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Email: yang,sp@aaue.dk

Abstract—The theoretical modeling of active noise control
for an acoustic duct system is discussed. A Partial Differential
Equation (PDE) model with external inputs for the acoustic duct
is first developed by following the physical acoustic propagation
principles. Then this PDE model is converted into an infinite
dimensional complex-valued state space model using the variable
separation technique under the assumption that the acoustic
terminal impedance is constant. The assumed acoustic impedance
can be estimated using the experimental system identification
method. By combining the acoustic duct model with the model of
the canceling loudspeaker module, in which the acoustic coupling
between the acoustic duct and the loudspeaker is also explicitly
modeled, a mathematical model for the entire one-dimensional
active duct noise control system is obtained and validated. The
developed model provides a solid and sufficient platform for
design of active noise control using advanced filtering technique,
advanced control techniques and development of virtual sensors
as well.

Index Terms—Theoretical modeling, parameter identification,
active noise control, virtual sensor

I. INTRODUCTION

Due to the dramatically rapid development of the micropro-

cessor technology in recent decades, the Active Noise Control

(ANC) technique which is regarded as one of effective and ef-

ficient ways to handle low-frequency noises has been attracting

more and more attention from the theoretical perspective and

applicable perspective as well [3], [5], [9], [10], [11], [21].

Along with any kind of ANC development, a mathematical

model of the considered system in some kind of precision

needs to be obtained beforehand, such as the impulse-response

model [9], [11], the transfer function model [12], [15] or the

state space model [7], [18], [17] etc.. On one hand, the model

could be constructed purely based on experimental data, such

as the impulse-response model or transfer function model.

This method is often referred to as the so-called black-box

modeling. This kind of modeling methods is relatively easy in

terms of model construction and precision control, however,

the main drawback of this method is that the developed model

has no physical meanings and the modeling procedure has

to be repeated once the physical system/enviroment changes

(e.g., loudspeaker/microphone shifts position). On the other

hand, the model could be developed pure based on the physical

principles and calculations, and it is often referred to as the

so-called white-box modeling. This kind of modeling method

gets rid of the drawbacks caused by the black-box method,

however, in many cases this modeling method may leads

to an endless procedure or a so complicated model that

it might not be usable for the further purpose, due to the

complicated physics involved. Furthermore, many theoretical

values/calculations which usually are under some ideal as-

sumptions may not leads to a model precise enough to fit to the

reality. Thereby in most realistic situations, these two kind of

modeling methods are combined for model development. This

leads to the so-called grey-box modeling. How to balance the

theoretical modeling part and the experimental modeling part

in the grey-box modeling method depends on the modeling

purpose, the known knowledge of the system, and available

testing facilities etc..

In the following, the grey-box modeling method will be

employed for an ANC modeling problem based on a one-

dimensional acoustic duct system. The strategy is to keep as

much physical modeling part as possible, under the condition

that the developed model is a type of state-space description.

This idea is motivated by the following considerations:

• The model developed in this way consists of the under-

standings of the physical system to the maximal extent

without losing its flexibility, so that it can be used for a

class of systems instead of a specific setup;

• The state space model has a good orientation for applying

advanced filtering techniques (e.g., Kalman filtering tech-

niques, virtual sensor concepts [1], and advanced control

techniques as well [12], [8], [19]; Furthermore,

• The models used by most of existing work are obtained

mainly using the black-box method.

From the practical point of view, the one-dimensional acoustic

duct system can be regarded as a simplification of some

ventilation system for large-sized buildings. By following

the acoustic propagation principle [2], a Partial Differential

Equation (PDE) model is firstly obtained. Then this PDE

model is converted into a infinite dimensional complex-valued

state space model using the variable separation method. By

combining the model of the canceling loudspeaker module,

where the acoustic coupling between the acoustic duct and

the loudspeaker is also explicitly modeled, a mathematical

model for the entire system is obtained. The key system

parameter - acoustic duct terminal impedance can be estimated

using the experimental method by checking the eigenvalue’s
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Fig. 1. Schematic Diagram of the considered system

compatibility [6], [20]. The developed model provide a solid

and sufficient platform for using advanced filtering techniques,

advanced control techniques and development of virtual sen-

sors as well.

The rest of the paper is organized as: Section 2 briefs the

considered one-dimensional ANC system; Section 3 focuses

on the modeling of the acoustic duct system; Section 4

presents the modeling of the canceling loudspeaker module

and afterwards the entire system model; Section 5 discusses

the black-box identification of the system parameter; and

finally, we conclude the paper in Section 6.

