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Query: Walk to the 4th chair in your field of view
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Fig. 1: VLMaps [1], being a semantic top-view map, cannot distinguish between different instances of the same object. On
the other hand, ST Maps (ours) are directly amenable for handling such queries as they contain instance-specific information
for all objects in the environment. For the scene on the extreme left, the instances of the object ‘chair’ as detected by SI

Maps is shown in different colors in the rightmost figure.

Abstract— Humans have a natural ability to perform seman-
tic associations with the surrounding objects in the environment.
This allows them to create a mental map of the environment,
allowing them to navigate on-demand when given linguistic
instructions. A natural goal in Vision Language Navigation
(VLN) research is to impart autonomous agents with similar
capabilities. Recent works take a step towards this goal by
creating a semantic spatial map representation of the environ-
ment without any labeled data. However, their representations
are limited for practical applicability as they do not distinguish
between different instances of the same object. In this work, we
address this limitation by integrating instance-level information
into spatial map representation using a community detection al-
gorithm and utilizing word ontology learned by large language
models (LLMs) to perform open-set semantic associations in
the mapping representation. The resulting map representation
improves the navigation performance by two-fold (233%) on
realistic language commands with instance-specific descriptions
compared to the baseline. We validate the practicality and
effectiveness of our approach through extensive qualitative and
quantitative experiments.

I. INTRODUCTION

Advancements in machine learning research have brought
about rapid changes in the field of robotics, allowing for
the development of sophisticated autonomous agents. How-
ever, making this technology practically viable for large-
scale adoption requires a natural mechanism to interact with
humans. Vision Language Navigation (VLN) research aims
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to achieve this goal by incorporating natural language under-
standing into autonomous agents to navigate the environment
based on linguistic commands. Prior approaches to VLN
have addressed this task by harnessing the capabilities of
visual grounding models, which allow the navigating agents
to localize objects in the visual scene or directly ground
navigable regions based on linguistic descriptions. However,
these approaches fail to address linguistic commands which
require spatial precision to identify the goal region. Further-
more, these approaches assume that the object referred to
by the linguistic command is always visible in the current
scene. Such an assumption rarely holds in realistic scenarios,
where things can move in or out of the current scene as we
navigate the environment.

Consider the example in Figure [T] with the language
command, “walk to the fourth chair in your field of view”.
To execute this command, we first need to explore the entire
room to find all instances of chairs and then find the fourth
instance from where the command was given. For visual
grounding-based approaches, it is non-trivial to handle such
scenarios as there is no way to rank the localized chairs
based on distance. To counteract the above issues, geometric
maps, which create a global mapping of the surrounding
environment, provide a direct mechanism to ground all the
objects present in the scene, including those not visible in
the current view, and additionally, are readily amenable for
planning and navigation purposes. In this work, we propose a
memory-efficient mechanism for creating a semantic spatial
representation of the environment, which is directly applica-
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Fig. 2: Our top-view map representation allows indoor embodied agents to perform complex instance-specific goal navigation
in object-rich environments. The language queries can refer to individual instances based on spatial and viewpoint
configuration with respect to other objects of the same type while preserving the navigation performance on standard

language queries.

ble to robots navigating in real-world scenes.

Recent works like VLMaps and NLMap [2] propose
a mechanism to build semantic spatial maps without any
labeled data by fusing pre-trained vision-language features
with the 3D point cloud of the physical world. They com-
pute the similarity between visual and linguistic features
in a common semantic space of a large-scale pre-trained
vision-language model and utilize large-language models to
convert the natural language command to a sequence of
navigation goals for planning. However, their map represen-
tation doesn’t allow them to differentiate between different
instances of the same object and hence handle language
queries that describe an instance-specific navigation goal,
like the ones mentioned in Figure 2] as the visual encodings
are instance-agnostic. Moreover, their mechanism is memory
intensive as they require high-dimensional feature embed-
dings to make semantic associations for the objects in the
visual scene.

Our work focuses on creating spatial maps of the envi-
ronment with instance-level semantics. We achieve this in a
memory-efficient manner, bypassing the use of feature em-
beddings altogether. We show that Semantic Instance Maps
(SI Maps) are computationally efficient to construct and
allow for a wide range of complex and realistic commands
that evade prior works.

