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Abstract—Inertia-visual sensor systems become more and
more popular in mobile robotics. They allow for global and
drift-free localization at high dynamics. Cameras and inertial
measurement units (IMUs) are complementary sensors which
mutually enhance if correctly fused. However, this complemen-
tary nature brings major problems for the IMU to camera
registration. Several solutions to compute the spatial alignment
are described in literature. In this work, we want to stress the
importance of temporal alignment and compare two methods
for determining the temporal displacement of sensor measure-
ments. The presented temporal registration can be used as
independent preprocessing step without any knowledge about
the spatial relation. Further, we present closed-form methods
to initialize the angular alignment of the IMU and the camera
which can also be applied to setups with gyroscopes only. If
high accuracies are required this result can be used to initialize
any filter or batch-optimization method to improve convergence
and reduce processing time. Simulations and experiments illus-
trate the presented methods and underline the importance of
temporal alignment.

I. INTRODUCTION

Vision based localization and navigation have a large

impact on robotic applications. There are several reasons for

the success of cameras, e.g., their compactness, low-power

consumption and passivity. However, there is a number of

drawbacks that include the large processing costs, motion

blur and the restricted field of view, which effectively reduce

the dynamics of the underlying system. Nevertheless, high

dynamics become more and more demanding in robotic

applications.

Such high dynamics are the strength of gyroscopes and

accelerometers. An inertial measurement unit (IMU) con-

sists of three gyroscopes and three accelerometers pairwise

aligned to three orthogonal axes. Nowadays, especially the

lightweight and cheap MEMS sensors are used to capture

the angular velocity and the acceleration in 3D space. These

sensors run at a high sampling rate, but they are quite

noisy and suffer from biases. In several applications it has

already been shown that the complementary dynamic oper-

ating bandwidths of cameras and IMUs result in a powerful

combination [1], [2], [3], [4].

Several visual-inertial calibration techniques came up in

the last years. They can be categorized in three different
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classes: closed-form solutions by reducing the system’s

complexity [5], [6], Kalman Filter based approaches [7],

[8], [9] and methods which make use of optimization tech-

niques [10], [11], [12], [13]. The first type of solution

allows for an easy computation of the spatial alignment but

requires cumbersome setups, especially for the translational

alignment. Further, it is insensitive to a temporal misalign-

ment, but any error in the physical setup influences the

calibration result. Various Extended or Unscented Kalman

Filter approaches exist which estimate the spatial alignment

as filter state. These methods process the measurements only

sequentially, which makes them online capable, but it also

lessens the registration quality. Additionally, they suffer from

inaccuracies due to the well-known approximations applied

in the filter. The last group of solutions uses optimization

techniques to determine the spatial registration of the two

sensors. This turns them to offline calibration methods, but

which in general achieve higher accuracies.

The filter and optimization approaches are computational

expensive and sensitive to local optima. Hence, a good start-

ing point for the spatial alignment is crucial and reduces the

convergence time significantly. In the following we present a

modified hand-eye calibration method which determines the

spatial alignment between IMU and camera in closed-form.

Fig. 1. A PointGrey Flea2G camera with wide angle lens and a Xsens-MTi
IMU (orange box) as it is used in our experiments.

Most IMU-camera calibration approaches neglect an im-

portant issue for registration, the temporal alignment. Espe-

cially for highly dynamic motions, where the signal to noise

ratio of the IMU becomes practical, an accurate alignment

is crucial. If the sensors contain a clock and provide a time-

stamp for their samples, one can just synchronize the clocks

or the time-stamps to temporally align the measurements.

Several solutions exist to synchronize clocks (an overview is

given in [14]) or the time-stamps (a survey is given in [15]).

However, in general cameras and IMUs provide just the

sensor data and sometimes also a sample counter, but the

first real time-stamp is usually only set by the driver on the

host computer. Hence, a different synchronization concept

must be applied.



Various approaches exist which describe how to fuse

measurements which suffer from time delays in filters. Some

of them assume that the delay is known apriori [16], [17].

Li and Leung estimate the time delay in an UKF [18].

