
 

  

 

Aalborg Universitet

Analysis of Proximity and Risk for Trust Evaluation in Human-Robot Collaboration

Campagna, Giulio; Rehm, Matthias

Published in:
2023 32nd IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2023

DOI (link to publication from Publisher):
10.1109/RO-MAN57019.2023.10309470

Publication date:
2023

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Campagna, G., & Rehm, M. (2023). Analysis of Proximity and Risk for Trust Evaluation in Human-Robot
Collaboration. In 2023 32nd IEEE International Conference on Robot and Human Interactive Communication,
RO-MAN 2023 (pp. 2191-2196). IEEE. https://doi.org/10.1109/RO-MAN57019.2023.10309470

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 24, 2024

https://doi.org/10.1109/RO-MAN57019.2023.10309470
https://vbn.aau.dk/en/publications/c40cea70-baa7-41c9-a32e-b12a45bd72c0
https://doi.org/10.1109/RO-MAN57019.2023.10309470


Analysis of Proximity and Risk for Trust Evaluation in Human-Robot
Collaboration*

Giulio Campagna1 and Matthias Rehm1

Abstract— In the emerging phase of industrialization, Indus-
try 5.0, humans will be working alongside advanced technolo-
gies such as Artificial Intelligence (AI) and robots to improve the
manufacturing process. As a result, it is crucial to evaluate trust
in the robot from a human perspective in order to provide a safe
environment and balance workloads. Relevant trust indicators
in the industrial context include proximity between human and
robot, as well as risk associated with robot’s performance. In
this study, a chemical industry scenario was developed, where
a robot assists a human in mixing chemicals. An experiment
was conducted for analysing how proximity and risk impact the
trust level of the participants. According to the results, there
was a higher average trust score in the low proximity (i.e.
robot not close to the human) and low risk sections compared
to the high proximity and high risk sections of the experiment,
respectively. Moreover, statistical analysis indicates that risk
had a higher impact on trust than proximity. The findings of this
study encourage further research in this area since tools such
as AI could be used to control the robot’s behavior according
to the level of trust between the human and the robot.

I. INTRODUCTION
With the advent of the Industry 5.0 era, a growing interest

has been registered in the development of collaborative
robots (cobots) that can work with humans in order to
accomplish several tasks. In manufacturing, robots are well
integrated because of their qualities such as stamina, speed,
precision, repeatability and power, which make them able
to do jobs that humans are unable to perform accurately,
easily, and in a timely manner. On the other hand, the
capacity of decision-making and problem solving-skills as
well as the flexibility of the human are essential features
that impact the quality of production process. Human-Robot
Collaboration (HRC) combines these elements in order to
provide benefits [3] in terms of productivity, quality, and
safety in manufacturing operations. Thus far, to provide
safety in industrial settings, barriers were used to separate
the workspace of the robot from the one of the human
operator. However, cobots are designed to allow physical
interaction with the human workers and thus making it
possible to remove the protection barriers [1]. As a result,
this enables new forms of physical Human-Robot Interaction
(pHRI) as well as reconfiguration of manufacturing process
[2]. Based on this perspective, it is essential to provide a safe
environment and balance workload.

In HRC, trust plays a key role since the level of trust
between human and robot can be a determining factor for
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the interaction’s performance. The appropriate level of trust
in human-robot teams is extremely relevant. Under-trust
increases the risk of unbalance workload (operator overload)
by leading to the robot being disregarded, while over-trust
can lead to loss of expensive equipment and collisions
with the human due to inefficient monitoring of the robot
[4], [5]. In [6], Hancock et al. present a meta-analysis of
factors affecting trust in Human-Robot Interaction (HRI). In
industrial scenarios, proximity and risk are two relevant trust
indicators. Humans’ trust levels in robots are influenced by
risk, which in turn affects their decisions [7]. The level of
risk associated with the interaction depends on the nature of
the task involved, perceived capabilities and performance of
the robot. People may be less trusting of a robot that handles
hazardous materials, for example. Concerning proximity, it
could be defined as the physical distance between the human
and robot. Close-proximity highly influences trust since the
humans tend to feel more stressed and anxious especially if
the robot they are collaborating with is large [8] and affected
by possible malfunctions and unpredictable movements. As
a result, this elicits fear in the operator that considers the
robot as a potential danger rather than a trustworthy partner.
However, humans tend to trust more robots that have been
designed with safety features and systems that are transparent
and that communicate feedback so that the operators are
aware of the intentions of the robot.