II. RELATED WORK
A. Semantic Mapping

With the recent progress in computer vision and natural
language processing literature, there has been considerable
interest in augmenting the semantic understanding of tra-
ditional SLAM algorithms. Earlier works like SLAM++
[3] propose an object-oriented SLAM, which utilizes prior
knowledge about the domain-specific objects and structures
in the environment. Later works like [4] assign instance-
level semantics using Mask-RCNN [5] to 3D volumetric
maps. Some methods [1], [2] have also explored transferring
predictions from CNNs in 2D pixel space to 3D space for
3D reconstruction. Concurrent to our work, [6] proposes a
deep reinforcement learning-based approach for multi-object
instance navigation, albeit without linguistic commands.
VLMaps [1] and NLMap-Saycan [2] propose a natural
language queryable scene representation with Visual Lan-
guage models (VLMs). These methods utilize large-language

models (LLMs) to parse language instructions and identify
the involved objects to query the scene representation for
object availability and location.

B. Instance Segmentation

The ability to identify and localize different instances
of similar objects is crucial for visual perception tasks in
robotics. In the Computer Vision literature, the task of
instance segmentation serves to evaluate such capabilities
formally. Earlier works [5] utilized region proposal networks
to predict candidate bounding boxes followed by a mask
head to regress the instance-level segmentation mask for each
proposal. While initial approaches designed task-specific
architectures, more recent methods [7] have moved towards
generalized architectures for different image segmentation
tasks like semantic, instance, and panoptic segmentation.
Mask2Former [7] employs attention mechanism to extract
localized object-centric features in an end-end manner. In
this work, we utilize segmentation masks from Mask2Former
to create instance-level semantic maps which are directly
amenable for planning during autonomous navigation.

C. Vision Language Navigation

Most of the work in Vision Language Navigation (VLN)
has focused on navigating in the environment using semantic
perception based on the front camera view of the autonomous
agent. Specifically, these works take the front camera image
and the language command as input, and the navigation
task is reduced to a sequence modeling task where at each
time stamp, the optimal action is predicted to complete the
navigation task successfully. Subsequent works have tackled
the VLN problem using sequence-to-sequence learning [8],
reinforcement learning [9] or behavior cloning methods [10].
However, these methods are non-trivial to interpret, and
recent works [8] have found that such methods are unable to
utilize the visual modality effectively for the navigation task.
Consequently, recent works [1], [2] on VLN have focused
on creating a semantic map of the environment for motion
planning and utilizing visual grounding capabilities of large-
scale vision-language models [11] to ground the semantic
concepts in a visual world. In this work, we focus on creating
a semantic mapping representation of the environment using
large-scale language models. Unlike prior works, we create
these maps in an embedding-free manner, thus reducing the
computational cost significantly.
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Fig. 3: In STEP 1, we create a semantic level map of the environment by back projecting the Mask2Former semantic labels
of the RGB pixels across different images onto the grid map. In STEP 2, we extract the subgraph concerned with object o
and run a community detection algorithm to break the grid cells containing object o into instances.

III. METHOD
A. Problem Statement

In this work, we aim to create a semantic map of the sur-
rounding environment containing instance-level information
for the various objects. Maps containing both instance-level
and semantic information are necessary to handle linguistic
commands which are frequently used in the daily vernacular.
For example, consider the command, “Go to the empty chair
near the third table”. We are required to identify “which
instance of the table” is being talked about and then point out
the instance of the empty chair. Our approach is equipped to
handle such scenarios through an instance-specific mapping
representation of the environment. We build SI Maps using
only RGB-D sensors, pose information, and an off-the-shelf
panoptic segmentation model. SI Maps creation involves two
steps: (1) Occupancy map creation with semantic labels and
(2) Community detection to separate instances of a given
semantic label. The whole pipeline is illustrated in Figure [3]

B. SI Map Creation

Building Occupancy Grid: We define SI Maps as .# €
RH*W>2 \where H and W represent the size of the top-down
grid map. Similar to VLMaps, with the scale parameter s
(= 0.05m in our experiments), a SI Map .# represents an
area with size sH x sW square meters. .#; ; = <o,1> means
that grid cell (i, j) is occupied by the ¢ instance of object
o in the environment. Since we are using the Mask2Former
panoptic segmentation model trained on the COCO dataset
[12], 0 € O (where O is the set of objects present in the
COCO dataset). To build our map, similar to VLMaps, we,
for each RGB-D frame, back-project all the depth pixels u =
(u,v) to form a local depth point cloud that we transform to
the world frame using the pose information. For depth pixel
u = (u,v) belonging to the i’* RGB-D frame, let (py*", pi*")
represent the coordinates of the projected point in the grid
map A .

