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Abstract— Robot swarms, through redundancy, offer fault-
tolerant distributed sensing and actuation, but can lack complex
mission-level decision making. Pairing a human operator with
the swarm can improve decision making but only if the
operator maintains situational awareness—knowledge of the
current state of the swarm—as well as being able to anticipate
future states. We show how formal methods, in the form of
probabilistic models, executed and verified at runtime alongside
the system can aid situational awareness by providing valuable
insight into both current and future situations. Two models,
for determining task and mission success probabilities, are
given, and we show that statistical model checking allows
timely approximate predictions that take no more than 1s
while staying within 2% of the exact solution. We highlight
and implement approaches to display this information to an
operator, and show how models can be used to try what-if
scenarios before decisions are made.

Index Terms— Human-swarm interaction, probabilistic mod-
elling, runtime verification, digital twin.

I. INTRODUCTION

Resilience is an important feature of robot swarms as no
single point of failure exists in the system and missions can
still succeed, although with different non-functional proper-
ties, when robots are removed from the system. Despite this
advantage, the increased complexity from multiple devices
means that when deploying robot swarms in critical missions
it remains difficult to reason about and guarantee properties
of the overall system.

An essential property for a swarm system is feasibility,
such as the feasibility of the mission, that is, how likely
a mission is to succeed based on the current situation.
Given the complexity and stochasticity involved in swarms,
operators are not always capable of reaching a conclusion
that a swarm may or may not reach a certain goal by
merely observing the status of individual agents, as shown
in [1]. In earlier work [2], we interviewed experienced
Uncrewed Aerial Vehicles (UAV) operators and asked for
the key requirements of a successful swarm operation. In
their answers, the terms ‘System monitoring’ and ‘UAV
status’ are frequently used to refer to the information that the
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operator has about the status of the mission and the swarm.
Motivated by this demand in practice, in this study, we take
a step further in implementing this requirement and use
formal methods to inform the operator about the feasibility
of a given task. We apply formal models in the form of
Continuous-Time Markov Chains (CTMCs) and Continuous
Stochastic Logic (CSL) [3] to reason1 about swarm systems.

We focus on the specific scenario where a swarm of UAVs
is applied to the task of Multi-Agent Pickup and Delivery
(MAPD) [4], [5]. As our focus is on how runtime models
can be used in swarm environments, not to gain insight into
a specific physical environment, we evaluate our approach
using the Human And Robot Interactive Swarm (HARIS)
Simulation platform [6] as a proxy for a real setup. An
important aspect is that the simulator (or real environment)
provides runtime data that we use to parameterise the formal
models. Additionally the simulator can be seen to act as a
control interface like those you might see in human-in-the-
loop deployments [7]. It was carefully designed to reduce
operator workload, and we extend this to show how the
improved situational awareness enabled by the models can
be visualised in practice.

We examine two types of feasibility: task feasibility that
determines the chance a specific parcel delivery task is
successful, and mission feasibility that determines the chance
all delivery tasks are eventually completed. Feasibility is
represented as a probabilistic property, e.g. the probability
that the task/mission is accomplished. The property analysis
is conducted through probabilistic model checking using
PRISM [8].

Formal methods are most commonly deployed at design
time, e.g. to provide certification of systems. Instead we use
formal methods at runtime [9] to improve human decision
making by increasing situational awareness during human-
swarm interaction. To achieve this, we propose a framework
that integrates formal methods/verification, the swarm sys-
tem, and the human interactions together. Our framework
is shown in Fig. 1, and consists of three components: dy-
namically created PRISM models to reason over the swarm
system at runtime and provide quantitative predictions via
model checking. The model checking results are presented
through an interface (part of the simulator). The operator
can utilise this new information to perform decision making,
e.g. determining if new UAVs should be added. These
interactions, in turn, update the PRISM models. By closing

1In the context of model checking reason means proving that a system
meets some logical specifications.



