
Long-Range Visual Homing

Andrew Vardy

Department of Computer Science, Faculty of Engineering & Applied Science

Memorial University of Newfoundland

St. John’s, Canada

http://www.cs.mun.ca/∼av

Abstract— A biologically-inspired approach to robot route
following is presented. Snapshot images of a robot’s environment
are captured while learning a route. Later, when retracing the
route, the robot uses visual homing to move between positions
where snapshot images had been captured. This general ap-
proach was inspired by experiments on route following in wood
ants. The impact of odometric error and another key parameter
is studied in relation to the number of snapshots captured
by the learning algorithm. Tests in a photo-realistic simulated
environment reveal that route following can succeed even on
relatively sparse paths. A major change in illumination reduces,
but does eliminate, the robot’s ability to retrace a route.

Index Terms— visual homing, route following, robot naviga-
tion, insect navigation.

I. INTRODUCTION

It has been postulated that insects memorize snapshot

images at key locations in their environments [1], [2], [3],

[4]. These snapshot images may later allow a goal to be

pinpointed [3], [4], or a route to be retraced [2]. It has been

shown that when wood ants retrace a route, they move so

as to minimize the difference between the current image and

a snapshot image [2]. This paper investigates the application

of this same concept to allow a robot to learn and follow

a route through an environment. Experiments in a photo-

realistic simulation demonstrate the feasibility of this idea

for robot navigation.

In general, the ability to follow a route can be achieved

by recognition-triggered responses [5], which associate local

navigation methods with particular sensory stimuli. A robot

following a route recognizes its current location as being

associated with a particular local navigation method such as

corridor following [6], wall following, or visual homing. The

local navigation method is then followed until the goal is

attained. This goal may itself be intermediate, in which case

it serves as the start point for the next leg of the route. This

style of navigation was first proposed for robots by Kuipers

and Byun [7].

We describe route learning and following methods which

use visual homing for local navigation. Visual homing is the

ability to return to a goal position by comparing the image

currently viewed with a snapshot image taken from the goal.

Cartwright & Collett showed that insects such as honeybees

have this ability [4]. Their experiments showed that honeybees

approaching a food source move so as to visually re-position

landmarks to match their remembered positions as seen from

the goal. The bearing and apparent size of landmarks were

found to be more significant cues than the distance of those

landmarks. This is telling, as distance information could have

been inferred by a bee while approaching the goal—perhaps

then integrated into a volumetric world model. Instead, bees

use the simpler strategy of moving so as to minimize the

difference between images. The algorithm Cartwright & Col-

lett proposed was based on pairing image features (regions),

and moving so as to correct for differences in the bearing

and size of those features. Cartwright & Collett’s algorithm,

as well as several interesting variants were tested for robot

visual homing by Lambrinos et al [8]. A number of different

methods for visual homing have been proposed (see reviews

in [9], [10], [5]), many of which were directly inspired by

Cartwright & Collett.

Most of the published approaches to visual homing have

focused on moving a robot to a single goal position. However,

the approach described here employs visual homing to retrace

a route composed of intermediate goal positions. A small

number of other researchers have investigated this problem.

Hong et al. tested one of the first visual homing algorithms

by applying it to travel along a route where the way-points

of the route were uniformly spaced [11]. This work did not

address the problem of learning more efficient sparse routes,

which is addressed here. Franz et al. used a visual homing

algorithm [12] to learn and travel between nodes in a graph

representation of the environment [13]. Nehmzow & Owen

conducted a series of experiments on route learning using a

self-organized network of place identifiers [14]. While their

robot did not employ visual homing, it used a sonar-based

homing approach to achieve the same purpose. More recently,

Argyros et al. proposed a route following method based on

feature-based visual homing [15]. This work differs from the

method presented here in that the features Argyros et al.

employ are tracked between frames. Tracking may be lost

if the homing algorithm receives new data with insufficient

frequency.

The method used here is as follows. In learning a route,

the direction back to the last captured snapshot image is

computed by visual homing and compared to the direction

computed by odometry. If there is a sufficient angular dif-

ference between the two, a new snapshot image is captured.

The impact of the angular difference threshold and the degree

of odometric error on the number of snapshots captured is

investigated here. The route following method uses visual



homing to home, in sequence, to the positions where snapshot

images had been captured.

