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Abstract—In the long history of robotics research, the most
prominent problem has always been, to develop robots that
can safely operate in human-centered environments. One way
towards the goal of a safe, and human-friendly robot, is to
incorporate more and more of the flexibility that can be found in
humans, by mimicking the internal mechanisms. In this work we
propose a scalable joint-space control scheme based on computed
torque control for an anthropomimetic robot. To achieve this,
the dynamic system model of the robot is decomposed into hier-
archical subsystems, using scalable modeling algorithms where
possible. Machine learning techniques were employed to tackle

the problem of muscle force to joint torque mapping.

The developed control scheme has been evaluated using the
highly refined simulation of an anthropomimetic robot arm
featuring 11 muscles, a revolute elbow joint and a spherical
shoulder joint. We show trajectory tracking based on a low-
level muscle and a high-level joint control scheme, taking into

account the coupling between the joints due to inertial reactions
and bi-articular muscles.

Keywords—anthropomimetic robot, robot control, distributed
control, biomechanics, biorobotics

I. INTRODUCTION

Major progress in robotics turns today’s humanoid robots

into ever safer, more robust, and more agile agents by the

moment. However, it is still a long way until robots can safely

operate in unstructured environments. Especially in the area of

service robotics, the need arises for robots to work flexibly in

a human-centered environment. One way towards this goal is

to incorporate more and more of the mechanisms that can be

found in humans for robots.

In this work we would like to propose a whole body control

strategy for an anthropomimetic robot [1], based on the hierar-

chical control architecture described in [2]. Anthropomimetic

robots are highly bio-inspired and mimic not only the general

appearance of the human body, but also the mechanisms of

the musculoskeletal system, like bones, joints, and muscles.

This calls for a completely new control strategy, because the

dynamics are very different from those in standard humanoid

robots.
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Fig. 1. ECCEROBOT Design Study (EDS). This is the newest platform in
the ECCEROBOT family [3]. In this type of robot not only the appearance of
the human body is mimicked but also the inner structures, like bones, joints,
muscles, and tendons.

In [4, 5], de Sapio et. al. use a highly generic approach

to control a human shoulder complex in simulation, based on

the work of Thelen et. al. [6]. Since the mechanisms in the

human body and in the anthropomimetic robot are comparable,

a similar approach is expected to be suitable for controlling

our robot. However, these control approaches were only used

in the simulation of a human body, without even considering

the implementation in a robotic system. Other control schemes

for musculoskeletal robot systems, like [7–9], show a very

detailed analysis of a specific joint structure and propose a

control law based on it. However, [7, 10] do not cover bi-

articular muscles, and none of the above investigate the control

of ball-and-socket (or spherical) joints. Therefore, a generic

approach for musculoskeletal robots, like it was proposed by

de Sapio [5] for the simulation of a human body, needs to be

found.

II. THE ECCEROBOT

The first anthropomimetic robot CRONOS [1], whose tech-

nology is being used in this work, is a robot which tries to

mimic the human skeleton, as well as the muscular system.

The robot bones were made by hand from a thermoplastic

which can be hand molded at a temperature of 60◦C. The
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Fig. 2. Actuation principle. An artificial muscle (AM) mimics the human
muscle including its elasticity. It consists of a motor that winds kite line on
a spindle and hence exerts a force on the robot’s bone.

artificial muscles (AMs) consist of a DC motor, kite line,

and shock cord. In this type of electric actuator the motor

winds the kite line on the attached spindle and hence either

innervates or relaxes the AM, depending on the direction of

motor rotation. Therefore, force can only be exerted on the

attachment points in one direction, i.e. a muscle can only

pull, not push. The shock cord adds the flexibility that is also

present in a biological muscle (see Fig. 2). The production

techniques, as well as the materials used, facilitate the creation

of a robot of this complexity. However the impossibility of

dismantling and reassembling the robot, as well as lack of a

CAD design, pose major challenges in system modeling [11].

Not only the type of actuation is as close to its biological

counter part as possible with today’s technology, but also

the attachment points of the AM. Of course it is (currently)

impossible to duplicate all of the well over 250 muscles in

the human body [12]. The muscles that were chosen to be

incorporated in the current prototype (see Fig. 1) are the ones

responsible for larger scale movements, omitting the ones used

for fine grained dexterous movements, e.g. in the hands. For a

full description of the ECCEROBOT, please refer to [3, 13].

III. MODELING MUSCULOSKELETAL ROBOTS

In [7, 8] a model of a tendon-driven robot is obtained

directly for the full state space. This leads to a very complex

and also non-linear model for which a controller can be found,

provided the system is small enough. However, the process of

developing these models and corresponding controllers shows

that this is highly problematic for larger systems.

