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Backward Curriculum Reinforcement Learning
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Abstract— Current reinforcement learning algorithms train
an agent using forward-generated trajectories, which provide
little guidance so that the agent can explore as much as possible.
While realizing the value of reinforcement learning results from
sufficient exploration, this approach leads to a trade-off in
losing sample efficiency, an essential factor impacting algorithm
performance. Previous tasks use reward-shaping techniques and
network structure modification to increase sample efficiency.
However, these methods require many steps to implement.
In this work, we propose novel backward curriculum rein-
forcement learning that begins training the agent using the
backward trajectory of the episode instead of the original
forward trajectory. This approach provides the agent with a
strong reward signal, enabling more sample-efficient learning.
Moreover, our method only requires a minor change in the
algorithm of reversing the order of the trajectory before agent
training, allowing a straightforward application to any state-
of-the-art algorithm.

I. INTRODUCTION

Recent developments in GPU-based computation have en-
abled tremendous advances within the field of deep learning.
One result has extended the implementation of reinforcement
learning (RL) to various fields. As a powerful technique that
trains an agent to maximize some reward gain to solve a
computational problem efficiently, RL is applied in many
applications, such as robotic manipulation tasks [1], playing
Atari games [2], controlling multiagent systems [3], and
learning AlphaGo [4]. However, the natural reward function
of an RL algorithm is usually sparse because a reward is
given to the agent only when it completes a given task.
Moreover, conventional RL problems are formulated with the
agent being blind to the task goal. While this configuration
helps the agent discover an optimal policy without human
guidance, significant computational power and a large sample
size are often required for training.

In our work, we introduce an approach of novel backward
curriculum reinforcement learning that uses agent trajectories
in reverse order for training. This enables the agent to begin
training by recognizing the task goal. As a result, the agent
trains in a sample efficient way by utilizing strong reward
signals during backward curriculum learning. Our method
requires no modification of the neural network structure and
no other previous knowledge to train the agent. Moreover, it
can be simply applied to any state-of-the-art algorithm, such
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as PPO [5], A3C [6], and SAC [7], with two straightforward
steps. The trajectory of the agent is collected first, as usual,
then the order of training the agent is reversed as shown
on figure 1. Our backward curriculum learning leverages the
concept of curriculum learning, which manually changes the
order of the training process to train more efficiently. We
empirically test this method using the REINFORCE [8] and
REINFORCE with baseline [9] algorithms on the CartPole-
vl and Lunar Lander-v2 environments from the OpenAl
gym [10] framework, which both use discrete action spaces.
Moreover, we further investigate the effects of the return
normalization technique [11], variation of the learning rate,
and structure of neural network on the performance of our
method.

II. RELATED WORKS

Some published approaches share similar features with
our backward curriculum learning method. First, imitation
learning [12] requires the demonstration of experts who
explain to the agent how to reach the goal task, which can
use samples efficiently to train agents. However, imitation
learning limits agents from taking advantage of exploration.
Moreover, significant effort is required because experts who
can demonstrate completing the task and record the process
to translate for agent training must be employed. On the other
hand, our method does not necessitate additional effort, as we
only need to reverse the trajectory for training. Compared to
this approach, we use our backward trajectory as the expert
seen in imitation learning.

Curriculum learning modifies the schedule of the learning
process and has been applied to various machine learning
tasks. The curriculum learning approach first trains the agent
on easier examples, then continuously increases the difficulty
level for solving the problem [13]. The application of cur-
riculum learning for helping children to learn chess called
”Quick Chess” helped the children to efficiently learn chess
by giving a sequence of progressively more difficult games
[13]. The concept of curriculum learning was first applied
to the artificial intelligent domain back in the 1990s [13].
Where the first application is known as grammar learning
[14]. In backward curriculum learning, we train the agent
from the end to the beginning of the episode, which follows
the concept of curriculum learning because the agent can
complete the task from near the goal state more easily than
the start state. Previously, curriculum learning was applied
to pre-specified tasks, such as shooting a ball into a goal
[15]. Barnes proposed similar work to solve complex robotic
problems [16]. However, this method requires partitioning
the entire task space, which limits its application to various
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problems. On the other hand, our method is applicable to a
range of machine learning tasks because previous knowledge
is not required to train the agent.