In the next section we describe the visual homing method

used to travel between snapshot positions. Following this, the

learning and route following algorithms are presented. The

next section describes the simulated test environment. The

results section follows which details the findings on both route

learning and following. We conclude with a short discussion

and closing remarks.

II. VISUAL HOMING

The visual homing method employed here is Möller and

Vardy’s Matched-Filter Descent in Image Distances (MF-

DID) [16]. This method builds upon the work of Zeil et

al. who found that near the snapshot position the image

distance function varies smoothly and monotonically with

spatial distance [10]. Zeil et al. tested gradient descent on

image distances as a means of homing. However, in order to

estimate the local gradient of the image distance function, it

was necessary for the robot to make exploratory movements

to sample this function at different points in space. These

exploratory movements are costly in terms of both time and

energy. Möller and Vardy found that these movements could

be eliminated by warping the current image as if the robot

had made an exploratory movement. An approximation to

the image distance function can then be sampled. Möller and

Vardy found this new method superior in performance to the

original gradient descent method on a database of images1.

III. LEARNING

For the robot to learn the required route, it must first

be manually driven along it. The learning algorithm records

snapshot images and associated odometric information from

particular points along the route. The simplest method would

be to record snapshots at the maximum capture rate. However,

this strategy is undesirable because of the large amount of

memory required. The odometric information stored by the

algorithm is an approximate vector back to the position of

the last snapshot—known as an odometry motion vector. If

the robot’s ability to dead reckon were extremely accurate,

these odometry motion vectors would be sufficient to allow

the robot to retrace its route. However, any odometric sensor

incurs cumulative error which renders odometry insufficient

as the sole cue for navigation.

The learning algorithm proceeds as follows. We assume

that the robot has already captured a snapshot image and that

its odometric estimate of the snapshot position is (xss, yss).
At each step along the route, the robot uses visual homing

to compute the angle βvh to the last snapshot position. The

odometric position gives a second estimate of the angle to the

last snapshot,

βo = atan2(y′

o
− yss, x

′

o
− xss) + π

1However, the fixed step size imposed by the image database may have
been detrimental to the performance of the original method.

where (x′

o
, y′

o
) is the current position from odometry. The

difference between these two angles ∆β is computed and

mapped to the range [0, π). If ∆β exceeds a threshold angle

φ, a new snapshot is captured.

When a snapshot is captured the previous image is stored

as the snapshot image (it is added to a growing list of

snapshot images). The previous image is stored because at

the current position ∆β > φ. This condition is a heuristic,

which indicates that homing back to the last snapshot position

may not be successful. Whenever a snapshot is captured, an

odometry motion vector is also stored. This vector points from

the previous position of the robot to the position of the last

snapshot vector: [xss − xo, yss − yo]. The robot’s previous

position from odometry is (xo, yo).
The algorithm just described learns the reverse route while

travelling forwards along the route. At each step, we estimate

the ability of the visual homing algorithm to take the robot

back to the last snapshot position. The region surrounding a

snapshot position within which homing to that position would

be successful is known as the catchment area [4]. Catchment

areas for different snapshots vary in size and shape. The above

algorithm gives us some assurance that the route segment

between the current position and the last snapshot position

lies in the catchment area of the last snapshot. However, we

cannot conclude that the last snapshot lies in the catchment

area of the current image.

The forward route can easily be learned by treating the

current image as the snapshot and determining whether the

last snapshot position falls within the current image’s catch-

ment area. This algorithm would be essentially the same as

that presented above, with the exception that the roles of the

images are interchanged. For the rest of this paper we will

deal only with the reverse route, and will therefore drop the

term ‘reverse’.

IV. ROUTE FOLLOWING

We assume at the start of route following that the robot is

placed at the beginning of the route. In principle, the stored

odometry motion vectors would be sufficient to follow the

route. However, in the presence of noise this strategy becomes

untenable. We apply a two-stage process for route following.

In the first stage, the robot travels along the current odometry

motion vector. That is, it simply turns in the direction of

this vector and travels by a distance given by the vector’s

magnitude, scaled by a factor k. The scaling factor k is set to

0.8 in the experiments below. Without this factor it is possible

for the robot to overshoot the goal. Overshooting remains

possible even with k < 1, but its likelihood is reduced.