Fig. 1. Integration of formal (PRISM) model, HARIS simulation and control environment, and operator decision making. The right hand panel of HARIS
interface is extended with the feasibility information to assist operator in decision making.

the loop the framework forms a digital-twin [10].
We make the following research contributions.
• We develop a probabilistic formal model of swarm

systems for a delivery scenario. This model includes
movement, battery effects, and failure rates.

• We extend the HARIS simulation environment [6] to
communicate with the formal model dynamically at run-
time to receive up-to-date estimates of mission success.

• We show runtime models give results in a timely man-
ner, and describe how these results might be presented
to an operator.

II. BACKGROUND

A. Human-Swarm Interaction
Humans can have multiple roles when interacting with

swarms, e.g. supervisor, operator, mechanic, teammate, by-
stander, and analyser [11]. Here we focus on the operator
role. An operator has to be aware of the state of the swarm,
the dynamics of the environment, and the progress of the mis-
sion. Studies show strong awareness has a significant impact
on improving the operator performance in terms of decision
making [12], while poor awareness may cause problems in
detecting and intervening during abnormal behaviours [13].

Situational awareness refers to the human operator’s un-
derstanding of a system on three levels: perception, compre-
hension and projection [14]. For human-swarm interaction,
these three levels are adapted into Situation awareness-based
Agent Transparency (SAT) levels: (1) the swarm’s immediate
objectives and intentions; (2) the swarm’s reasoning process;
and (3) predictions of future expectations [15].

We focus on SAT level 3 and aim to provide advanced
indicators to the operator that predict the future outcome for
the entire swarm. This is similar to the approach of [3] where
formal models were used to detect and mitigate cognitive
dissonance: misalignment between the system status and how
it is perceived by the operator1.

Other factors, such as workload and trust also affect
operator’s performance [17]. Psychophysiological studies
show correlations between the level of workload, and both
swarm size [18] and situational uncertainty [19], suggesting

1We use cognitive dissonance to describe the misalignment of the operator
and system views. The term is also used in the psychology filed, where it
generally means that a person holds two conflicting beliefs [16].

this to be of substantial concern in real-life swarm domains
with large numbers of agents in an uncertain environment.
Human trust in swarm applications is believed to be equally
important for understanding the human reliance on swarm.
Multiple factors, including swarm transparency [20], influ-
ence the trust of human operators in the performance of the
swarm [2].

B. Swarm Verification and Modelling at Runtime
Existing approaches to verify swarm systems with formal

methods use techniques like model checking to give guar-
antees on: swarm performance and robustness [21], security
analysis [22], and verification of emergent behaviour [23].
Unlike these approaches, that give guarantees before de-
ployment, we use modelling and verification at runtime to
respond to a system as it exists.

Runtime monitoring [24], uses formal methods to dynam-
ically analyse the execution traces that a system generates
at runtime against formal specifications (i.e. properties that
are mathematically expressed with well-defined syntax and
semantics, often a variant of LTL [25]). Falcone et al.
compare and classify 60 runtime monitoring tools accross
multiple dimensions, including their specifications and de-
ployment [26]. The main activities that current tools do when
conducting runtime monitoring are: synthesising monitors
(i.e. automatas) from specifications, receiving observations
(of the current state [27]) from the monitored system, and
performing trace equivalence against the specification. The
monitors are static once created and observe finite system
executions at runtime. These tools are broadly applied to
verify agent-level specifications that are monitorable, e.g.
safety and co-safety [28], but are challenging to analyse
mission-level specifications, such as the success of human-
swarm systems, where finite observations are usually not
sufficient. Additionally, such systems can evolve based on
human interactions, for example, the changing of the swarm
size and topology. The monitor, thus, may not be capable to
reflect the dynamics along with the system evolution.

Models@ run.time [29], instead, captures the changes
of the system under investigation. A runtime model is a
reflection layer that is causally connected with the associ-
ated system and serves as a self-representation to highlight
the system structure, behaviour or objectives [30]. Runtime
models have been successfully deployed in a range of



application domains, including software development [31],
ongoing design [32], and system reasoning for unforeseen
circumstances during execution [33].