The paper proposes a chemical industry scenario with the
robot accomplishing two different tasks: i) handing a beaker
to the operator and ii) assisting him with the mixing of
chemicals. The decision to focus on a chemical industry
scenario was based on its suitability for examining how
trust indicators such as performance-based risk and proximity
could affect the level of trust of the operators. To this extent,
in the experiment, different tasks are developed with different
degree of risk and proximity. Post-hoc questionnaires are
commonly used to estimate trust (e.g. [9], [10]), therefore,
between each section, the Schaefer’s 14-item Trust Question-
naire (also know as Human-Robot Trust Questionnaire [11])
is used for the analysis. The long-term goal is to exploit
the outcomes of this study for a successive analysis with
Artificial Intelligence (AI) with the objective to adapt the
robot’s behavior to the actual level of trust of the participant
in real-time. This approach is aimed to provide a safe and
balanced workload in industrial HRC scenarios.

The remainder of this paper is organized as follows. In
Section II, elated work is presented. The methodology is
treated in Section III while Section IV describes the results.
A discussion of the principal findings is reported in Section



V. The conclusion and future works are presented in Section
VI.

II. RELATED WORK

The Industry 5.0 paradigm combines the advantages of
Industry 4.0 (digitalization and automation) with a renewed
emphasis on human-centric manufacturing [14]. Several
points are highlighted, including the usage of renewable
biological resources as well as the importance to support
industry with research and innovation while ensuring the
human as centre pillar in the production process [12]. The
most relevant key element is HRC which allows the operators
to focus on jobs that require creativity, problem-solving, and
decision-making, while machines can handle repetitive or
dangerous tasks with high accuracy and thus reducing waste
and costs [13]. For example, cobots can support humans
in a shared workspace by performing tasks independently,
simultaneously, sequentially, or in a supportive manner [15].
According to [16], there is safety, physical, cognitive and
psychological health at the base of the Industrial Human
Needs Pyramid. As consequence, a trustworthy relation-
ship between humans and machines is needed to guarantee
the aforementioned safety and health and enabling self-
actualisation and potential fulfillment as well.

In the context of industrial and collaborative robotics,
trust is regarded as one of the most important human-
centered quality factors [17]. Lee and See [18] defined
trust in automation as the belief that an agent would help
achieve an individual’s goals in situations characterized by
uncertainty and vulnerability. Nevertheless, this definition
needs further elaboration considering the concept of trust
appropriateness, i.e. the relationship between the capabilities
of the machine and the trust level of the operator. In [19],
Muir and Moray showed that the trust levels of the human
were heavily correlated with the machine’s performance.
Task performance could be impaired if the operator does not
trust the robot’s capabilities. Therefore, trust is considered
an important factor in influencing performance in certain
situations. Performance-based trust is centered on the robot
being trusted to be reliable, capable and competent in the
accomplishment of the task [20].

Hancock et al. [6] classified the elements that affect
human’s trust towards the robot in three main categories that
are human-related (e.g. propensity to trust, demographics,
expertise, personality), robot-related (e.g. reliability, level of
automation, proximity, anthropomorphism) and environmen-
tal (e.g. task type, physical environment). As a result of the
study, the robot’s characteristics, particularly performance-
based factors, have the greatest influence on perceived trust in
HRI. Risk is a relevant component that is heavily associated
with the performance of the robot to accomplish a task.
High-risk scenarios are required to properly observe trust
level differences in HRI [22]. Robinette et al. [25] studied
how a guiding robot’s performance could influence the
level of trust of the people. In low-risk scenario, after a
robot’s mistake, the persons reported a lack of trust but
they continued to follow its instructions. On the other hand,

people stopped using the robot during high-risk emergency
situations. According to [21], military applications can also
be used as an example where a high-risk level affects
trust significantly. Humans can be replaced by robots in
many high-risk occupations as a result of their superior
performance in dangerous environments [28]. Despite the
fact that industrial robots designed for HRI should not harm
people, the perception of the risk can still negatively impact
the performance. In an industrial framework, also proximity
covers an important role in building trust between humans
and robots. Human-robot close-proximity interaction is a
relatively new paradigm for interaction [23]. According to
Shiomi et al. [24], a robot must first be perceived as safe by
the human partner in order to successfully integrate within
the human environment. During a HRC task, both mental
(e.g. the impact of the robot’s size) and physical safety are
important [8]. An attempt to study how proximity influences
trust in HRC is provided by the analysis of Story et al.
[27]. A collaborative cell with a human and robot team was
used to replicate an assembly task. In this case there was no
significant change in trust in correlation to proximity level
due to the small size of the robot and high success rate.
However, the authors state that a larger industrial robot may
have a different influence. In the study [26], MacArthur et al.
investigated how robot’s proximity can affect trust of humans
in a maintenance hallway. Results reported that people had
a lower trust level in cases of close proximity to the robot.
In conclusion, both risk and proximity are key factors to
consider when analyzing the dynamics of trust in industrial
HRC.