In the second stage, visual homing is used to guide the

agent to the goal. Visual homing thus acts to correct for errors

in the odometry motion vector, and for further errors that may

be caused by moving along this vector (not simulated here).

After each step of visual homing the agent tries to determine

if it is sufficiently close to the goal (see below). If so, the

next stored snapshot is selected as the goal and the two-stage

process begins again.





(8,5) (0,-5)

(-15,-5) (-15,35)

(5,35) (5,20)

Fig. 2. Panoramic images from the test environment. The top two images in each block of four were generated in the original test environment. The bottom
two were generated in the modified environment described in section VI-C. Images were rendered at the corners of the route shown in figure 1.

indoors. Alternatively, a search for the lowest image distance

in orientation space can serve as a visual compass [10].

VI. RESULTS

A. Learning

The number of snapshots captured while learning a route

depends upon the threshold angle φ and upon the degree

of odometric error. This dependence was investigated by

learning the route described above using various values of

φ and various degrees of odometric error. The values of φ

tested were 75◦, 60◦, 45◦, 30◦, and 15◦. The four odometry

parameters, α1, α2, α3, and α4, were all set to the same value,

chosen from {0, 0.2, 0.4, 0.6, 0.8, 1.0}.

Figure 3 shows examples of learning the route with φ =
45◦ and two different levels of odometric error. Figure 4 plots

the number of captured snapshots versus odometric error. It is

clear that the number of captured snapshots is an increasing

function of both φ and odometric error. Thus, to obtain a

sparse route we must use a relatively large value of φ (such

as 45◦) and maintain low odometric error.

Figure 5 shows home vector fields surrounding a subset

of snapshot positions for the route learned with φ = 45◦.

These home vector fields are generally of good quality, in

that an agent placed in the near vicinity of each snapshot

position could home successfully. In particular, it appears that

our route following method will be robust to small deviations

from the route.

However, some of these vector fields have an asymmetric

appearance. This is particularly evident for vector fields

captured within the central corridor. Recall that these home

vectors are obtained by estimating the gradient of the image

distance function. If this function has a symmetric cup-like

appearance then the negative of this function’s gradient will

always point towards the global minimum. However, if this

function has a more elongated shape, the gradient will be

deflected away from the global minimum. Within the central

corridor the image distance function is indeed elongated along

the axis of the corridor. This is because movements along the

corridor axis produce relatively small changes in the image.

However, movements orthogonal to the corridor axis cause

a large shift in the apparent position of the corridor walls.

Thus, many ceiling or floor pixels become wall pixels, and

vice versa, resulting in a large change in SSE. A means of

correcting this effect has been suggested by Möller [20].

B. Route Following

In this section we test the ability of a homing robot to

follow a learned route. The robot is positioned directly upon

the first node of the route. The snapshot image associated

with the second node is then activated and route following

commences.



−40 −30 −20 −10 0 10 20

−20

−10

0

10

20

30

40

(a) αi = 0, snapshots = 18

−40 −30 −20 −10 0 10 20

−20

−10

0

10

20

30

40

(b) αi = 0.4, snapshots = 18

Fig. 3. Routes learned for φ = 45
◦ and two different degrees of odometric

error. Snapshot positions are indicated by ‘*’ characters. The odometry
motion vectors stored at each snapshot are shown.

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

Odometry error

N
u

m
b

e
r 

o
f 

s
n

a
p

s
h

o
ts

φ = 75
°

φ = 60
°

φ = 45
°

φ = 30
°

φ = 15
°

Fig. 4. Number of snapshots learned for the route for varying values of
φ, and for varying levels of odometry error. Each data point for non-zero
odometric error was obtained by averaging the number of snapshots captured
across five learning runs.

Homing attempts were made on routes learned with no

odometry error. As found in the previous section, increasing

the odometric error has the same essential effect on learned

routes as decreasing φ. Thus the effect of odometric error

on learned routes was not tested for route following. Note

that current odometry information is not used during path

following.