We specifically focus on formal runtime models, where
formal models are constructed and evolve at runtime taking
account of swarm dynamics and human interactions. To
our knowledge, this is the first instance integrating these
two techniques for human-swarm interaction. Importantly, by
modelling, we do not just monitor the system, but can predict
what it might do to improve the situational awareness.

C. Probabilistic Model Checking

We use probabilistic model checking to analyse our
swarm scenario and provide additional situational awareness
not possible from a simulation directly. As swarms oper-
ate in continuous environments, our models are (labelled)
Continuous-Time Markov Chains (CTMC). A CTMC con-
sists of a set of states, with designated initial state(s), and
a function that assigns a transition rate � between any
two states. A transition can occur between states s and s0

only if �(s, s0) > 0, in which case the probability of this
transition being triggered within t time units is 1�e��(s,s0)·t.
Intuitively, this means transitions with a higher rate occur
more often. We label states with atomic predicates to make
it easier to write logical formulae, e.g. s 7! {failure}.

Rather than directly build a CTMC, we use the PRISM
modelling language [34], based on Reactive Modules [35],
that supports high level specification of processes. Processes
are modules consisting of non-deterministic choice over
action-labelled guarded commands (that denote transitions).

A core component of PRISM is a model checker that
allows all possible behaviours of a system to be quanti-
fied [36], e.g. asking the probability a system will fail.
Properties of interest are expressed in an extension of the
Continuous Stochastic Logic (CSL) [3], which is a temporal
logic with probabilistic operators. In this work we only
require the eventually F' temporal operator, that asserts
that, for all paths, we eventually reach a state labelled
where ' is true. Quantitative properties are specified with
an operator P=? [ ] that determines, the likelihood a path
exists where  is true. Bounded variants are possible, e.g.
property P=? [Ft ] requires  to be true within t time
units (domain dependent, e.g. hours, minutes or seconds). In
addition, PRISM also allows rewards (costs) to be assigned
to states. The R operator can quantify reward-based proper-
ties, e.g. R=? [Ct ], where Ct calculates the cumulative
reward within t time units.

For models with a large number of states, exhaustive
model checking can be expensive. To overcome this, the
built-in discrete-event simulator in PRISM allows us to apply
statistical model checking (SMC) [37] to give approximately
correct results. Statistical model checking effectively samples
the model space through repeated simulation instead of
exhaustive search [38], [39] resulting in higher performance
at a cost of accuracy.

III. SWARM MODELS

To show how probabilistic model checking can be used
to provide situation awareness in the form of feasibility
information, i.e. probabilities of success (a domain-specific
notion) to an operator, we use a set of UAV mission
scenarios. Each scenario consists of a set of delivery tasks
each with a given location. A UAV is assigned one task at
a time following a certain allocation sequence. A task is
completed when a UAV successfully moves from the hub to
the delivery location. We count a task as completed when
the UAV completes the delivery, without requiring the UAV
to return to the hub.

We implement two feasibility models: a task feasibility
model determines the probability a single UAV accomplishes
a specific delivery task, and a mission feasibility model that
determines the probability of success for a set of delivery
tasks and a group of UAVs. Importantly, task feasibility
considers a single allocation while mission feasibility must
consider all future allocations. Full models are available in
PRISM format online1.

Models cannot capture all aspects of the system,
and, as is typical in modelling, there are trade-offs be-
tween performance—getting useful results quickly—and
accuracy—capturing more details of the system—, and, as
we will see, it is often necessary to abstract specific details
of the scenarios e.g. by discretising continuous values.

a) Task Feasibility Model: For the task feasibility
model, we want to determine, for a UAV with given task
allocation, the likelihood the UAV makes it from the hub
to the task region without failure, e.g. battery critical, or
background failure (collisions etc.). The main entities of the
model are UAVs and spatial regions. Each UAV has a battery
level that we discretise to four values: high, mid, low or
critical, similar to the technique used in [40]. When UAVs
are not at the hub, their batteries drain at a fixed rate based
on the current battery level, e.g. batteries near critical levels
might discharge faster than those fully charged. A UAV with
critical battery cannot complete a task (task failure).