Julier and Uhlmann show how the random and unknown

delays of measurements can be fused using the covariance

union algorithm [19]. Tungadi and Kleeman estimate the

time delay between a laser-range sensor and the odometry

measurements of a mobile robot by computing the phase shift

of a periodic motion [20]. They do not consider any error in-

troduced by slippage or outlier of the range samples. Further,

for their method the spatial alignment of the measurements

is required.

Recently, Kelly and Sukhatme presented an approach

to estimate the time delay between a proprioceptive and

an exteroceptive sensor [21]. The so called Time Delay

Iterative Closest Point (TD-ICP) algorithm tries to minimize

the distance between the orientation trajectory in 3D space

by estimating the angular and temporal alignment between

the sensors. Estimating the angular trajectory by the IMU

requires an error-prone strap-down computation and also

the camera orientation would suffer from drift if no global

landmarks, like e.g. a checkerboard, are provided. Further,

in this work any jitter of the time-stamps is neglected.

In a previous work we described a batch-based optimiza-

tion algorithm to estimate the spatial IMU camera align-

ment [13]. This could easily be enhanced by a further opti-

mization parameter which denotes the time delay. However,

the computational complexity would increase significantly

because the B-spline matrices representing the trajectories

would not be constant anymore and the convergence capa-

bility would probably be reduced due to an additional degree

of freedom.

Estimating the temporal and spatial alignment simulta-

neously allows the delay estimate to compensate for the

spatial alignment error. It seems reasonable to avoid such

a compensation and assume that the temporal and the spatial

alignment are not correlated. By computing the time delay

in a pre-processing step of the spatial registration rejects

such a correlation and prevents any influence of the time lag

estimation by the spatial alignment error. In the following

we present and compare two methods which compute the

temporal alignment independent of the spatial one.

In the next section we describe the single steps to compute

the measurement delay between the sensors. Section III

describes a closed-form estimation of the angular alignment

of gyroscopes and camera. Simulations and experiments are

shown in Section IV.

II. TEMPORAL ALIGNMENT

Any calibration step starts with the data acquisition. While

the calibration approaches for most sensors are based on

static acquisition, gyroscopes need some dynamics to provide

a reasonable signal to noise ratio. Hence, the temporal

alignment of the sensors becomes crucial. Most sensors do

not provide any time-synchronization mechanism nor do they

provide a time-stamp in their data packages. Thus, the only

hint to “guess” the measurement time is the time-stamp from

the driver on the host PC when the sample is received.

However, this time-stamp suffers from

• delay, due to the acquisition time, buffers on the sensors

or/and on the host interface and due to the bus used for

transmission,

• jitter, the driver on the host side has to be scheduled

in order to set the time-stamp,

• data jams, the processor is busy with tasks of higher

priority and cannot process the arriving samples - these

are buffered and all get almost the same time-stamp as

soon as the driver becomes active again.

Thus, the problem arises how to interpret these time-stamps

and whether it is reasonable at all to make use of them.

In three steps we correct the time-stamp sequences of both

sensors and align them: first, the sampling period has to be

estimated, then missing samples and data jams have to be

detected and fixed so that, finally, the sample sequences can

be aligned.

One assumption can be made which holds for most sen-

sors, namely, that the sensor itself acquires the measurements

with a constant frequency. Calibration sequences are usually

rather short, thus, temperature dependent variations can be

neglected at this point. Hence, the first thing to do is

to estimate the sample period. Therefore, we compute the

median, med∆t, of all differences between two consecutive

time-stamps. This rough, but robust, estimate of the sample

period is then used to detect all valid sample differences,

where valid is defined as a time interval ∆i between the time-

stamps ti−1 and ti which varies only up to half the sampling

period. Thus, we define the indicator function v (∆i) as

v (∆i) =

{

1, if 1
2 med∆t < ∆i <

3
2 med∆t

0, else
. (1)

Doing so, excessively long and short acquisition times re-

sulting from missing samples and data jams respectively are

rejected while allowing for up to 50 % jitter. The acquisition

period, mT , can then be computed as the mean of all valid

time differences.