Integrating Instance-level information: With the oc-
cupancy map defined, we now utilize community detection
algorithms to separate out the different instances in the

environment. Specifically, we use the modularity-based Lou-
vain method, a greedy, hierarchical optimization method that
iteratively refines communities to maximize the modularity
value. The modularity value is a measure of the density
of links within communities compared to links between
communities.

Let the output of the panoptic segmentation model foru=
(u,v) be (0juy,tiuyv). This means object 0;,,’s tl v instance
within the frame is present at pixel u. We use this information
to set the object label o for .Z P p, ) as 0;,,,. When there
exist multiple 3D depth pixels prOJectmg to the same grid
location in the map, we retain the label of the pixel with the
highest vertical height.

To divide the different grid cells labeled having object o
into different instances, we construct an undirected weighted
graph G = (V,E, W), where each grid cell (i, j) for whom the
object label of .#; ; is equal to o is included as a node in the
set of vertices V. Whenever two neighbouring pixels u; =
(u1,v1) and uy = (u2,v7) belong to the same entity in the ith
RGB-D frame, their corresponding grid cells (p§“™"!, py* ™)
and (py*2"?, p}*2"?) should also belong to the same instance
in real-world. Hence, whenever pixels u; and up have the
semantic label o and <0; y, v+ tiu v) = (Oisyvyslitiy, vy )s 1€
depth pixels u; and up belong to the same entity within
the image, we increase the edge weight between grid cells
(Pt phfvty and (ph@'2, pi*>"2) by one. This helps us in
transferring the instance segmentation information present in
the panoptic segmentation outputs of the RGB-D frames to
our map and also helps us to track the same instance across
frames using the pose data. To prevent the frequency of
visiting a particular area in the environment during mapping
from unfairly affecting any edge weight, we normalize all
the edge weights by the number of times their constituent
nodes (grid cells) were observed across all RGB-D images
for that scene. Ideally, in our graph, all grid cells belonging to
the same connected component should belong to the same
real-world entity. But Mask2Former masks are not perfect
at a pixel level; hence it is possible for spurious edges to
be drawn between nodes belonging to different real-world



entities. However, such edges are likely to be few in number.
To disregard such spurious edges, we group the nodes in
V using community detection algorithms instead of naively
breaking them into connected components.

We initialize the graph with a separate community for each
node. We use the Louvain community detection method,
which involves two phases: (1) Modularity optimization and
(2) Community aggregation. During modularity optimiza-
tion, for each node in the graph, we compute the change in
modularity by moving it to neighboring communities. The
node is transferred to the community, which results in the
highest increase in modularity. This procedure is repeated
for all nodes until no further improvement in modularity
is possible. In the community aggregation phase, the com-
munities formed in the modularity optimization phase are
considered single nodes. The weights of the edges between
the new nodes are determined by the sum of the weights of
the edges between the nodes in the original communities. The
two phases are iteratively repeated until the modularity value
converges. After convergence, we get a labeled graph, where
the nodes are grouped based on their community member-
ship, i.e., occupancy grid cells belonging to the same instance
are grouped together for all the objects in the environment.
To correct the over-segmentation of communities, a post-
processing step is applied to merge communities C; and C;
if more than K% of the members of C; are neighbors of
some member of C;.

In contrast to VLMaps, our approach doesn’t utilize the
high dimensional LSeg [13] feature embeddings for semantic
map creation, which provides a memory-efficient mechanism
to construct the instance-level semantic occupancy grid.
For comparison, VLMaps representation requires an average
storage of about 2 gigabytes for a 1000 x 1000 map, whereas
SI Maps needs only about 16 megabytes for the same map
size. Additionally, the proposed approach is highly flexible
and adaptable, as it can easily incorporate other types of
sensor data like LiDar, IMU and plug different segmentation
models. The provision of tunable hyper-parameter K further
provides controllability in our approach, which is a desired
capability for real-world deployment. In the next section,
we show how SI Maps can be directly used for language-
conditioned navigation.