Next we model movement for the UAVs. Movement in
HARIS is in a 2D environment. When a UAV is assigned
a task, it rotates to adjust its heading (i.e. the yaw angle),
moves towards the task location and then follows a similar
route on its way back to the hub. Specific movement rates in
HARIS are adjusted by added noise to better simulate real
environments, e.g. wind variance.

As CTMCs are discrete state models, they are not well
suited to modelling the continuous space found in the HARIS
simulator and real-world scenarios. Therefore, to capture
movement in our model, we discretise the two-dimensional
Euclidean space by splitting it into a set of spatial regions
(i.e. we define a topological space). UAVs are always in
a specific spatial region r. We define regions based on a
circular radius propagating from the hub as shown in Fig. 2
allowing each region to be identified using an integer with 0

1Full models are available at https://doi.org/10.5281/
zenodo.7649302



Fig. 2. Modelling continuous space as discrete radii.

being the hub, and increasing as distance increases. When a
UAV is assigned a task in a specific region r (or 0 if no task is
available), the goal of the UAV is to move through all regions
[0 . . . r] to deliver a package. As we are in a topological space
we do not have a notion of rotation/heading like in HARIS.
Instead we introduce an extra movement rate between the
regions when a rotation is needed to account for the extra
time a UAV needs to turn. For example, when a UAV moves
r1 ! r0, a rotation is introduced as an extra state at r1 if
needed, in which case the UAV takes more time than moving
r1 ! r0 directly.

To each region, except the hub, we associate a background
failure rate that captures unknown failures associated with
that region, e.g. hazards, failed collision avoidance; and
a rate of movement, e.g. how quickly it moves between
adjacent regions. All UAVs operate independently so the
failure/movement rates are not influenced by the presence
of multiple UAVs in the same region1.

An example task feasibility scenario is in Fig. 2, where
UAV-5 has been assigned Task-7 in region 3. UAV-5 leaves
the hub (region 0) and moves through the two regions
all while being affected by battery drain and background
failures. If UAV-5 reaches region 3 without failure, the
delivery task is accomplished and UAV-5 performs the same
movement in reverse to return to the hub. The model scales
sub-linearly for single UAV assigned with a task in different
regions, starting at 71 states (134 transitions) for a task in
region 1 with a maximum of 113 states (212 transitions) for
a task in region 7. As expected, more states are required for
further tasks but overall the number of states remains low.

b) Mission Feasibility Model: Unlike the task feasi-
bility, which reasons if a single UAV can complete an
assigned task, mission feasibility accounts for all UAVs
and all tasks. All uncompleted tasks form a configuration
c = [n1, n2, . . . , n7], where nr represents the number of
uncompleted tasks in region r. Alongside UAVs, the mission
feasibility model has another important entity: the allocator,
that decides which task is assigned to a UAV. Currently,

1UAVs do not cooperate to improve performance, e.g. through slipstream-
ing, or degrade performance, e.g. through increase collision chances. We do
not directly model collisions between UAVs, but a collision chance can be
included in the region failure rates if required.

TABLE I
MISSION FEASIBILITY SCALING FOR A FIXED CONFIGURATION OF 5

TASKS IN REGION 1.

UAVs 1 2 3 4 5

States 1.1⇥103 7.9⇥104 4.8⇥106 2.7⇥108 1.2⇥1010

Transitions 2.5⇥103 2.8⇥105 2.4⇥107 1.8⇥109 9.7⇥1010

TABLE II
MISSION FEASIBILITY MODEL SCALING FOR A SINGLE UAV AS WE

INCREASE THE NUMBER OF TASKS.

Tasks (Region 1) 5 6 7 8 9

States 1070 1190 1310 1430 1550
Transitions 2458 2707 2956 3205 3454

allocation starts from the closest region and radiates outwards
to further regions. Other allocation strategies are possible,
such as max-sum task allocation [41]. A partial allocation is
in Fig. 2 where UAV-5, UAV-7, UAV-4 and UAV-6 have been
assigned Task-7, Task-3, Task-17 and Task-28 respectively.
They leave the hub and move through regions, being affected
by battery drain and background failures. UAVs return to the
hub once they have completed their tasks, e.g. UAV-8, where
they are re-assigned a new task by the allocator. Once there
are no more tasks to complete the mission is accomplished.