Moreover, we even further increased the performance of
our algorithm by adopting the return normalization method.
In the domain of reinforcement learning, the modern ar-
chitecture of deep neural networks mostly relies on feed
forward neural networks. Compared to large capacity mod-
els from computer vision and natural language processing
domain, reinforcement learning instead adopts algorithmic
development such as novel loss function to achieve state
of art performance [17]. Researchers also have proven that
increasing the model capacity in reinforcement learning
will harm the performance [18]. In reinforcement learning,
the cumulative sum of rewards often ends up with a high
magnitude value, so it will increase the variance during the
training process [11]. In reinforcement learning, the role of
variance is significant since high variability will lead the
agent to an unwanted local minimum point [19]. Therefore,
applying return normalization technique will generate less
variance environment for training.

III. PRELIMINARIES

We consider a finite discrete time horizon Markov decision
process (MDP) as a tuple M = (S, A, P,r,v, po, T), with S
defined as a state set, A as an action set, and P : SxAxS —
R as a transition probability. Also, r is a bounded reward
function, -y is a discounted reward factor, py is the initial state
distribution, and 7" is the trajectory of the moving agent. At
each time step in MDP, the agent takes an action, receives
a reward, and moves to the next state using the transition
probability, P. The goal of RL in this setup is to find the
optimal policy, mg(a¢|s:), that maximizes the reward gain.
In our backward curriculum learning approach, we reverse
the order of the agent trajectory, 7', labeled as T}, and use
this to train the agent from the goal state, s , to the initial
state, sg. Because the agent begins training near s,4, the
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agent receives a strong reward signal, providing meaningful
guidance toward the goal.

IV. BACKWARD CURRICULUM LEARNING

A. Backward Curriculum Learning in REINFORCE

The REINFORCE algorithm is one basic policy gradient
algorithm that provides insights for building state-of-art
policy gradient algorithms. We first applied backward cur-
riculum learning to this algorithm because it is a basic policy
gradient algorithm and is intuitive and easy to implement.
The REINFORCE algorithm includes a simple structure that
uses cumulative discounted returns and the log probability
of choosing an action to compute gradients. However, the
original REINFORCE algorithm features a sparse reward
function that lowers its performance on complicated tasks.
Backward curriculum learning can solve this problem by
enabling the agent to begin updating its gradient from the end
of the episode. Then, by applying our backward curriculum
learning, the agent recognizes the goal at the beginning of the
training process, which replaces the original sparse reward
function with a strong reward signal. Detailed in Algorithm
2, this approach first collects the sample trajectory using
the policy network, then flips the order of the episodes to
compute the loss function in reverse order which is different
from Algorithm 1 that uses trajectory collected by forward
sequence.

Algorithm 1 REINFORCE

Collect the sample trajectories following 7y (at|st)
T = eqepisode length
fort=1tot=1T—1do
Compute Return G
0 + Oo10 + GV (log mg(at|st))
Update Optimizer
end for




Algorithm 2 Backward Curriculum REINFORCE

Collect the sample trajectories following g (a¢|s;)
T = eqepisode length
fort=T—-1tot=1do
Compute Return G
0+ Oy1q + GV(IOg W@(at|st))
Update Optimizer
end for

B. Backward Curriculum Learning in REINFORCE with
Baseline

A key challenge associated with the REINFORCE al-
gorithm is dealing with a high variance that may cause
a divergence of policy network parameters. The typical
solution for reducing the variance is subtracting the baseline
[9]. In the REINFORCE algorithm, a value function is an
appropriate baseline to subtract from the returned G. The
agent has the policy network and value network, and the
loss function is 6 < Oyq + (G — V)V (logmg(at|st)) as
shown on Algorithm 3. This baseline decreases the variance
by reducing the step size of the gradient. In our backward
REINFORCE with baseline algorithm, we first collect the
trajectories using our policy, then flip the order of the episode
to compute the loss function, as shown in Algorithm 4.