C. Language-based Navigation

The significance of Semantic Instance maps becomes
apparent when dealing with commands that necessitate
instance-level grounding. For a given language command,
we would like to identify the region in SI Maps where
the robot must navigate to execute the command success-
fully. Additionally, since different commands can refer to
different navigational maneuvers, we must also determine
the maneuvers required for a specific language query. To
achieve this, we define function primitives for each possible
maneuver, reducing the task to classifying the appropriate
function primitive for each sub-command. For this classifi-
cation, we utilize the powerful large language model (LLM),
ChatGPT[14], for motion planning.

# navigate to fourth closest chair

chair = bot.get closest_instance('chair’, instance=4)
if chair is None:

exit(0)
bot.navigate(chair)

# walk to the third cabinet to your left and then
walk to the 2nd chair closest to it

cabinet = bot.to_your_left('cabinet’, instance=3)
bot.navigate(cabinet)
chair = bot.get closest_instance('chair’, instance=2)
if chair is None:

exit(0)
bot.navigate(chair)

Fig. 4: An example of the executable Python code generated
by ChatGPT for the given language commands. The gen-
erated code includes an instance parameter in the function
primitive call for navigating to the specified instance in the
environment.

LLMs, trained on billions of lines of text and code,
demonstrate advanced natural language understanding, rea-
soning, and coding capabilities. Similar to the approach with
VLMaps, we repurpose LLMs to generate executable Python
code for the robot. Specifically, we supply ChatGPT with the
list of function primitives and their respective descriptions.
We then prompt ChatGPT with several language queries
accompanied by the corresponding ground truth Python code
containing a sequence of function primitives based on the
language command. During inference, for each language
command, we provide ChatGPT with the list of objects
present in the SI Maps and generate Python code that refers
to the specific instances involved in the language command.

In Figure 4] we show a few examples of the Python
executable code generated by ChatGPT for the given com-
mands. ChatGPT successfully generates the correct exe-
cutable code after prompting it with a few examples of
language queries and corresponding ground truth Python
executable code. To ground instances, our function primitives
calls also include an instance parameter to handle instance-
specific queries. The instance parameter is directly inferred
from the language command by ChatGPT along with the
object of interest. Overall, we define 23 function primitives
for complex navigational maneuvers like moving between
two objects, navigating to n’* closest object, etc., and the
essential turning and moving primitives.

IV. EXPERIMENTS
A. Experimental Setup

We showcase the effectiveness of our approach on multiple
scenes from Matterport3D [15] dataset in the Habitat [16]
simulator. Matterport3D is a commonly used dataset for eval-
uating the navigational capabilities of existing VLN agents
in an indoor environment. The robot must maneuver in a
continuous environment, performing navigational maneuvers



specified by the natural language command. For top-view
map creation, we collect 5,267 RGB-D frames from 5
different scenes and store the camera pose for each frame.

Baseline: We evaluate against a logical baseline where the
semantic top-view maps from the VLMaps-based approach
are separated into separate instances. If the objects in the
environment are well separated, the semantic segmentation
output should already contain the information required to
separate different instances of similar objects by simply
applying connected components. As a result, our baseline
involves applying connected components over the VLMaps
output. However, in realistic scenarios, different instances of
the same object can be close to each other; for example:
in a restaurant, chairs belonging to the same table are close
to each other. In such a scenario, just computing connected
components will not work, as multiple instances will get
clubbed into a single instance.

Evaluation Metrics: Like prior approaches [1], [8], [17]
in VLN literature, we use the gold standard Success Rate
metric, also known as Task Completion metric to measure
the success ratio for the navigation task. We compute the
Success Rate metric through human and automatic evalu-
ations. For automatic evaluation, we use the ground truth
environment map and compute the Success Rate using a pre-
defined heuristic where the navigation sub-goal is considered
successful if we stop within a threshold distance of the
ground truth object. For human evaluation, we verify if the
agent ends up in a position desired according to the query.

B. Evaluation Results

In this section, we perform quantitative and qualitative
comparisons of SI Maps against VLMaps and VLMaps
with connected components. We compare the performance
of each scene representation for the downstream language-
based navigation task using the Success Rate in table [l We
use the same function primitives for all the methods.

Human evaluation was done because of the observation
made during a few queries where the agent ended up close
to the target object, but it did not complete the task in the
desired way.

Success Rate

Method
Human Evaluation = Automatic Evaluation
VL Maps 0.24 0.46
VL Maps with CC 0.34 0.48
SI Maps (K=5) 0.80 0.88

SI Maps (K=9) 0.76 0.88

TABLE I: SI Maps outperform other baseline methods by
significantly large margins on the Success Rate metric. The
best results are highlighted in bold.