Now, that we know the acquisition period, we can remove

jitter, look for missing samples and sample jams and, thus,

provide equidistant time-stamps. Data jams are characterized

as long gaps between the time-stamps with a sequence of

extremely short time differences following. A sample jam

can only be recovered if the number of samples after the

gap until the first valid sample interval corresponds to the

number necessary to fill the gap. In case there are too few

samples to fill the gap, all samples from the jam have to

be rejected, because it is not possible to figure out which

samples have not been buffered. This follows the strategy

to reject samples rather than use false measurements. In

case the sensor provides a counter, it can be used to detect

missing samples and to partially recover data jams even in

the absence of some measurements. The residual gaps in the

time-stamp sequence represent missing samples and both, the

time and measurement sequence, can be filled with values

“NA” at this points, denoting unavailable samples.



The sequences have now temporally equidistant samples

with periodmT . We can estimate the jitter-free time-stamp of

the first sample, t0, by computing the mean of all deviations

t0 =
1

|Sv|

∑

i∈Sv

(ti − imT ) (2)

with Sv = {i | i ∈ {1..N−1} : v (ti − ti−1) = 1} denoting

the set of all valid time-stamps and N being the number of

samples. Finally, we can align the sequences.

In the following CR∆i
denotes the inter-frame direct

cosine matrix (DCM) resulting from the image based motion

estimation and Gφ̇t,
Gχ̇t and Gψ̇t represents the angular

velocity measured by the gyroscopes at time instance t. In

our notation the upper left letter indicates the sensor or

frame of reference. Further, p will denote the Angle-Axis

representation of a rotation with absolute angle θ and unit

length rotation axis p̂ as used in [22]. To solve the ambiguity

of sign of the Angle-Axis representation, the absolute angle

is chosen to be always positive.

p = 2 sin

(

θ

2

)

p̂ | θ > 0 (3)

While the frames in which the camera and the gyroscopes

measure the rotations may be different, the measured abso-

lute angular velocities θ̇t are frame independent and, hence,

equal up to an unknown measurement error eG and eC .

Gθ̇t + eG = C θ̇t + eC (4)

The absolute rotational velocity of the camera at the temporal

midpoint between two images, ti−0.5, can be computed by

C θ̇ti−0.5
=

Cθ∆i

CmT

, with ti−0.5 = ti −
CmT

2
(5)

In the following two different approaches to temporally

align the camera and the gyros are presented.

A. Temporal Alignment by Cross-Correlation

One way to find the time delay between the sensors is to

solve following problem:

δtG2C = argmax
δt

(

∑

i∈Sv

Gθ̇ti+δt
C θ̇ti

)

(6)

A brute-force solution to this problem is to use cross-

correlation, which has the nice property to be robust against

white noise. The conventional cross-correlation allows se-

quences to be aligned only up to sampling accuracy. To over-

come this problem, a higher sampling resolution with sam-

pling interval ∆t can be used by interpolating the sequences.

In the following we assume, without loss of generality, that

the time interval of the acquired gyro measurements is longer

than the one of the camera. The problem to solve becomes

δtG2C = ∆t argmax
m

(

{xcorr (m)}
Nx

m=−Nx

)

(7)

with Nx = NC
mTC

∆t
and NC denoting the total number of

valid and invalid camera samples. The set {·}
B

i=A contains

all elements for i ∈ [A . . . B] ⊂ Z. The cross-correlation

function is defined as

xcorr (m) =

{

1
Nx

∑M

i=0
Gθ̇i ∆t + m ∆t

C θ̇i ∆t if m > 0
1

Nx

∑M

i=0
Gθ̇i ∆t

C θ̇i ∆t + m ∆t else

(8)

whereasM =
mTC

(NC−1)−m ∆t

∆t
which clips the overlapping

sequences. The interval for m can also be reduced to speed

up processing. The interpolation causes an error which

is proportional to the kind of the chosen approximation.

Further, if the temporal displacement is too large, cross-

correlation may not find the optimal fit anymore because

the overlap of the sequences becomes too small.