To support missions with a high number of tasks and
a low number of UAVs, we provide an option for UAVs
with critical battery to be recharged in the hub (at a fixed
recharge rate) allowing them to rejoin the mission once their
battery is high. When recharging is enabled, UAVs return
to the hub when their battery becomes critical regardless
which region they are currently in. That is, we assume
critical means just enough battery to return home (regardless
of current location), rather than catastrophic failure. Any
currently assigned tasks are reallocated rather than waiting
for that specific UAV to recover.

Table I shows how the model scales as we increase
the number of UAVs for a fixed task configuration c =
[5, 0, . . . , 0], on the other hand, Table II shows how the model
scales to as we vary the task configuration by increasing
the number of tasks in region 1 for a single UAV2. As
can be seen, the mission feasibility model is sensitive to
the number of UAVs and suffers a state explosion due
to the combinatorial nature of interleavings when more
UAVs are involved, and this causes a challenge for real-time
implementations. The model is much less sensitive to the
number of tasks, and these results suggest the model is best
utilised for missions with low numbers of UAVs and higher
numbers of tasks. Given the cost of UAVs we expect this to
be the more common scenario in practice.

2Model construction is done automatically by PRISM when performing
model checking. PRISM computes the set of reachable states from the initial
state and builds the corresponding transition matrix.



A. Parameters
The reality gap is a well-known problem in robotics:

behaviours that perform well in models/simulations do not
always match the real-world implementations [42]. This
is due to the fact that simulators are based on simplified
assumptions and are not able to fully capture all features
of the real world. To stay as close to reality as possible,
we derive the model parameters directly from the HARIS
platform which has been studied and shown to be able to
cross the reality gap [43]. In CTMCs, parameters, or rates,
affect the probability a transition is taken rather than forcing
a transition. This means that UAVs behave stochastically,
and is enough to capture uncertainties applied in HARIS,
e.g. movement differences due to wind variance.

Parameters for the UAVs include the battery drain rates
�drain, the recharging rate �recharge and the rotation (move-
ment speed adjustment) rate �rotate. The swarm is homoge-
neous, meaning all UAVs are identical and fly at the same
speed and with the same battery consumption, although it is
possible to vary this, e.g. to model faster UAVs.

Parameters for the regions include the background failure
rates �fail

r and the movement rates �move
r for each region r.

Currently all regions are identical so they have the same
failure rate and movement rate. Different rates could be
used to model regions with specific hazards. We assume the
movement rates are symmetrical regardless of what direction
the UAV is moving, although it is possible to vary this, e.g.
to model flying into a headwind.

B. Properties
In PRISM we specify properties using CSL (see Section II-

C). Within the formulae we are allowed to directly access
model variables, e.g. states of the UAVs. We introduce these
informally as we give the properties.

We consider two types of quantitative properties. Time-
unbounded properties describe if a formula is true on an
infinite horizon, while time-bounded properties check if a
formula is true within a limited (bounded) period of time.
There are two main properties of interest: 1. expected task
feasibility: the probability that a UAV, with a given battery,
can accomplish a task in region r; 2. expected mission
feasibility the probability that a group of UAVs, each with
an initial battery level, can accomplish a given set of tasks.

The task feasibility property is expressed as:

P=? [F deliveredi ] (1)

Task feasibility for a UAV i 2 N (where N is the total
number of UAVs in the swarm) with an allocated task is
given as the probability (P) that, from the initial state,
eventually (F) it reaches the task location (e.g. deliveredi
is true). Unlike simulation, these results are exact based
on analysis of the underlying CTMC of the task feasibility
model.