Algorithm 3 REINFORCE with Baseline
Collect the sample trajectories following 7y (at|st)
T = eqepisode length
fort=1tot=T—1do
Compute Return G
0 < Oo1q + (G — V)V (logmp(ar|s:))
Update Optimizer
end for

Algorithm 4 Backward Curriculum REINFORCE with
Baseline
Collect the sample trajectories following g (a¢|s;)
T = eqepisode length
fort=T—-1tot=1do
Compute Return G
0+ Oo1a + (G — V)V (log mg(ar|st))
Update Optimizer
end for

V. EXPERIMENTAL RESULT

We incorporated the RL testing environment from Ope-
nAl Gym [10] to test the performance of our backward
curriculum learning algorithm on the REINFORCE and RE-
INFORCE with baseline algorithms. For these experiments,
we evaluated with the Cart Pole-vl and Lunar Lander-v2
environments. The default structure of the network is a multi-
layer perceptron network with two layers and 128 neurons
as a baseline. Moreover, we analyzed the effects of return
normalization and modifying the network structure.

A. Cart Pole Environment

We first implemented our backward curriculum method to
the REINFORCE algorithm with the goal of the Cart Pole-
vl algorithm to balance a pendulum on a cart by applying a
discrete action domain with the force of +1 or -1 to the cart.
The environment is solved when the agent reaches a score
of 500 without the pole falling from the cart.

A comparison of the backward curriculum algorithm and
the original REINFORCE algorithm is shown in Figure 2(a).
No apparent difference occurs with the first 1,000 episodes.
However, after this point, the backward curriculum algorithm
begins to outperform the original algorithm and solves the
environment within 3,000 episodes.

Next, we experimented using the REINFORCE with a
baseline algorithm to analyze the effect of the backward
curriculum learning algorithm. In Figure 2(b), the backward
curriculum algorithm solves the environment within 250
episodes. On the other hand, the original REINFORCE with
the baseline algorithm requires more episodes to solve and
has a high variance that disturbs the agent from remaining
in the goal state. We further observe that adding a baseline
to the REINFORCE algorithm effectively solved a high
variance problem while improving the performance of the
algorithm. We see that solving the environment using the
REINFORCE algorithm takes about 1,500 episodes, and
adding the baseline results requires less than 500 episodes,
as shown in Figure 2(c).

B. Lunar Lander Environment

We next explored the Lunar Lander-v2 environment from
the OpenAl gym with the agent goal of safely landing within
a specified region without crashing. The action space consists
of the four actions of resting, firing left, firing right, and
firing the main engines. The environment is solved when
the agent reaches a score of 200 without crashing. Here, we
compare the performance of the backward curriculum and
original algorithms and experiment with the effect of return
normalization.

Figure 3(a) shows that our backward curriculum REIN-
FORCE algorithm reaches the goal state with an average
score of 200 within 2,000 episodes, while the REINFORCE
algorithm solves the environment within 3,000 episodes.
This result suggests that enabling the agent to know the
environment goal at the beginning of the training process
significantly helps it to reach the goal using fewer samples.
Also, in Figure 3(b), the REINFORCE with baseline using
the backward curriculum learning algorithm completes the
task faster in 1,000 episodes using the reverse method, while
the original algorithm requires more than 2,500 episodes.
We compare the performance of the backward curriculum
REINFORCE and backward curriculum REINFORCE with
the baseline in Figure 3(c), which shows both methods attain
the goal score. However, the backward curriculum learning
on REINFORCE with baseline features less variance and
uses fewer samples.
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C. Return Normalization

Backward curriculum learrning on the REINFORCE algo-
rithm gradually optimizes the sample efficiency but still in-
cludes the problem of high variance. Considering the original
REINFORCE loss function of 6 < 6,4+GV (log g (az|s:)),
the gradient step size depends on G and log log 7 (as|s:).
The log of the action probability is usually acceptable, but the
return has a high magnitude that will dynamically increase
the step size of the gradient. The choice of step size is crucial
in RL because a small step size slows the convergence rate,
and a large step size may cause oscillations or divergence of
policy networks due to overshooting [20].

Therefore, we apply return normalization to our method
to stabilize the observed high variance by scaling the mean
of the return to zero and the variance to one, which reduces
the magnitude of the return and avoids overshooting. We
implement this by subtracting the average of the return and
dividing by the standard deviation of the return, following
Equation 1 [11]. Applying return normalization results in
a stable backward curriculum REINFORCE algorithm with
increased performance.