B. Temporal Alignment by Phase Congruency

Another way to address this problem is to evaluate the

measurement sequence in frequency domain. Therefore, the

measurements have to be transformed in the frequency

domain resulting in F (ω). The amplitude and the phases

of the signal can be computed by

A (ω) = |F (ω) | , ϕ (ω) = arg (F (ω)) (9)

The phase shift between the common frequencies reveals the

temporal alignment, GδtC . Considering the amplitude, high

frequencies consist mainly of the measurement noise and

the lower frequencies contain the bias of the gyroscopes.

Furthermore, frequency bin 0 has a large spectral leakage

because the absolute angles are defined to be only positive.

Therefore, we ignore all frequencies before the first min-

imum in the spectrum. To suppress outliers and noise we

introduce the following normalized weighting function which

amplifies similar measurements with large amplitude

w (ω) =

(

∑

ω∈Fv

1

w′ (ω)

)

w′ (ω) with (10)

w′ (ω) = (1 −
maxA(ω) −minA(ω)

maxA(ω)
)minA(ω)

=
min2

A(ω)

maxA(ω)
,

maxA(ω) = max
(

GA (ω) , CA (ω)
)

, (11)

minA(ω) = min
(

GA (ω) , CA (ω)
)

and Fv being the set of all valid frequencies. Of course, to

prevent ambiguities it is only possible to compute delays up

to π
ω
, which is half the period of the respective frequency.

Converting the difference of the sensor specific phases to

time we yield following weighted time difference

δtG2C =
∑

ω∈Fv

w (ω)

(

kω2π + Gϕ (ω) − Cϕ (ω)
)

ω
(12)

where kω is the factor which brings the respective frequency

in the range of the delay. These factors have to be computed

in a second iteration. A manually chosen maximum delay is

used to pick all the valid frequencies with a period smaller



than this threshold. Based on the phases and amplitudes

of these frequencies the time delay is computed and the

factors kω for the rest of the frequencies are estimated. Now

all frequencies can be used to refine the estimate. In our

experiments we compare also an alternative where we rely

only on the most significant phase shift corresponding to the

frequency bin with the maximum weight max (w (ω)). This
method is based on the assumption that less noise is involved

in the estimate, even though it should be less robust.

A conventional Fast or Discrete Fourier Transformation

(FFT, DFT) does not allow for gaps in the signal. A gen-

eralization of the DFT which can also deal with such gaps

is presented in [23] and is called Extended Discrete Fourier

Transform (EDFT):

Fα (ω) =

K−1
∑

k=0

x (kT ) α (ω,kT ) (13)

where, in general, α (ω,kT ) 6= e−jωkT . It is an iterative

algorithm which tries to find a transform basis function which

is applicable to a band-limited signal registered in a finite

time interval and providing the results as close as possible

to the Fourier transform. Based on this transformation we can

compute the magnitudes and the phases even for sequences

with gaps.

III. SPATIAL ALIGNMENT

The spatial registration of a camera and a gyroscope can

be seen as solving the rotational part of the well-known

hand-eye calibration problem. To compute the rotational

alignment GRC between the gyros and the camera, we

compute the relative rotations, GR∆i
and CR∆i

, between

two consecutive images i−1 and i. To get the rotations of the

gyroscopes, measured in their coordinate frame G, we simply

integrate the measured rotational speed between two camera

time-stamps. The rotations between two consecutive images

can be computed by conventional techniques, depending on

the landmarks and the knowledge of the environment, and

are relative to the camera frame C.
The task is now to find the rotation GRC which rotates

the measurements from frame C to frame G according to the

well-known hand-eye calibration equation

GR∆i
= GRC

CR∆i

GRT
C . (14)

To solve for the best fitting spatial alignment GR̃C following

least-squares problem over all camera measurements N has

to be solved:

GR̃C =argmax
R

N
∑

i=1

tr
(

GR∆i
R CRT

∆i
RT
)

|R ∈ SO(3)

(15)

A closed form solution for the rotation estimation is de-

scribed and derived in [22] and can be computed as follows.