II. CONSIDERED ACOUSTIC DUCT SYSTEM

Consider an acoustic duct which diameter is significantly

smaller than its length. As shown in Fig.1, at one end of

the duct one loudspeaker is installed to emulate the primary

noise source. Another loudspeaker which acts as the secondary

acoustic resource and one microphone which measures the

attenuated residual are used in the considered system. The

measured residual goes into an anti-aliasing filter after passing

the microphone’s amplifier circuit. The filtered signal feeds

into the microprocessor/PC which acts as the ANC controller.

The output signal of the controller goes through a reconstruc-

tion filter and then the amplifier circuit for loudspeaker, so

as to drive the canceling loudspeaker to generator a proper

anti-noise signal. From the practical point of view, the duct

should be sealed properly at all openings (microphone ports,

sound sources, etc.) in order to achieve a low background

SNR level. Meanwhile, the microphone must mounted flush

with the inside wall of the tube and isolated from the tube

to minimize the sensitivity to vibration. All relevant system

parameters, values and variables are listed in the following

Table.1.

III. MODELING THE ACOUSTIC DUCT SYSTEM

A. One-Dimensional PDE Model

According to acoustic principles [2], one dimensional hard-

walled duct excited by a pressure input at one end and a mass

flow input in the domain can be described by a linear second-

order PDE:

∂2(u(x, t))

∂t2
− c2 ∂2(u(x, t))

∂x2
=

TABLE I
VARIABLE/PARAMETERS OF THE CONSIDERED ACOUSTIC DUCT SYSTEM

Parameter Notation Value Unit

Duct length L 1.70 m
Duct radius a 0.052 m

Intersection area S 8.5 * 10−3 m2

Sound speed c 343 m/s

medium density ρ 1.21 kg/m3

Loudspeaker location xs variable m
Microphone location xm variable m
Terminal impedance K variable -
Number of modes N variable -

Particle displacement u(x, t) variable m
Particle spatial location x variable m

Pressure excitation(x = 0) p(t) variable N/m2

Mass flow M(t) variable kg/s

−
∂

∂x
(
δ(x)p(t)

ρ
) −

∂

∂t
(
δ(x − xs)M(t)

ρS
) (1)

The terminal at x = L is assumed as a partially reflective

boundary condition. At the open end, some of the acoustic

signal transmits through boundary and part of it will be back

reflected into the duct due to the sudden geometry change from

a well defined environment (inside the duct) to the undefined

ambient space around the duct. It can be formulated as

c
∂u(L, t)

∂x
= −K

∂u(L, t)

∂t
(2)

where K is the acoustic terminal impedance at the open

end, which is complex-valued and will be discussed in the

following section. The duct at x = 0 is modeled as a totally

reflective end, i.e.,
∂u(0, t)

∂x
= 0. (3)

The acoustic pressure inside the duct is related to u(x, t) as

P (x, t) = −ρc2 ∂u(x, t)

∂x
. (4)

Equation (1), (2), (3) and (4) consist of the model of the

acoustic propagation dynamic in the one-dimensional duct

system [7], [17].

B. Variable Separation Method

The PDE-based model obtained from the above section can

be converted into a state-space model description using the

variable separation method [7]. In order to clearly and simply

illustrate the idea. Hereby we consider the homogenous wave

equation (5) and boundary conditions (2) and (3), where

∂2(u(x, t))

∂t2
= c2 ∂2(u(x, t))

∂x2
. (5)

According to the variable separation method, the function

u(x, t) can expressed as a product of a spatial domain function

and a temporal domain function, i.e.,

u(x, t) = X(x)T (t). (6)
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By applying (6) into (5) and using the separation factor λ,

it can be see that the spatial domain function X(x) should

satisfy the following equation:

X”(x) − λ2X(x) = 0. (7)

The general solution of (7) can be written as:

X(x) = Aeλx + Be−λx, (8)

where A and B are some constants. By applying the boundary

condition (3), there is A = −B. Without triviality, we assume

A = −B = 1.

Meanwhile, we can observe that the time domain function

T (t) should satisfy:

T̈ (t) − λ2c2T (t) = 0. (9)

Accordingly, the general solution of (9) can be be written as:

T (t) = Ceλct + De−λct, (10)

here C and D are some constants need to be determined by

specific boundary condition.