The mission feasibility property determines if all tasks are
completed and is expressed as:

P=? [F c = [0, . . . , 0] ] (2)

HARIS

Sim2PRISMPRISM

info.txt

model.pm

results.txt

Fig. 3. Closed loop runtime verification: system information moves
between HARIS and PRISM through a program, Sim2PRISM, that dynam-
ically constructs a corresponding model for PRISM model checker. Model
checking results are sent back and presented in the simulator allowing
operators to respond if required.

where c is the configuration of all uncompleted tasks and 0
means there is no task pending in the corresponding region.
For all regions r 2 [1, 7], this requests the probability (P)
that, given a swarm of UAVs, eventually (F) we reach a state
where there are no more tasks to complete (nr = 0).

This property can naturally be expressed in a bounded time
as:

P=? [F
t c = [0, . . . , 0] ] (3)

In this case we check all tasks complete within time t.

C. Integration with HARIS Environment
We integrate our PRISM models with the HARIS simula-

tor in two separate ways.
For task feasibility, we precompute a lookup table of

success probabilities based on a single UAV assigned a task
in different regions (r 2 [1, 7]) and three initial battery
levels (high, mid and low). The UAVs are generally quite
successful at completing their tasks so long as they have
enough battery. As the task feasibility model is of relatively
small size, these values are generated through a numerical
(not statistical) model checking approach, i.e. the answers
are an exact probability.

To calculate mission feasibility, we integrate our model
with the simulator to provide verification at runtime as
illustrated in Fig. 3. For runtime verification, HARIS can,
at any point, provide all known information, including the
configuration of tasks (how many tasks to complete in each
region), the number of UAVs and their status (e.g. locations,
battery levels and allocations), allowing a specific model
instantiation to be constructed for analysis. To implement
the process, we use a Python program (Sim2PRISM) as a
middleware to read the information from HARIS, construct
a model accordingly and run the analysis in parallel. Due to
the state explosion of the mission feasibility model (Table I),
we use statistical model checking (SMC), instead of an exact
model checking approach, to get approximate results with
some significance (e.g. ↵ = 0.01).

IV. IMPLEMENTATION AND ANALYSIS
For the models to be useful in practice we must show 1. the

time to compute results is low enough relative to the system
under test, and 2. methods to effectively communicate the
results to operators.
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Fig. 4. Comparing statistical model checking (SMC) and exact model
checking: solution (top) and time (bottom). Fixed task configuration of 5
tasks in region 1 and up to 4 UAVs. Range of SMC results is max–min
approximate solution over 100 trials.

We use a modified version of the HARIS multi-agent
simulation engine that allows calling our verification backend
and displaying the results. HARIS is a Java-based web
app that allows creation and deployment of swarm robotics
scenarios while providing simulation of robot dynamics and
operator control. In realistic setups we expect the system
dynamics, e.g. sensor data, and operator control, e.g. control
messages, to be decoupled.

A. Verification Performance

The models provide two pieces of information to the
operator: success percentage that the current allocation (of
UAVs to tasks) is completed, and success percentage that the
mission will be completed (forecasting all future allocations).
To be useful, this data must be available to an operator in a
timely manner.

As we assume all UAVs are independent, we can compute
the current allocation success for a swarm as the product of
the success probabilities of individual UAVs1.

For mission success percentage, we use SMC to perform
the calculation at runtime. For a fixed task configuration
c = [5, 0, . . . , 0], Fig. 4 compares SMC and explicit model
checking in terms of both approximation accuracy and the
verification time. We tested both methods with up to 4 UAVs
in our mission feasibility model. As expected, increasing
the number of UAVs dramatically increases the time for
exact model checking (e.g. almost 3 days to fully verify
the model with 4 UAVs) making it impractical for use at
runtime2. However, SMC is able to provide results within 1
second for the 4-UAV model, and can be applied to an even
larger models, making it practical for runtime verification.
We performed 100 trials of SMC for the each number of
UAVs and the approximate solution was, in the worst case,
no more than 2% from the exact solution.

1The model is fast enough to also re-compute these each time, but for
such a small number of values caching is more practical.

2Verification of a 5-UAV model ran out of memory.