The primary objective of this study is to examine how
proximity and risk affect the trust of operators in a HRC
cell that simulates a chemical industry scenario where a robot
assists a human.

III. METHODOLOGY
A. The Human Subject Study

To investigate how proximity and risk influence the trust
level of the operator, a chemical industry scenario was
developed. To evaluate each of the two trust indicators, a
related task was formulated.

Referring to the analysis of proximity, the task concerned
the robot placing a beaker on a box in front of the human.
Two different situations were designed where the level of
proximity was different. In the low-proximity situation (Fig.
1a), the robot performed as it was instructed, i.e. it grasped
the beaker and placed it appropriately in the target position.
In contrast, in the high-proximity case (Fig. 1b), the robot
grasped the beaker but, before placing it on the box, it
approached the operator really close.

Concerning the risk study, a scenario involving mixing
chemicals was developed. There were two beakers each one
containing a different chemical. After grasping a beaker, the
robot had to reach the other beaker held by the human, and
then pour the chemical into it. Similar to the proximity test,
two conditions were designed present. In the low-risk case
(Fig. 1c), the robot completed the pouring task accurately



(a) Low-proximity condition. (b) High-proximity condition.

(c) Low-risk condition. (d) High-risk condition.

Fig. 1: The chemical industry scenario.

without malfunctioning. For the high-risk situation (Fig. 1d),
it was decided to implement a risky behavior: the robot
appeared to pour onto the human hand before effectively
pouring into the beaker.

The analysis consisted of testing the following hypotheses:
• H1: Participants report lower trust when the robot is

close (high proximity case).
• H2: Participants report lower trust when the robot

appear to pour on the human hand (high-risk case).
• H3: As a trust indicator, performance-based risk ad-

versely impacts trust more than proximity.

B. Experimental Setup

To assist the human in the aforementioned HRC scenario,
the Universal Robots UR10-CB3-Series Robot1 was used.
This industrial robotic arm is designed to conquer difficult
tasks with high precision and reliability. Packaging, pal-
letizing, assembly, and pick-and-place are among the most
appropriate applications. The UR10 cobot, featured with 6
rotational joints, is a versatile collaborative industrial robot
delivering high payload (10 kg) lift, wide working range

1https://www.universal-robots.com/cb3/

(1300 mm from the base joint) and 125 Hz as frequency
communication. The UR10 robot was equipped with RG6
(OnRobot), a 2-fingered flexible gripper that provides up
to 150 mm stroke. In this experiment, the grasping phase
and the path planning of the robot were pre-programmed
using Python. As a safety precaution, a protective zone was
established and an assistant kept an emergency button on
hand to stop the robot in case the participants displayed
unexpected behavior.

With the purpose to simulate a realistic scenario, the
participants and the assistant were equipped with personal
protective equipment: a laboratory coat, gloves and eye
protection glasses. Concerning the chemicals, the beaker held
by the human contained baking powder while the beaker
grasped by the robot had water inside. As a result, the
reaction phase produced only carbon dioxide, thus ensuring
operator safety. Nevertheless, this was only revealed after
the experiment was completed. In fact, the chemicals were
declared dangerous and harmful at the beginning of the test.
To further intensify the high risk condition of the experiment,
a bottle of gasoline was placed next to the robot during the
risk task where the robot had to assist the human in mixing
the chemicals. This approach ensured all safety measures



were met and provided a realistic scenario to conduct the
analysis.

C. Procedure

The experiment involved forty subjects. In order to avoid
influencing the evaluation of trust of the participants, twenty
subjects were randomly assigned to the proximity study
and twenty to the risk analysis. To provide an accurate
investigation, the participants were recruited with differences
in age, gender and familiarity with robots.

With reference to the proximity test, 12 males and 8
females with different age (M=27.3, SD=6.34) were selected.
Concerning familiarity with robots, only 5 participants had
practical experiences while other subjects had seen them
either in reality (3 participants) or in the media (1 partic-
ipant). The remaining 11 subjects did not have familiarity
with robots.

Regarding the risk analysis, 11 males and 8 females
with diverse age (M=25.55, SD=3.2) participated. Familiarity
with robots was limited as in the previous case. Only 5
participants had experience working with them while others
had seen them in exhibitions (1 participant) or social media
(2 participants). In this case, 12 subjects were not familiar
with robots.