We implement this return normalization approach on the
original algorithm and our backward curriculum algorithm
simulated with the Lunar Lander environment. As observed
in Figure 4(a), before applying return normalization, the
learning curve features a high variance, and some learning
rates result in divergence. Then, including return normal-
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Experimental results with the Lunar Lander environment.

ization decreases the variance significantly, and an agent
with a learning rate of e~ solves the environment within
3,000 episodes, as shown in Figure 4(b). This outcome
demonstrates that return normalization optimizes the perfor-
mance and minimizes the variance, as seen in Figure 4(c),
comparing with and without return normalization using the
best-performing learning rate of e~*.

return — average return

)

Ret N =
ctarn rorm standard deviation of return

D. Comparison between deep and shallow networks

The depth of the neural network is an important factor
that affects the performance of a deep learning algorithm. A
deeper neural network typically requires more computational
power because increasing the number of layers yields more
parameters with which to compute the gradient. Instead, a
shallow network offers the benefit of quicker computation
because of its fewer parameters from fewer layers. While
deep and shallow networks offer distinct benefits, we observe
that the shallow network performs better for simple environ-
ments, such as Cart Pole. In this scenario, the agent can
solve the problem through simple heuristics without wasting
computation efforts [21]. If we use deeper networks to solve
this simple environment, then that agent may “overthink,”
resulting in computational waste and potential misclassifica-
tion [21].



=-2501

5007

score

-750+¢

—1000

-12501

1500

WM 200

100

sCore

—-100

NN

—-200

1000 2000
episodes

— le 4

3000

— le 2 le 3 — 3e 1 le 3

(a) Without Return Normalization

Fig. 4. Effect of return normalization on backward

1000
— le 4

(b) Return Normalization

-300
2000

episodes

3000 0 1000 2000

episodes

3000

- 3e 1 le = Without Retrun Norm Return Norm |

(c) Comparing Return Normalization
and Without Return Normalization

curriculum learning with the Lunar Lander environment.

o b
,fn"“-' i "\W’ |

o

score

400

, -"'ﬁ'.‘,:""["wn’

300

score

200

100

1000 200
episodes

Forward

0 3000

Backward

(a) Comparing Backward and Forward Method

on Deeper Network

Fig. 5.

Our experiments use shallow and deep networks to com-
pare algorithm performance with the Cart Pole environment.
The baseline network structure contains two layers with 128
neurons, and the deeper network for comparison includes
three layers with 256 neurons. We applied backward cur-
riculum REINFORCE with baseline and the original REIN-
FORCE with baseline method to observe differences with
the deeper network.

The backward curriculum method does not improve the
performance, as we otherwise expected, which is shown
in Figure 5(a). This result suggests that a deeper network
already forms an accurate approximation, so enabling the
agent to start the training process with an awareness of the
task goal offers little impact on performance. Comparing
the performance between the shallow and deep networks
using the Cart Pole environment, the shallow network agent
completes the task in fewer than 500 episodes, as shown
in Figure 5(b). However, the deeper network agent takes
over 1,500 episodes to reach the goal state. Therefore, we
suggest that backward curriculum learning is most effective
in a shallow network configuration to solve simple tasks by
maximizing sample efficiency.

VI. CONCLUSION

We proposed a novel backward curriculum reinforcement
learning to address the natural sparse reward function prob-
lem. Our method reverses the order of the episode before
beginning the training process, enabling the agent to be
initialized with a recognition of the task goal. The natural
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Effect of the deep neural network depth on backward curriculum learning with the Cart Pole environment.

sparse reward function is replaced with a strong reward sig-
nal, which optimizes the sample efficiency. Unlike previously
proposed methods, backward curriculum learning does not
require many steps to modify the code structure, so we can
directly apply our method to state-of-the-art algorithms. We
selected the REINFORCE and REINFORCE with a baseline
algorithms to test our method because these represent the
state of the art. We empirically demonstrated that backward
curriculum learning uses fewer samples to solve a given
task. Also, we tested the effect of return normalization and
network depth with our backward curriculum learning algo-
rithm approach and observed that the backward curriculum
learning is appropriate for solving simple tasks, like Cart
Pole, using a shallow network. In future work, we will apply
our backward curriculum learning on other state-of-the-art
algorithms to test on various environments.
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