B. Displaying Results and Decision Making

We expand the existing interface of HARIS to dynamically
display the computed predictions to the operator. Fig. 1
shows our interface in a typical scenario. The operator can
observe the agents delivering packages to the task locations
in the central panel on a satellite view. To the right is a
panel showing the allocation and mission success chances.
These are colour-coded based on a gradient from green for
high probability of success, to red for a lower probability of
success.

In future we are planning to determine how operators
respond to both the predictions, e.g. does it cause them to
change the number of UAVs as supported by the interface,
and the interface elements, e.g. do we need percentages at
all or is colour adequate?

C. What-if Scenarios

A key benefit of having a formal model, that you do not get
with runtime monitoring, is the ability to perform analysis
of what-if scenarios to give the operator extra information
before making a decision. For example, an operator might
query the effect of adding/removing a UAV before taking
the decision, or check the effect of turning off recharging
etc. This could be displayed to an operator graphically,
for example, Fig. 5(a) shows how the success probability
changes with number of UAVs and recharging on/off within
a bounded simulation time. Likewise, an operator might
consider using faster UAVs to improve the success likelihood
but be concerned of increasing energy cost. Fig. 5(b) shows
how the probability and the battery cost (a model reward)
change as more fast UAVs are deployed.

Large sets of parameterised properties can be abstracted by
their upper and lower probability bounds, i.e. their envelopes
of behaviour [44], to improve reasoning scalability and ease
the operator’s cognitive load.

V. DISCUSSION AND CONCLUSION

Formal methods can help reason about the behaviour of
swarm systems, providing mission-level analysis, e.g. proba-
bility of successfully completing a task, that is not captured
by raw data alone, e.g. individual robot speeds/headings.
This allows an operator to understand system complexity and
stochasticity, and anticipate future events to perform effective
decision making.

We have shown how to combine formal modelling and
verification, (simulated) swarm system data, and human
control. This approach is fully dynamic and, unlike the
common static use of formal verification, the reasoning is
performed at runtime with new models being instantiated
according to the current swarm status. A benefit of this
approach is that any non-determinism, e.g. the exact task
allocation, is already resolved by the system so we do not
need to support it. By reflecting system data in the model
the framework acts as a digital-twin.

We validated the approach using on a Multi-Agent Pickup
and Delivery task and, as a proxy for a real system, utilised
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(b)
Fig. 5. What-if scenarios of the mission feasibility. (a) Probabilities of
success against time. The probability bounds give information for operators
to decide to add/remove UAVs or turn on/off recharging. Current scenario
is 5 UAVs. (b) Probabilities of success and the battery cost of deploying
faster UAVs. The battery cost is total number of recharges needed.

the HARIS swarm simulation platform to evaluate our frame-
work. Two models are shown, for task and mission feasibility,
both make use of probabilistic model checking using PRISM.
Feasibility information is presented by extending the HARIS
interface to increase the situation awareness and aid the
operator in their decision making. Our models also support
rewards (i.e. costs) associated with states or transitions
allowing, e.g. reasoning about energy consumption.

Future work will validate our approach with real UAVs and
support more what-if scenarios that are not possible when
only monitoring the system. For example:

• How does environment change feasibility, e.g. different
non-radial topologies, or how the probability changes if
there is a hazard, e.g. a fire, in a specific region.

• Effect of different task allocation methods e.g. is success
probability increased for furthest-first allocation?

The HARIS interface will need to be extended to support
operator interactions in these scenarios. For example, buttons
can be dynamically displayed to show options for the oper-
ator at different stages. When reasoning about real systems,
the reality gap becomes even more crucial. To maintain
model accuracy, parameters could be updated dynamically
along with the real system [45].

Our approach is not restricted to this scenario or the
formal methods presented, and instead serves as a template
for verification of swarm systems at runtime, and complex
systems more generally. Although we currently assume cen-
tral access to data, e.g. a digital twin, incomplete data could
be replaced by suitable probabilities. A key piece of future
work involves evaluating how operators interact with the
information provided by models: do they find it useful? and
applying the framework to more scenarios including physical
ones.
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