicit feedback can be challenging as
humans tend to provide more positive than negative feedback, at times ignoring the robots’ mistakes. With progressing
interactions, the frequency of human feedback may decrease [49]]. Therefore, using implicit feedback, such as facial
affect, can be more effective as the human “teacher” will be less conscious of providing the feedback and will be less
likely to suffer from feedback fatigue [45]. Studies on IRL demonstrate the growing potential of sensing and utilising
implicit human behavioural cues, such as facial expressions and affect, for training robots through natural interactions
and shaping their behaviour in real-time. But ’is adaptation based on affect sufficient and does it always improve HRI
experience?’

5.2 Context

For naturalistic HRI, especially facilitating social interactions, it is imperative that robots are able to sense and adapt
towards human behaviour, not only regarding individual responses as feedback on their actions but also as motivation
for learning context-appropriate behaviours. In this context, in [47], we explored learning socially appropriate Robo-
waiter behaviours through real-time user feedback. This feedback was driven by either an implicit reward (calculated
by observing the facial affective behaviour of participants) or an explicit reward (incorporating their verbal responses).
First, a dataset was created and annotated using crowd-sourced labels to learn appropriate approach behaviours for a
robo-waiter based on its positioning and movement. This dataset was then used to pre-train an RL agent which, later,
was extended under IRL settings to include implicit and explicit rewards, allowing for real-time adaptation from user
social feedback. The approach was evaluated using a within-subjects HRI study with 21 participants with the results
showing that both the explicit and implicit feedback mechanisms enabled an adaptive robo-waiter that was rated as
more enjoyable and sociable compared to the robot implementing the pre-trained model or using a random control
policy. The adaptive robo-waiter also rendered more appropriate positioning relative to the participants. Additionally,
adaptability ratings showed the explicit feedback condition as the most preferred condition with the robot being rated
significantly higher in terms of understanding and adapting to what the participant said. These results clearly show
that for task-based interactions (such as the robo-waiter context), adaptation based on affect alone is insufficient, and
we do need to take into account explicit, task-related user feedback. Combining explicit and implicit feedback to
shape the reward function, although not explored in this study, has the potential to further improve user interaction
experience.

5.3 Lesson & Insights

The creation of closed-loop affective robots that can undertake successful social interactions with humans requires that
these robots keep learning in a lifelong manner and continually adapt towards user behaviours, their affective states and
moods [34]. Traditional ML approaches do not scale well to the dynamic nature of such real-world interactions because
they often assume stationarity in data conditions and distributions, but real-world contexts change continuously. Also,
the training data and learning objectives relevant to HRI may change rapidly. The Continual Learning (CL) paradigm
is introduced in order to address these problems [50}151]].

In [34]], we provide guidelines on how to utilise CL for personalised affect perception and context-appropriate be-
havioural learning for affective robotics. These guidelines are then utilised in [35], to enable CL-based personalisation
in the context of robotic wellbeing coaching, where a user study is conducted with 20 participants comparing static
and scripted interactions with using affect-based adaptation without personalisation, and using affect-based adaptation
with continual personalisation. The results showed that participants indicate a clear preference for a robotic coach
with continual personalisation capabilities, with significant improvements observed in the robot’s anthropomorphism,
animacy and likeability ratings. Additionally, the robot is also rated as significantly better at understanding how the
participants felt during the interactions.

Although affective adaptation is a desirable capability for social robots, we need to bear in mind that it might not
always work, and at times may even hinder interactions. For example, Kennedy et al. [52] investigated the effect of
a social robot tutoring strategy, with and without social and adaptive behaviours, in the context of children learning
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Table 1: Four Critical Lessons with the Reflective Questions the hitchhiker needs to probe when applying Affective
Computing (AC) solutions for Human-Robot Interaction (HRI) research under situated interaction settings.

Lesson Reflective Questions

1. How is individual affective behaviour manifested?
2. Which affect model can best represent an individual’s affective
states?

Lesson 1: The six basic emotion categories
are irrelevant in situated interactions.

—_

. Are we placing the sensors in the right places?

Lesson 2: Affect recognition accuracy (%) | 2. Are we measuring the most relevant signals?

1mprovements are unimportant. 3. How can we interpret model performance in view of users’ in-
teraction experiences?

1. Are we taking into account contextual and person-specific as-
pects?

2. Are we investigating for whom the trained models work well,

Lesson 3: Affect recognition does not gen- and why?

eralise (well) across contexts. 3. How do model predictions work for specific user groups like
children and elderly?

4. Are there any strategies in place to mitigate prediction bias in
models?

1. Can the users’ responses be summarised only using their affec-
tive behaviour?

Lesson 4: Affect recognition alone is insuf- | 2. [s the user providing additional feedback that may be helpful for

ficient for adaptation and personalisation. robot learning?

3. Is personalisation required and/or appropriate for the context of
the interaction?

about prime numbers. Their results showed no significant learning outcome for children interacting with a robot using
social and adaptive behaviours in addition to the teaching strategy. Therefore researchers should be cautious about the
specific context they have at hand when deciding to apply social and adaptive behaviours to a robot, and whether these
interactions are longitudinal or one-off. Gao et al. [53]] also investigated the effects of robot behaviour personalisation
on user’s task performance in the context of robot-supported learning. They utilised RL for personalisation, enabling
a robot tutor to select verbal supportive behaviours to maximise the user’s task progress and positive reactions. Their
results showed that participants were more efficient at solving logic puzzles and preferred a robot that exhibits more
varied behaviours compared to a robot that personalises its behaviour by converging on a specific one over time.
Overall, adaptation and personalisation based on affective or social behaviours needs further investigation, to gather
insights on the impact of the context and the nature of the interaction (e.g., task-based vs. free-flow).

6 Summary and Conclusion

This paper, reflecting upon the pitfalls and limitations of current AC solutions for situated HRI, presents four critical
lessons for the hitchhiker starting their HRI research journey (see Table[I)). These lessons, learnt through our experi-
ence as well as a critical review of existing literature, aim to distill key challenges that need the focus and attention
of the HRI community. Specifically critiquing the use of AC solutions for sensing, perceiving and understanding user
affective behaviour in situated interactions, these lessons highlight the challenges and limitations of existing method-
ologies and how the hitchhiker needs to be cautious of utilising off-the-shelf solutions, designed only for a generalised
application that may not be efficient for situated interactions. For each lesson, we present a detailed account of the
background and motivation for why it is relevant and provide contextual understanding of how it relates to pitfalls, in
practice, of applying off-the-shelf AC solutions directly for situated HRI studies. Furthermore, we also summarise our
learning from these experiences and highlight key considerations for the hitchhiker to bare in mind. Our proposition,
with this paper, is for the hitchhiker to reflect upon and probe specific questions, pertaining to each lesson, before
designing HRI studies that depend upon an affective evaluation of user behaviour. Furthermore, we also aim to en-
courage other researchers to contribute to the scientific community at large by critically analysing and reflecting upon
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‘what does not work and why?’ in HRI studies, and sharing their perspectives for everyone’s benefit. Such a reflection
and consideration may enable a successful and fruitful implementation of AC solutions in situated interaction studies,
creating a new bridge for HRI.
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