To cope with more complex systems, it is possible to decom-

pose them into a hierarchy of simpler subsystems for which

separate control methods can be derived. An anthropomimetic

robot can be divided in three subsystems. First a model of

the comparably stiff robot components—the skeleton—can

be obtained like for any conventional robot (Section III-A),

second the AMs are modeled (Section III-B), and last a

mapping between the two needs to be found (Section III-C).

A. Skeleton Model

For conventional robots the equation of motion can be

expressed in one of two canonical forms [14]. In joint space

this can be written as follows,

τ = H(q)q̈ + C(q, q̇) + τG(q) (1)

giving a relationship between the joint torques τ and the

generalized joint coordinates q, q̇, and q̈.

Generally, this equation holds for all joint types, however

it is mostly used for single degree of freedom (DoF) joints.

Like the human body, the ECCEROBOT has revolute, as

well as spherical joints that allow rotation around three axis.

Rotation in three dimensional space can be represented with

three angles in many different ways (e.g. ZYX-Euler-Angles,

XYZ fixed Angles). However, all of these come with the

problem of possible singularities. Despite making controller

design more complicated, the preferred representation of ori-

entation in 3 dimensions, are unit quaternions [15]. Here,

rotation is parameterized with four instead of three parameters

Q = [η, ǫ1, ǫ2, ǫ3]
T , while the quaternion norm is confined

to ||Q|| = 1. It consists of a scalar real part η and a

3 × 1 imaginary part vector ǫ. While obviously increasing

the dimensionality of the description, the issue of singular-

ity is eliminated. Furthermore, quaternions can be used for

efficiently generating rotational movements at constant speed

around a constant rotation axis (e.g. SLERP [16]). This poses

the additional challenge of representing the canonical equation

of motion (1) with quaternions. This can be achieved by

replacing the pose vector q by α, containing the quaternion

representation of all spherical joints, as well as the angular

representation of all revolute joints,

τ = H(α)q̈ + C(α, q̇) + τG(α) (2)

while the dimensionality of α is therefore higher than of q.

However, a relationship between the derivative of α and the

rotational velocities q̇ needs to be found. The derivative of

a quaternion Q̇ as a function of the corresponding rotational

velocities ω can be shown to be as follows [14].

Q̇ =
1

2
U(Q) · ω ,with U(Q) =









−ǫ1 −ǫ2 −ǫ3
η ǫ3 −ǫ2

−ǫ3 η ǫ1
ǫ2 −ǫ1 η









(3)

Therefore we define a matrix A(α), as a diagonal matrix,

in which each revolute joint is represented by a 1 and each

spherical joint is represented by 1

2
U(Q).

α̇ = A(α) · q̇ (4)

A rigid body model of the skeleton in the canonical form (2)

can be found using standard techniques like the Newton-

Euler Algorithm or more efficiently using the Composite

Rigid Body Algorithm [17]. Those algorithms make use of an

efficient representation of both kinematic information, like the

coordinate transforms between links and joints, and dynamic

information, like masses and inertial parameters, to build a

model in the shape of (2).

B. Muscle Model

The AMs of the anthropomimetic robot consist of a DC

motor, kite line and shock cord (see Fig. 2). A model of an AM

can be obtained by combining the standard DC motor model

with a model of the gearbox and a linear spring (F = k ·∆x).



The resulting state space model of a muscle can be shown

to be
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while vA, iA, LA and RA are the armature voltage, current,

inductance and resistance, respectively. ΦF is the magnet flux

of the stator and ce and cτ are the motor constants for back emf

and torque. J is the combined motor and gearbox moment of

inertia, gr is the gearbox ratio and r is the radius of the spindle,

winding up the nonelastic kite line. The friction in the gearbox

and the motor is represented by a viscous component ν and a

gearbox efficiency ηG. Finally ω is the rotational velocity of

the motor output shaft and x is the linear displacement of the

muscle at the anchor point of the muscle on the side of the

shock cord (see Fig. 2).

C. Muscle Jacobian

A mapping between the muscle model and the skeleton

model can be formulated based on the so called muscle

jacobian L(q) [18]. It gives a relation between the derivative

of the muscle lengths l with respect to the joint angles q at a

certain configuration.

L(q) =
δl

δq
(6)

By using the principle of virtual work this can be transformed

to a relation between the muscle forces f (the negative sign

arises from the definition of a positive force when pulling) and

the joint torques τ [4].

τ = −LT (q) · f (7)

The muscle jacobian can be obtained in different ways. A

geometric representation of the muscle lengths subject to the

joint angles can be found. By differentiating this representa-

tion with respect to the joint angles, the muscle jacobian is

obtained. While this is definitely possible for the robot model

that is presented in this work, one has to note that we wanted to

find a possiblity where muscles that collide with the skeleton

can be modeled as well.