At the beginning of the experiment, a printed consent
form and a description of the task (either proximity or
risk test) were provided to the participant. Afterwards, the
subject was asked to answer the 6-item Propensity to Trust
Questionnaire [29] in order to determine a baseline level
of trust towards machines. After reverse coding the second
question, the answers (based on a 5-point Likert scale)
were used to calculate the trust score by performing an
average. Upon completion of this preliminary questionnaire,
the assistant helped the participant to wear the protective
equipment before starting the experiment. The participant
had to repeat the assigned task for each section (”high”
and ”low” conditions) as aforementioned in the Section
III.A. Between each section, the Schaefer’s 14-item Trust
Questionnaire [11] was provided to the subject. The 14-
item human-robot trust scale provided an overall percentage
score across all the elements. Trust score was calculated
by first reverse coding the ”Have Errors”, ”Unresponsive”
and ”Malfunction” items, and then performing an average of
all the responses. To ensure a solid statistical analysis, the
order in which the participants performed the two sections
was balanced: ten participants did the task first in the ”low”
condition and then in the ”high” condition, and ten subjects
did the opposite. Each participant required 15 minutes to
complete the experiment.

IV. RESULTS

In this section, the principal findings are reported concern-
ing how proximity and risk affected the operator’s trust.

Propensity to trust was calculated for participants in both
the proximity (M=3.85, SD=0.64) and risk analysis (M=3.61,
SD=0.63). A Shapiro-Wilk test indicated that the sample of
propensity to trust scores for the participants of the risk

scenario followed a normal distribution (p=0.94) while it
did not follow a normal distribution in the case of the
subjects for the proximity scenario (p=0.01). Considering
these results, a non-parametric test was needed to assess
if there was statistically significant difference between the
two groups. According to Mann-Withney test, there was no
statistically significant difference between the two samples
of trust scores (U=146, p=0.149). Therefore, the successive
analyses of trust with Schaefer’s 14-item Trust Questionnaire
were not influenced by propensity to trust.

Two-way mixed ANOVA was performed to examine trust
level (dependent variable) towards the robot, with trust indi-
cators (i.e. proximity and risk) as between-subject variable,
and condition (i.e. low and high) as within-subject variable.
Prior to the computation of two-way mixed ANOVA, the
necessary assumptions were checked. A Shapiro-Wilk test re-
ported that each sample of trust scores follows a normal dis-
tribution (p>0.05) for all the combination of the two factors
(within-subjects factor and between-subjects factor): low-
proximity, high-proximity, low-risk, high-risk. There was
homogeneity of variances, as assessed by the Levene’s test
for equality of variances (p>0.05). The Box’s M test showed
that there was homogeneity of covariance matrices (Box’s
M=0.607, p=0.903). Having only two levels of repeated
measures, the Mauchly’s sphericity test was not needed.
Since all the assumptions were satisfied, the two-way mixed
ANOVA could be performed. There was a significant main
effect of the ”low” and ”high” conditions on the trust scores,
F(1,38)=64.32, p<0.05, η2=0.629. Average trust scores were
significantly higher on ”low” condition (M=74.66, SD=7.16)
than ”high” condition (M=55.41, SD=16.03). There was a
significant main effect of trust indicators on trust scores
F(1,38)=8.17, p=0.007, η2=0.177. Trust scores in proxim-
ity case (M=69.02, SD=12.88) were higher than risk case
(M=60.60, SD=17.31), thus confirming the third hypothesis.
There was also a significant interaction effect between the
conditions and the trust indicators F(1,38)=4.096, p=0.05,
η2=0.097. Considering this last result, a series of additional
post-hoc tests were required.

Multiple t-tests (paired and independent t-tests) were con-
ducted using Bonferroni adjusted alpha level of 0.0083 per
test (0.05/6). Two paired-sample t-tests were performed to
test if there was a difference in trust under ”high” and
”low” conditions, separately for each trust indicator (low
proximity-high proximity, low risk-high risk). Afterwards,
two between-subjects unpaired t-tests were computed: low
proximity-low risk, high proximity-high risk. The other two
pairwise comparisons, i.e. low proximity-high risk and high
proximity-low risk are not reported because they are not
relevant for the study, but they were considered for the
Bonferroni correction of the alpha level. The normality
assumption, needed for both paired and unpaired t-tests, was
checked with the Shapiro-Wilk test. For the paired-sample
t-tests, the Shapiro-Wilk test showed that the distribution
of the difference in trust scores concerning the pairwise
comparisons low proximity-high proximity and low risk-
high risk followed a normal distribution (p>0.05). Shapiro-
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Fig. 2: Results of the post-hoc tests with Bonferroni correction (alpha level: 0.0083).