We observe that SI Maps exhibit a remarkable improve-
ment in performance compared to other approaches. SI Maps
achieve an impressive two-fold increase in success rate
metric compared to 24% obtained by VLMaps on human
evaluation, demonstrating a substantial leap in the instance-
specific goal navigation. Since VLMaps only contain seman-

tic information, they fail on queries that refer to specific
instances of an object, like “navigate to the second counter”.
Our logical baseline, VLMaps with connected components,
can handle some instance-specific queries, resulting in an
incremental performance gain of 10% for human evaluation
than vanilla VLMaps. However, the success of this method is
observed in scenes where neighboring instances of the same
object have ample room between them. In contrast, real-life
environments such as offices, restaurants, and hospitals often
have objects in close proximity to each other. In these cases,
instance-level information is essential for distinguishing be-
tween neighboring objects. SI Maps demonstrate robustness
to object placement in the environment by directly utiliz-
ing the instance-level information provided by the instance
segmentation model during the occupancy grid creation.

C. Qualitative Results

. Goal marked on Color .
Queries A-star Trajectory
Top Down Map
Navigate
to the 3rd
chair on
your left
Go to the
closest
bed
Move to
the
farthest
toilet
===} Bot's pose L ] Start position
X Goal position
. Final Goal-points A-star path

Fig. 5: The above figure shows the agent in different scenes
in a simulated environment with three different queries.
Images on the top show the RGB top-down view map, along
with the segmented goal object instance. The corresponding
images on the bottom represent the path taken by the agent
to reach the desired object from the initial location.

In this section, we showcase qualitative examples of our
approach for the vision language navigation task. The results
are illustrated in Figure [5] with the corresponding A-star
trajectory using SI Maps for navigation. SI Maps allow
navigating to specific instances in the scene based on their
relative distance with respect to other objects (left, center)



and direction-based specification in the global map (right).
The downstream navigation, as a consequence of SI Maps,
is agnostic to the starting pose and orientation of the agent
in the environment.
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Fig. 6: Qualitative example of the instance-level semantics
captured by different methods for all the chairs in the
environment. SI Maps clearly localize the different instances
in the map.

We also show qualitative comparisons of different methods
on the quality of instance-level top-view maps in Figure [6]for
different seating objects (chair, couch, sofa) in the simulated
environment. Our approach effectively captures the instance-
level semantics of objects in the environment, recovering
32 instances out of 29 present in the map (with 3 extra
noisy segments). In contrast, the baseline of VLMaps with
connected components detects 26 instances, but most of them
are noisy segments, and it merges several separate instances
(for the same object in close proximity) into a single instance.
Our results are particularly impressive in the middle region
of the map, which corresponds to the dining area in the
environment. Here, the chairs are in close proximity to
each other, and the vanilla VLMaps approach fails when a
particular instance of chair is queried. Similarly, applying
connected components-based heuristics to separate instances
is not enough, as the semantic segmentation masks of the
chairs end up being connected with each other, resulting in
multiple instances being merged.

The VLMaps-based approaches rely on alignment be-
tween per-pixel visual embeddings and linguistic feature
embeddings, which can be sensitive to noise due to the
unconstrained nature of the association. The benefit of our
feature-embedding-free approach becomes evident as we di-
rectly constrain the occupancy grid creation with the instance
segmentation masks. As a result, SI Maps have considerably
less noise than derivative VLMaps approaches. Community
detection further helps reduce noise by filtering out spurious
communities formed due to noise, leading to a much cleaner
map, which can also be observed in Figures [T] [

V. CONCLUSION

In this study, we introduce a novel instance-focused
scene representation for indoor settings, enabling seamless
language-based navigation across various environments. Our
representation accommodates language commands that refer
to specific instances within the environment. Furthermore,
our map creation method is more memory-efficient, result-
ing in an impressive 128-fold decrease in storage, as it
does not rely on high-dimensional feature embeddings for
visual and linguistic modalities. Additionally, our approach

demonstrates robustness in relation to object placement in the
environment and is less vulnerable to noise than previous
methods. We showcase the practicality of the proposed
SI Maps using success rate and panoptic quality metrics.
Future research could investigate 3D instance segmentation
techniques to incorporate instance-level semantics into the
occupancy grid creation process directly.
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