Let C p̂∆i
, Gp̂∆i

and Gp̂C denote the real eigenvectors to the

eigenvalue 1 of CR∆i
, GR∆i

and GRC respectively. Hence,

they represent the rotation axes of these DCMs. Using this

representation, the system of linear equations to solve for

GpC , consisting of Gp̂C and GθC according to Eq. 3, can

be set up by all measurement pairs as follows
[

C p̂∆i
+ Gp̂∆i

]

×

Gp′
C = C p̂∆i

− Gp̂∆i
, (16)

with [·]
×

denoting the skew symmetric matrix of a vector.

The Angle-Axis form of the rotation GRC can then be

computed from Gp′
C by

Gp̂C =
Gp′

C

‖Gp′
C‖

and GθC = 2 tan−1(‖Gp′
C‖) . (17)

If all rotations are measured about the same axis or the

sensor coordinate frames are rotated by 180◦, this system is

singular and there is no unique solution. However, if there

are at least two rotations about different axes and the angle

between the sensors is not 180◦, a unique solution exists. We

detect the 180◦-exception by inspecting the singular values

σ1, σ2 and σ3 of
[

C p̂∆i
+G p̂∆i

]

×
, where σ1 > σ2 > σ3. If

σ3

σ2

< k, where k denotes a threshold which defines the stack

of skew symmetric matrices to be rank-deficient, a rotation

close to 180◦ between the sensor frames is expected. In

this case the angular alignment is estimated using Sequential

Quadratic Programming (SQP) optimization [24], where the

objective function is defined as

cSQP

(

GRC

)

=

NC
∑

i=1

‖GRC
Cp̂∆i

− Gp̂∆i
‖ . (18)

As starting point for the estimation we use

GRC = DCM
(

p̃∆i
, 180◦

)

, (19)

where

p̃∆i
=

p̃′

∆i

‖p̃′

∆i
‖

and p̃′

∆i
= med

(

{

C p̂∆i
+ Gp̂∆i

}NC

i=1

)

.

(20)

Hence, p̃∆i
denotes the normalized element-wise median of

the sum of rotation axes, which should be quite close to the

global optimum and, thus, prevent SQP from finding local

ones.

In the context of gyro-camera calibration, the closed-

form solution needs some adaptions to achieve adequate

robustness. In [22], critical factors affecting the accuracy and

robustness have been discussed and it has been observed, that

the errors are proportional to the magnitude of the measured

rotations. In the case of camera to gyroscope calibration,

the sensitivity for errors due to relative small inter frame

rotations becomes crucial and may lead to wrong results.

Further, Eq. 16 minimizes the steady measurement error of

a conventional robot-camera setup, but it does not consider

any time correlation between the sensors. It is necessary to

overcome this problem if we want to apply this method for

bias prone gyroscopes.

Small rotations suffer from a small signal to noise ratio

and a large discrepancy between the sensor measurements

implies an erroneous sample pair. If Eq. 16 is applied without

any modification, each inter frame rotation would affect

the outcome equally - independent of whether there is no

rotation, and the measurement consists only of noise, or in



presence of an outlier. Therefore, the absolute angles of the

inter frame rotations should be used to weight the respective

equation. This leads to following weights for both sides of

Eq. 16 and the summands in Eq. 18

wi = (1 −
maxθi

−minθi

maxθi

)minθi
=
min2

θi

maxθi

(21)

with maxθi
and minθi

analogously defined to Eq. 11.

Calibration sequences are usually short and, therefore, a

common assumption is that the IMU biases are constant. We

estimate the bias using a Levenberg-Marquardt optimization.

In the experiments we compare following two cost functions.

In the first approach we simply try to find the bias by making

the absolute angles as similar as possible, while disregarding

outliers. This is achieved by applying the Blake-Zisserman

cost function

cBZ (δ) = − ln
(

e−δ2

+ ǫ
)

(22)

with the crossover point from inliers to outliers given by

the threshold α in ǫ = e−α2

[25]. Thus, this optimization

problem may be written as

b̃=argmin
b

N
∑

i=1

cBZ

(

Gθ′∆i
− Cθ∆i

)

(23)

with Gθ′∆i
being the absolute angle corresponding to

GR′

∆i
=

ti
∏

t=ti−1

GR′

t (24)

where

GR′

t = DCM





GmT









Gφ̇t
Gχ̇t
Gψ̇t



− b







 (25)

and b̃ being the estimated bias.