Substituting (6) into the boundary condition (2), there is

X
′

(L)T (t) = −
K

c

(

X(L)Ṫ (t)
)

. (11)

At this point the constant D in (10) can be assumed to be zero,

as it is connected to the part of the signal, which is transmitted

through the partial reflective boundary and therefore does

not give any further contribution to the conditions within the

duct part. Thereby we focus on the remaining terms in (11).

Substituting (8) and (10) into (11), there is

λ =
1

2L
ln

(

1 − K

1 + K

)

. (12)

With respect to the Euler equation for the specific value 1 =
e2nπi for n = ±0;±1;±2; . . ., we have

e2λLe2nπi =

(

1 − K

1 + K

)

for n = ± 0; ± 1; ± 2; . . . . (13)

By rewriting above equation, then a complex expression of

eigenvalues for different wave modal can be expressed as:

λn =
1

2L
ln

(

1 − K

1 + K

)

−
nπi

L
; (14)

for n = ± 0; ± 1; ± 2; . . .. The imaginary part of

cλn corresponds the n-th mode resonance frequency of the

considered acoustic duct. Thereby, according to different K

value, there are
(i) for K = 1 permeable duct end

(ii) for K = 0 perfect reflected duct end

(iii) for 0 < K < 1 partial reflective duct end

By summarizing above results, a homogenous state-space

model can be defined as
{

Ẋa(t) = AaXa(t)
ya(t)=̂p(xm, t) = CaXa(t)

(15)

where the infinite-dimensional state vector

Xa(t)=̂[· · · a−1(t) a0(t) a1(t) · · ·]T consists of modal

wave amplitudes, and system matrices are

Aa=̂diag(cλn) =















. . . 0 0 0 · · ·

· · · cλ−1 0 0 · · ·

· · · 0 cλ0 0 · · ·

· · · 0 0 cλ1 · · ·

· · · 0 0 0 · · ·















Ca=̂row vector(−ρc2 d(ϕn(xm))
dx

)n=0,±1,···

=
[

· · · −ρc2 d(ϕ−1(xm))
dx

−ρc2 d(ϕ0(xm))
dx

· · ·

]

.

(16)

where λn is expressed in (14), xm represents the position of

the measurement microphone, and

ϕn(x) = eλnx + e−λnx, for n = 0,±1,±2, · · · , (17)

which is derived from (8).

When the system has external inputs/distubances, such as

the system described by (1), the similar procedure can be used

to obtain a standard state-space model which is described in

the following subsection.

C. State-Space Model

The infinite-dimensional state-space model can be expressed

as

{

Ẋa(t) = AaXa(t) + Baua(t) + Bpp(t)
ya(t) = CaXa(t)

(18)

where the state Xa(t)=̂[· · · a−1(t) a0(t) a1(t) · · ·]T is the

vector of modal wave amplitude. The control input

ua(t)=̂
d(M(t))

dt
(19)

is the mass flow rate generated by the canceling loudspeaker.

The input p(t) is the air pressure generated by the original

noise resource. The output

ya(t)=̂p(xm, t) (20)

is the air pressure measured by the residual microphone

at location xm. Matrices Aa and Ca are defined in (16),
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Bode Diagram

TF of duct−1 (from x=0 to x
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=1.7 with L=2.0 and N=10) rad/sec
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Fig. 2. Frequency Property of the Acoustic Duct

respectively. The other system matrices are defined as

Ba =̂column vector(− 1
4cλ2

nLρS

d(ϕn(xs))
dx

)n=0,±1,···

=





















...

−
1

4cλ2

−1
LρS

d(ϕ−1(xs))
dx

−
1

4cλ2

0
LρS

d(ϕ0(xs))
dx

−
1

4cλ2

1
LρS

d(ϕ1(xs))
dx

...





















Bp =̂column vector( 1
2cλnLρ

)n=0,±1,··· =



















...
1

2cλ−1Lρ
1

2cλ0Lρ
1

2cλ1Lρ

...



















(21)

where function ϕn(x) and coefficient λn are defined as in (14)

and ()17, respectively.
The initial condition for (18) can be determined through [7]

an(0) =
1

4cλnL

∫ L

0

∂u(x, 0)

∂t
ϕn(x)dx

−

1

4λ2
nL

∫ L

0

∂u(x, 0)

∂t

dϕn(x)

dx
dx. (22)

Using the data from Table I, the considered system have the

frequency property as shown in Fig.2.