To select the arrival detection threshold, τsse, candidate

values were chosen from the set {20, 40, . . . 200}. Route

following was successful on the route learned with φ = 45◦

for τsse ≤ 160. Route following was judged to be successful

if the agent was able to return to within 2.5 units of each

snapshot position. Within these successful cases we generally

find that higher values of τsse lead to shorter routes because

arrivals are detected earlier. However, if τsse is set too high

then premature arrival detection can occur. This is a serious

problem as it can cause route following to fail. Setting τsse

too low merely extends the length of the route followed. Thus,

we choose a conservative value of τsse = 60.

Figure 6(a) shows an example of route following for

the route learned with φ = 45◦. An oscillatory motion is

noticeable in some parts of the route trace. This is due to

imperfections in the home vector fields as discussed in section

VI-A. The oscillatory motion that results has actually been

reduced somewhat by averaging the current home vector with

the two previously computed home vectors.

Route following was tested for routes learned with φ set to

each of the following values: 75◦, 60◦, 45◦, 30◦, 15◦. It was

found that the route could be successfully followed in all

cases.

C. Modified Environment

The ability of the method to cope with a large change in

illumination was tested. The lights labelled ‘dim’ in figure 1



−40 −30 −20 −10 0 10 20

−20

−10

0

10

20

30

40

Fig. 5. Home vector fields for a subset of the snapshot positions learned with
φ = 45

◦. This subset was chosen so as to avoid overlap between adjacent
home vector fields.

were dimmed by applying a fading function such that the

light intensity falls off linearly with distance. As can be

seen in figure 2, the change in local lighting conditions is

considerable for some positions.

The snapshot images and odometry motion vectors learned

for the unmodified environments were used for homing within

the modified environment. On the initial test it was found

that route following failed for all learned routes. However,

an inspection of the route traces revealed that the route was

still being followed, but that the distance from the robot to

the true route was deviating by a larger amount. Therefore,

the threshold for successful route following was increased

to 5 units. With this increased threshold, route following

was found to be successful for all learned routes. However,

for the routes learned with φ = 15◦ and φ = 75◦ the

robot’s trace either intersected one of the walls, or came

very close to doing so. Therefore, we can only say that route

following was truly successful for three of the five learned

routes. Performance on the φ = 45◦ route is shown in figure

6(b). Note that this particular route took 170 moves to travel

along, whereas the same route took only 102 moves in the

unmodified environment. Also, no arrivals were detected in

the modified environment, whereas 10 out of 17 were detected

in the unmodified environment. The lack of successful arrival

detection accounts for the increase in oscillatory behaviour

which is evident in figure 6(b).

VII. CONCLUSIONS

The proposed route learning and following methods were

found to perform quite successfully within the unmodified

−40 −30 −20 −10 0 10 20

−20

−10

0

10

20

30

40

102

(a) Original environment; Total moves: 102

−40 −30 −20 −10 0 10 20

−20

−10

0

10

20

30

40

170

(b) Modified environment; Total moves: 170

Fig. 6. Routes followed in the original and modified environments (routes
learned with φ = 45

◦). Dashed lines indicate movement along odometry
motion vectors. Solid lines indicate visual homing. Transition points between
snapshot positions are marked by either a dot (arrival detected) or an ‘x’
(timeout).



environment for all tested values of φ. It was especially en-

couraging that the following method should succeed even on

relatively sparse paths (for φ = 75◦ the number of snapshots

captured was 14). As expected, the number of snapshots

captured while learning a route was found to be an increasing

function of φ and odometric error. Tests within the modified

environment showed that performance was clearly dependent

upon some degree of constancy between the conditions of

the environment in which the route was learned, and the

conditions of the environment in which the route is followed.

Nevertheless, route following was found to succeed for three

of the five learned paths when the threshold for successful

route following was increased.

The route following methods of wood ants and the visual

homing methods of honeybees provided inspiration for the

methods described here. Yet, at this stage in the research,

we cannot make claims as to the relevance of these results to

biology. One possible direction of future research would be to

replicate the experimental conditions presented in [2] using

a mobile robot instead of an ant as the test subject. Com-

parisons between the performance of the algorithm presented

here and related algorithms might allow us to infer possible

correspondences with the algorithm used by ants.