An other approach is to minimize the trace of the covari-

ance matrix, P Gp
C
, of GpC . The covariance matrix for Gp′

C

results from the over-constrained linear system (see Eq. 16)

as

P Gp′

C
= V [·]

×

Σ
−2
[·]

×

V T
[·]

×

(26)

with

U [·]
×

Σ[·]
×

V T
[·]

×

= SVD
(

BC+G
[·]

×

)

(27)

and BC+G
[·]

×

representing the stack of the skew matrices of

all the vector sums,
[

C p̂∆i
+ Gp̂∆i

]

×
. Depending on the

length of the calibration sequence, this matrix may become

quite large. To reduce the processing time one can also use

P Gp′

C
= V T

(

tr
(

Σ
2
T

)

I − Σ
2
T

)−1
V T

T (28)

with UT ΣT V T
T = SVD

(

BC+G
T

)

and BC+G
T being the

row-wise stack of the vectors
(

C p̂∆i
+ Gp̂∆i

)T
. A deriva-

tion of this equation is not shown due to lack of space.

Minimizing the covariance matrix of Gp′
C does not neces-

sarily mean to minimize the covariance of GpC . Therefore,

we propagate the covariance and the estimate for Gp′
C

through the nonlinear equation

GpC =
2 Gp′

C
√

1 + |Gp′
C |

2
(29)

by using Sigma-Points as, e.g., in the Unscented Kalman

filter [26]. Sticking to the notation of that paper, the weight

W (0) is set to 0 according to the formula which computes

the optimum assuming a Gaussian distribution

W (0) = 1 −
NS

3
(30)

with NS denoting the vector length which is three in our

case. Thus, the objective function is this time

GR̃C =arg min
b

(

tr
(

P Gp
C

))

. (31)

In the next Section we will compare the presented methods

based on simulated and real data.

IV. EXPERIMENTS

In our experiments we used simulated data and real data

acquired by an IMU-camera pair as illustrated in Fig. 1.

The camera acquires images with 15Hz while the IMU has

a sampling frequency of 120Hz. To verify our methods

we acquired two sets of four runs each. The first set of

runs is approximately 10 seconds long each and the latter

four runs last about 40 seconds each. The camera rotation

has been computed by extracting the corners of a checker-

board and estimating the camera position in an optimization

framework using Calde and Callab [27]. We neglect the

error of the image-based rotation estimation which is due

to the correlation between rotation and translation. This

correlation will be considered in a subsequent full spatial

registration. Otherwise, one can also use translation invariant

(far distant) landmarks to estimate the rotation uncoupled

from the translation [28]. First we will address the temporal

alignment and after that we show some experimental results

for the rotation estimation.

A. Temporal Alignment

Before the measurements can be aligned, the time-stamps

have to be fixed as described in Section II. Therefore, the

sampling period has to be estimated and sample jams and

gaps have to be detected as illustrated in Fig. 2.

In the following, we want to show the advantages and

drawbacks of the temporal methods discussed in Section II.

We tested the delay estimation methods with simulated data

based on a weighted overlap of nine sine frequencies on

all axes, whereas the frequencies are in between 0.1Hz and

90Hz. The sampling period of the simulated gyroscopes

is 10ms and of the camera 40ms. As window function

for the EDFT in the phase congruency method we chose

a Hamming window, which is a good trade-off between

high dynamic-range and sensitivity. For the maximum weight

phase shift estimation we used the rectangular window,

because it provides the highest sensitivity.



50 100 150 200 250 300 350
4

4.5

5

5.5

6

6.5

7

7.5

time−stamp index

ti
m

e
−

s
ta

m
p
 [
s
]

Corrupted and Fixed Time Line

 

 

original time−stamps

recovered time−stamps 

sample gap
sample jam

Fig. 2. The blue dots represent the time-stamps of a clipped image
sequence. The red line shows the fixed-time line without data jams and
gaps.