IV. ENTIRE SYSTEM MODEL

A. Modeling the Loudspeaker Module

The basic structure of a typical low-frequency loudspeaker

can be found in [4]. With respect to a typical voice-coil

loudspeaker, at the small amplitude displacement of the

diaphragm-coil assembly, the dynamic of the loudspeaker

can be approximated by a linear model. System parameters,

values and variables of our considered system are listed in

TABLE II
VARIABLES/PARAMETERS OF THE CANCELING LOUDSPEAKER

Parameter Notation Value Unit

Assembly mass ms 2.8 ∗ 10−3 Kg
Viscous friction fs 5.2 Ns/m

Suspension stiffness ks 12 ∗ 103 N/m
Voice coil resistance Rs 4 Ohm
Voice coil inductance Ls 1.1 mH

Force factor Bl 3.9 N/An
Effective radius rs 0.07 m

Assem. displacement x(t) variable m
Assem. velocity ẋ(t) variable m/sec

Assem. acceleration as(t) variable m/sec2

coil current is(t) variable An
Input voltage uin(t) variable Volt
EMF voltage uemf (t) variable Volt

the following table II.

From the electromagnetic analysis, there are

i̇s(t) = −
Rs

Ls

is(t) −
Bl

Ls

ẋ(t) +
1

Ls

uin(t), (23)

Fs(t) − Fext(t) = msẍ(t) + fsẋ(t) + ksx(t), (24)

where Fs(t) is the electromagnetic force generated by the

voice coils by following principle Fs(t) = Blis(t), and Fext

represents all the external forces acting on the assembly. For

example, if the speaker is mounted in a cavity and faced a

duct in front, then, there is

Fext(t) = Frear(t) + Ffront(t).

The force Frear(t) generated by the air pressure inside the

rear enclosure can be calculated as

Frear(t) =
ρc2S2

d

V0
x(t). (25)

where V0 is the volume capacity of the cavity, and Sd is the

effective area of the speaker, i.e., Sd = πr2
s .

Denote the air pressure in front of the speaker as p(xs, t),
then, the front external force Ffront can be calculated as

Ffront(t) = p(xs, t)Sd. (26)

Combining (23),(25) and (26), a state space model for the

speaker with coupled acoustic dynamics can be obtained as
{

Ẋspk(t) = AspkXspk(t) + BspkUspk(t)
Yspk(t) = CspkXspk(t)

(27)

where the state vector is Xspk(t)=̂[is(t) x(t) ẋ(t)]T and

the input vector is Uspk(t)=̂[uin(t) p(xs, t)]
T , and system

matrices are

Aspk =







−
Rs

Ls
0 −

Bl
Ls

0 1 0
Bl
ms

−
ksV0+ρc2S2

d

msV0

−
fs

ms







Bspk =





1
Ls

0

0 0
0 −Sd



 ,

Cspk =
[

0 0 1
]

.
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Fig. 3. Block diagram of the entire ANC system

This model is a two-input one-output LTI state space

description. Comparing with the existing models [7], [8], [14],

this model consider the coupling acoustic dynamics coming

from the front duct as well as the rear enclosure. The usage of

rear enclosure is quite important to avoid the ”acoustic short-

circuit” from the practical point of view [17]. In the entire

system diagram as shown in Fig.3, the loudspeaker model is

represented by two transfer functions: one denoted as Ḡspk1(s)
is from uin(t) to ẋ(t), another one denoted as Ḡspk2(s) is from

p(xs, t) to ẋ(t).

B. Entire System Model

The entire system model can be obtained by combining the

loudspeaker model (27) and the acoustic model (18) together.

However, the output of the loudspeaker model is the assembly

velocity ẋ(t), while the controllable input of the acoustic

model (18) is the mass flow rate ua(t). Nevertheless, there

is the following relationship linking these two parts, i.e.,

M(t) = ρSdẋ(t) ⇒ ua(t) =
d(M(t))

dt
= ρSdas(t). (28)

Therefore, the following two transfer functions which denote

the output of the speaker model as as(t) are used:

Gspk1(s) = Ḡspk1(s)s,
Gspk2(s) = Ḡspk2(s)s,

(29)

where Ḡspk1(s) and Ḡspk2(s) are defined according to (27).