Other possible directions of research might leave the prob-

lem of the relationship to biology aside and focus on devel-

oping these methods for technical applications. One finding

of this work has been the difficulty of the arrival detection

problem. This is the main focus of current research. Future

research efforts will be directed at improving visual homing in

the presence of occlusions, studying visual compass methods,

and elaborating the proposed method for navigation within a

graph of snapshots. It remains necessary to perform a detailed

comparison between the method presented here and visual

mapping-based approaches such as [21]. The method de-

scribed here forms only a route-based map of the environment

(in the sense described by [5]). Such a map lacks many of

the advantageous properties of metric maps, but the question

remains whether such a map would be sufficient for a robot

to operate autonomously in an unstructured environment.

VIII. ACKNOWLEDGEMENTS

Thanks for helpful suggestions from Ralf Möller and two

anonymous reviewers.

REFERENCES

[1] T.S. Collett and M. Collett. Memory use in insect visual navigation.
Nature Reviews Neuroscience, 3:542–552, 2002.

[2] S.P.D. Judd and T.S. Collett. Multiple stored views and landmark
guidance in ants. Nature, 392:710–714, 1998.

[3] R. Wehner, B. Michel, and P. Antonsen. Visual navigation in insects:
Coupling of egocentric and geocentric information. Journal of Exper-

imental Biology, 199:129–140, 1996.
[4] B.A. Cartwright and T.S. Collett. Landmark learning in bees. Journal

of Comparative Physiology A, 151:521–543, 1983.
[5] M.O. Franz and H.A. Mallot. Biomimetic robot navigation. Robotics

and Autonomous Systems, Special Issue: Biomimetic Robots, 30:133–
153, 2000.

[6] J. Gaspar, N. Winters, and J. Santos-Victor. Vision-based navigation and
environmental representations with an omnidirectional camera. IEEE

Transactions on Robotics and Automation, 16(6):890–898, 2000.
[7] B.J. Kuipers and Y.-T Byun. A robot exploration and mapping strategy

based on a semantic hierarchy of spatial representations. Journal of

Robotics and Autonomous Systems, 8:47–63, 1991.
[8] D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and R. Wehner. A

mobile robot employing insect strategies for navigation. Robotics

and Autonomous Systems, Special Issue: Biomimetic Robots, 30:39–
64, 2000.

[9] A. Vardy and R. Möller. Biologically plausible visual homing methods
based on optical flow techniques. Connection Science, 17(1/2):47–90,
2005.

[10] J. Zeil, M. Hofmann, and J. Chahl. Catchment areas of panoramic
snapshots in outdoor scenes. Journal of the Optical Society of America

A, 20(3):450–469, 2003.
[11] J. Hong, X. Tan, B. Pinette, R. Weiss, and E.M. Riseman. Image-based

homing. In Proceedings of the 1991 IEEE International Conference on

Robotics and Automation, Sacremento, CA, pages 620–625, 1991.
[12] M.O. Franz, B. Schölkopf, H.A. Mallot, and H.H. Bülthoff. Where did I

take that snapshot? Scene-based homing by image matching. Biological

Cybernetics, 79:191–202, 1998.
[13] M.O. Franz, B. Schölkopf, H.A. Mallot, and H.H. Bülthoff. Learning

view graphs for robot navigation. Autonomous Robots, 5:111–125,
1998.

[14] U. Nehmzow and C. Owen. Robot navigation in the real world: Exper-
iments with Manchester’s fortytwo in unmodified, large environments.
Robotics and Autonomous Systems, 33:233–242, 2000.

[15] A.A. Argyros, C. Bekris, S. Orphanoudakis, and L.E. Kavraki. Robot
homing by exploiting panoramic vision. Journal of Autonomous Robots,
19(1):7–25, 2005.

[16] R. Möller and A. Vardy. Local visual homing by matched-filter descent
in image distances. Biological Cybernetics (Accepted 14 June, 2006),
2006.

[17] POV-Ray. The persistence of vision raytracer, http://www.povray.org/,
2006.

[18] University of Southern California. Image database,
http://sipi.usc.edu/database/, 2006.

[19] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,
2005.

[20] R. Möller. Newton-based matched-filter descent in image distances.
Biological Cybernetics (Submitted), 2006.

[21] R. Sim and J. Little. Autonomous vision-based exploration and
mapping using hybrid maps and rao-blackwellised particle filters. In
Proceedings of the IEEE/RSJ Conference on Robots and Systems, 2006.