Fig. 3 illustrates a simulated delay between IMU and

camera of 0.5 s and the corresponding cross correlation

result. The delay is rather long compared to real world

cases, but it has been chosen to show the limits of the

correlation method. Fig. 4 depicts the estimated magnitudes

−1000 −500 0 500 1000
−1

0

1

2

3

4

5

6

7
Correlation

number of shiftet samples

c
o
rr

e
la

ti
o
n

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Simulated Angular Velocities

time [s]

a
n
g
u
la

r 
v
e
lo

c
it
y

 

 

camera

gyroscopes

Fig. 3. The left figure illustrates the unaligned simulated gyroscope (red)
and camera data (blue), while the right figure shows the cross correlation
of the data.

and the estimated phases for both sensors. The phases of

corresponding peaks are used for temporal alignment.
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Fig. 4. This figures illustrate the phase shift based temporal alignment for
the simulated data. The left images show the amplitude and the right the
phase spectrum of the gyroscope (red) and camera (blue) data.

The result of the average phase shift based approach

is 0.5193 s, while the phase shift of the most significant

frequency yields 0.5344 s. The correlation-based approach

estimates a 0.14 s time lag. The explanation for this can

be found in Fig. 5. There we evaluated the performance

on various delays. While the cross-correlation works highly

accurate and reliable for small delays, it finds a wrong

optimum for large delays. The average and maximum phase
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Fig. 5. The blue line represents the simulated delay. The green dots are
the correlation based results. The red crosses and the magenta circles are
the average and the most significant phase shift output respectively.

shift methods seem to be less accurate but more robust as the

delay increases. The difference between these two methods

becomes apparent when comparing the result with the real

data, as done in Fig. 6. Following table summarizes some
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Fig. 6. The cross-correlation reliably estimates the time delay, while the
phase congruency methods are not as robust. Some of their estimates are
not even visible because of the scaling which has been chosen for sake of
detail.

statistical quantities of the outcome:

method - unit [s] mean median std. dev. range

cross corr. 0.1195 0.1179 0.0047 0.0115

av. phase shift 0.1831 0.1246 0.1841 0.5659

most sig. ph. sh. 0.4870 0.2348 0.8704 2.7979

While the cross correlation method achieves coherent results

in all eight runs, the phase based approaches proof to be not

as reliable for real application. This is because white noise

affects all frequencies and, hence, the phase shift can not be

used for accurate temporal alignment of noisy data.

B. Rotational Alignment

To evaluate the noise sensitivity of the presented rotation

estimation we added white Gaussian noise to the simulated



data. Fig. 7 shows the performance of the weighted and

the unweighted rotation estimation. The weighted rotation

estimation always outperforms the unweighted method.
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Fig. 7. The left image shows the results for the absolute rotation angle,
the right picture illustrates the angular error between the estimated and
simulated rotation axis. The blue line represents the simulated absolute angle
and the zero-error line respectively. By increasing the signal to noise ratio
the performance of both, the weighted (green) and the unweighted (red)
rotation estimation, increases.

It is difficult to determine an accurate ground truth for

the rotational alignment between a camera and an IMU

without having a CAD drawing of the setup. Therefore, we

performed a brute force search with a resolution of 0.5◦ to

find a sort of “ground truth”. As objective function we used

Eq. 15. Unfortunately, in one of the runs a local minimum

far off any possible solution has been found which proofs the

non-convexity of the problem and, hence, that filtering and

optimization techniques may easily find a local instead of

the global minimum if the starting point is far off the actual

solution. This run has not been considered in Fig. 8, which

shows the deviation of the various methods described in

Section III relative to the brute-force estimate. The estimates

of the unweighted (original) and the weighted rotation are

optimized according to Eq. 16 and not after the nonlinear

Eq. 29 as it should be. Thus, we propagate the results by

the unscented transformation described in Section III, with

the outcome, that the difference between the propagated

and original values is negligible and, thus, the unscented

transformation can be spared. Such a transformation becomes

only necessary if the covariance matrix is large, which is not

the case for our data. The weighted approach proves to be

more reliable and accurate compared to the original hand-eye

calibration technique. Further, the bias estimates are more

coherent with the weighting method than the covariance

minimization approach.