There are two pressure measurements at locations xs and

xm, respectively, need to be known in order to construct the

physical/control feedback mechanism. The pressure p(xs, t)
is required by the loudspeaker model, and pressure p(xm, t)
represents the pressure measurement by the microphone and

it will be used by the ANC controller later. Furthermore,

in order to evaluate the ANC performance at other spatial

operating points, a movable performance point xp can also

be defined [12]. For simulation purpose, all these pressures

can be calculated based on the acoustic duct model (18). For

instance, we can define the following transfer functions [17]:

Gs
duct1(s) = Gduct1(s) when xm = xs,

Gs
duct2(s) = Gduct2(s) when xm = xs,

Gsm
duct(s) =

Gm
duct1(s)

Gs
duct1

(s) =
nm

a1
(s)

ns
a1

(s) ,

G
mp
duct(s) =

G
p

duct1
(s)

Gm
duct1

(s) =
n

p

a1
(s)

ns
a1

(m) ,

(30)

From characteristics of matrices (16) it can be noticed that

in the calculation of pressures, different spatial point, such as

xs, xm or xp, only appear in vector Ca. Therefore, Gsm
duct(s)

and G
mp
duct(s) are complex constants w.r.t. xs, xm and xm, xp,

respectively.

The entire system block diagram is shown in Fig.3. Even

though this developed model theoretically is infinite dimen-

sional, in the practical design and simulation, this model can

be truncated by taking several acoustic modes though selecting

a proper N . This simplification won’t cause serious problem

to ANC design due to the fact that ANC system is mainly

used to deal with low frequency noises. The neglected modes

can be regarded as modeling uncertainties [12], [18].

V. IDENTIFICATION OF PARAMETER K

It is obvious that the acoustic terminal impedance K plays

a critical role in determining system’s properties. In principle,

K is a complex and frequency-dependent parameter [2], [13],

[12]. However, some simplification or approximation of this

parameter could make the developed model (18) standard. For

instance,in case that K is assumed constant, then system (18)

can be simplified to a two-input one-output LTI system [8],

[15], [17].

The parameter K can be estimated using some system iden-

tification method (black-box method) [6], [20]. The challenge

here is that the theoretically developed model is infinite dimen-

sional and complex-valued with some specific structure [6],

while the model identified through system identification purely

based on measured input and output data is a ”black-box”

product and it is usually real-valued and finite dimensional.

Therefore, a compatible principle is found in [20], which states

the positive imaginary parts of eigenvalues of the theoretical

model should be identical to those of the identified model.

Then the terminal impedance can be estimated by taking

average of its estimations corresponding to each resonance

frequency.

By using one estimated K based on our physical setup,

the developed model is validated through experiments. From

Fig. 4 it can be observed that the resonance frequency of the

developed model is almost consistent with the practical test.

The slight deviation is mainly due to the limitation that K can

only be a constant [20].

In order to get a more precise estimation of K, [20]

proposed a ”peak-by-peak” identification method. The main

idea is that for each identification iteration, select the con-

sidered frequency range covering only one resonance peak,

and meanwhile limit the estimated system order to be two in

the system identification procedure. Finally the K is taking
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Fig. 4. Comparison of the estimated model and the real system

Fig. 5. Comparison of estimated models (”peak-by-peak”) and the real system

average of its estimations corresponding to each resonance

frequency. The main benefit of this method is that the the

complexity and computation load for system identification

procedure is significantly reduced, meanwhile a more precise

estimation of each K can be obtained due to the uncorrelated

data derived by artificial peak-by-peak selection. One output

comparison of the estimated model and real system is shown

in Fig.5.

VI. DISCUSSIONS AND CONCLUSIONS

The developed model serves a solid and sufficient basis for

ANC design using advanced control techniques, such as the

pole-placement design [8], the lead-lag compensators [18], the

mode predictive control [19]. The global attenuation [8], the

selection of best actuatoring/measureing position [15] can also

be efficiently analyzed by simply define the performance point

xp or xs and xm as (sliding) variables in the model [16].

The developed model is also suitable for applying advanced

filtering techniques, such as Kalman filters, for ANC design.

Meanwhile, this model also gives a good orientation for

virtual sensor development [1]. Actually, the virtual sensor

concept is already employed in this model, i.e., the pressure

estimation at the performance point xp. The ANC control

system uses the measured signal p(xm, t) as the feedback

signal to controller, so as to attenuate/minimize the noise

pressure at the performance point, i.e., the pressure p(xp, t) is

not measurable to the controller, even though it is the control

task.

The development of a theoretical model for a class of

ANC system is discussed. The developed model contains the

physical meanings to the maximal extent comparing with all

existing relevant models. The variable separation method is

employed to convert the original PDE model into a state

space description. The experimental modeling is only used

to estimate the key system parameter - acoustic terminal

impedance. The developed model can serves as the solid and

sufficient platform for applying advanced techniques for ANC

design.
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