Wilk test confirmed the normal distribution of the data for
each group present in the unpaired t-tests. With reference
to the independent t-tests, homogeneity of variances was
analyzed. According to the F-Test Two-Sample for Variances,
homogeneity of variances was satisfied for the pairwise
comparisons low proximity-low risk and high proximity-high
risk (p>0.05). Therefore, two independent t-test assuming
equal variances were performed. The results indicated that
the average trust scores were significantly higher in low-
proximity case (M=76.21, SD=6.75) than high-proximity
situation (M=61.82, SD=13.64), (t(19)=4.545, p<0.0083)
and thus confirming the first hypothesis. Considering risk
as trust indicator, average trust scores were significantly
higher in low-risk case (M=73.11, SD=7.38) than high-risk
situation (M=49, SD=15.97), (t(19)=6.682, p≪0.0083) and,
therefore, corroborating the second hypothesis. The pairwise
comparisons high proximity-high risk and low proximity-low
risk were non-significant. The outcomes are summarized in
Fig. 2.

V. DISCUSSION
The purpose of this study was to examine how proximity

between human and robot as well as performance-based risk
affected human trust in HRC industrial settings. Statistical
tests supported the hypotheses and thus confirmed that the
aforementioned trust indicators had a relevant impact on the
trust of the operator. The participants reported lower trust
level when the robot was close. There could be several
factors contributing to this outcome, including the operator’s
stress over the large size of the robot or the possibility to be
hit. A significant difference in trust level was also seen in
the risk analysis where the participants showed lower trust
when the risk was high, i.e. when the robot appeared to
pour on the human hand. As confirmed by these results,

performance-based risk is a critical factor that influences
trust. As illustrated in Fig. 2, there was no significant
difference in terms of trust scores between low-proximity
case (robot not close to the human) and low-risk situation
(no danger of chemicals harming the participants). However,
according to the statistical tests, even in the high-proximity
and high-risk cases there was no significant difference in
trust levels, but it can be observed a larger spread of
higher trust scores in high-proximity situation. In addition,
as reported in Section IV, two-way mixed ANOVA showed
that, in general, risk adversely impacted trust levels more
than proximity. At the end of the experiments, participants
had the possibility to provide additional feedback in order to
consider further improvements of the experimental scenario
and the analysis of other relevant trust indicators. A number
of people reported that their level of trust in the robot could
have been affected by greater speed, since they would have
been concerned about the velocity of a robot of a large size
approaching them. Therefore, the analysis of speed as trust
indicator would add further knowledge in the investigation of
the elements that affect trust in industrial HRC. Additionally,
it would be interesting to examine how different propensities
to trust machines affects the effective evaluation of trust
in robots. Limitation of the study was the pre-programmed
control of the robot, even if the participants were not aware.
A dynamic system will be developed, including several
unexpected behaviors to overcome the robot’s predictability.
Additionally, this will allow the operator to move around
the workspace without being constrained to assume a fixed
position.

VI. CONCLUSION
Trust has been shown to be a crucial factor governing hu-

man robot collaboration. Trust measurement is mainly based



on questionnaires and thus does not allow to adapt robot
behavior during the interaction. To develop data-driven trust
assessments, it is essential to know more about the influence
of different categories of trust indicators. In this study, it was
analysed the impact of robot and context related factors, i.e.
proximity and task-risk. A chemical industry scenario was
developed in which a robot assisted the operator in handing
over the beaker to him and mixing chemicals. Handing
over a beaker was designed to analyse proximity’s effects,
while mixing chemicals examined risk’s effects. The results
highlighted how different level of proximity and risk affected
trust. Lower trust scores were registered when the robot was
close to the human (high proximity case) or when there was
the risk that the robot could pour the chemicals on the human
hand (high risk case). By comparing the aforementioned trust
indicators (i.e. proximity and performance-based risk), the
statistical tests reported that risk adversely impacted trust
more than proximity. As future works, the analysis of speed
and propensity to trust will be investigated to add further
knowledge on which are the factors that affect trust in
industrial HRC. The results of this investigation contribute
to understanding the dynamics of trust in industrial HRC
environment and the integration of robots into operator’s
workspace. This analysis was the pillar and the initial phase
to provide a framework that guarantees a safe interaction
between the human and the robot. Sensor fusion and AI
will be used to categorize trust levels of the operators and,
therefore, being able to control the robot appropriately to
provide safety and balance workload.
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