In our last experiments we want to underline the impor-

tance of a proper temporal alignment. It is difficult to argue

based on simulations which temporal accuracy is relevant

for spatial alignment, because it depends strongly on the

dynamics of the registration run, the noise of the sensors,

the accuracy of the camera based pose estimation, and so on.

Therefore, we run the rotation estimation on misaligned real

data. The time delays have been chosen between the mean

estimate of all runs and a delay of zero, which means that no

temporal alignment is provided. Fig. 9 compares the different

runs. While the median does only change a little for the

different time delays, the variance increases significantly for
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Fig. 8. These box plots show the performance of the presented rotational
alignment methods. Therefore, the estimated Euler angles between IMU and
camera have been substracted from a “ground truth” estimate gathered by
a brute force search with resolution 0.5◦. The leftmost box plot of each set
corresponds to the four short runs, the rightmost to three of the long runs
and the center box plot represents all seven runs.

bad aligned data. Further, the plot shows that the weighting

of the data samples also increases the robustness against

temporal misalignment.
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Fig. 9. These box plots show the performance of the unweighted and
weighted rotation estimation on not correctly temporally aligned real data.
The black dotted line corresponds to the mean of the estimated delays
between camera and gyros of all runs.

The batch-based nonlinear optimization described in [13]

also shows to be sensitive to proper temporal alignment.

This approach models the sensors’ trajectory as B-spline

and optimizes for the spatial alignment. To allow for natural

landmarks also the scale of translation α is estimated. In our

experiments we know the proper scale of the checkerboard

and, thus, also of the translation. Hence, in our experiments

alpha should always be one. However, this factor has shown

to be rather sensitive to the spatial or temporal alignment

and, therefore, it is used as index for the quality of the op-

timization result. In this experiment we varied the estimated

time delay from 0 % to 200 % and plotted the box plots

of the estimates for the translational scale to evaluate the

effect of a time lag between the measurements. The result

worsens significantly if the measurements are not aligned



correctly (100 %). This experiment stresses the importance

of proper temporal alignment also for complex registration

methods. Adding the delay between the IMU and camera

measurement as parameter to θ would probably worsen

the convergence properties of the optimization and make

the analytical calculation of the Jacobian significantly more

complex.
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Fig. 10. Estimated scale factor α with respect to the temporal alignment:
0%, no temporal alignment; 100 %, correct temporal alignment; 200 %,
twice the estimated delay between camera and IMU.

V. CONCLUSION

In this work we first motivated the importance of proper

temporal alignment of inertial-visual systems. Temporal

alignment is crucial for reliable fusion of any sensor data,

especially if involving sensors which demand high dynamics

for a feasible signal to noise ratio. We compared two

approaches, with the outcome that cross-correlation is the

better choice for real data with the premise of a reasonable

short delay. Our time delay estimation does not require a

spatial alignment of the sensors and, thus, prevents a possible

compensation of the error in the spatial estimate by the

computed time delay. Further, by assuming a constant sample

period, we are able to deal with random jitter, missing

samples and data jams in the data pre-processing.

We derived a method from hand-eye calibration, robusti-

fied it for small and error-prone rotations and proposed an ex-

ception handling for ill-posed configurations. The robustness

and reliability of different alternatives has been compared in

experiments on simulated and real data. According to these,

the best choice is to use the weighted angular alignment and

the bias estimation based on Eq. 23. The presented approach

is easy to apply and does not contain many parameters and

degrees of freedom, which makes the filter or optimization

based methods complex and error-prone. Even though it is

not guaranteed that the closed form solution finds the global

optimum due to the biases in the IMU measurements, it is

quite probable to converge to it as soon as the biases are

estimated within the optimization framework.

However, in case that also the translational offset should

be estimated, the acquired results may be used as starting

point for any filter or optimization based approach.
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