In this work we propose to use machine learning to deter-

mine the relationship between muscle lengths and joint angles.

In this case a function approximator needs to be found to

generate the mapping between n skeletal angles and m muscle

lengths.

l = f(q) (8)

As samples can be drawn from the full space of q the

function approximator needs only to interpolate between sam-

ples, without the need for extrapolation. Well suited for this

kind of problem is among others a function approximator

based on artificial neural networks (ANN). For this work a

Fig. 3. Force Controller. A state space force controller k with a pre-filter V
is shown for the state space system {A, b, cT , g} of the muscle model.

multilayer perceptron (MLP) network with a single hidden

layer was chosen. The samples of joint angles q (inputs) and

corresponding muscle lengths l (outputs) are collected prior to

network training. Therefore, learning f(q) poses a supervised

learning problem which can be treated using the well-known

back-propagation algorithm [19].

The ANN approximation of (8) can be differentiated with

respect to the joint angles q, using the difference quotient to

obtain the muscle jacobian.

L(q) =
f(q +∆q)− f(q)

∆q
(9)

When the pose of the robot is not represented by q, but by α

as in (2), the learning algorithm will produce a function f(α),
and therefore the difference quotient produces

Lα(α) =
δl

δα
(10)

By solving (10) for δl and dividing it by δt, we get an equation

where α̇ = δα
δt

can be replaced by (4).

δl

δt
= Lα(α)

δα

δt
= Lα(α) · A(α)

δq

δt
(11)

Therefore the muscle jacobian L(q) can be written as.

L(q) =
δl

δq
= Lα(α) · A(α) (12)

The muscle jacobian which is hereby obtained provides the

missing mapping between the rigid body chain (2) and the

AMs (5).

IV. CONTROL

In the following, a hierarchical control structure (cascade)

is developed to control the full robot. In a cascade, controllers

for the subsystems can be developed independently, whenever

dynamics of the inner control loop are at least an order

of magnitude faster than the dynamics of the outer control

loop [20]. In the following, a controller for the faster inner

system—the muscle force control—is synthesized first, and

subsequently a controller for the full robot body is developed.

The control approach developed in the following section

is distributable in a manner, where fast force control loops

can run with a frequency of 500Hz on distributed nodes, and

the whole body control algorithm runs with a much slower

frequency on the central computer. The implementation of this

control architecture has been described in detail in [2].
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Fig. 4. Whole Body Control. The control scheme uses an analytical model
of the skeleton, along with the learned muscle jacobian to calculate reference
forces for the individual muscle force controllers (see Fig. 3)

A. Force Control

For the synthesis of the force control for a single muscle

it has to be noted that an anthropomimetic robot is under-

actuated, as there are less actuation variables than system

states. For this reason the limb movements are assumed to

be unknown disturbances while designing the force control.

In the following the muscle model derived in Section III-B is

used to obtain a force control algorithm.

Among P, PD, and state space control, the latter was

chosen based on its superior performance at a discrete control

frequency of 500Hz. Hence the control law was synthesized

using Ackermann’s formula [21]. This can be done directly

in the discrete space domain and hence taking the control

frequency into account at design time. Ackerman’s formula

can be used to calculate state space gains k (see Fig. 3) by

moving the closed loop poles of a discrete state space model to

the desired values p [20]. A discrete state space model can be

obtained easily from the continuous state space model in (5).

State space control frequently suffers from a steady state

offset as there is no I element. Therefore, a pre-filter V (see

also Fig. 3) is needed for compensation, which can be designed

using the state space system {A, b, cT } to determine V by

establishing the closed-loop behavior of the system to have a

zero steady state error [20].
[

Mx

Mu

]

=

[

A b

cT 0

]

−1 [

0
I

]

(13)

V = Mu + k ·Mx (14)

B. Whole body control

For standard robotic systems there are various control

methods based on the canonical form of the skeleton model.

Here, the method of computed torque control is used [14]. It

utilizes (2) to calculate the joint torques τ necessary to produce

desired joint accelerations q̈ref , given the system states q and

q̇. In case of a perfect system model the applied joint torques

will always lead to the desired joint accelerations.

The reference joint acceleration can be obtained by any

control law. In this case we chose to use a PID controller to

get asymptotic stability and to reduce the steady state offset.

q̈ref = P ·∆q +D ·∆q̇ + I ·

i= t

∆t
∑

i=0

∆qi (15)
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Fig. 5. Anthropomimetic Robot Arm. Fig. A depicts the simulation model
rendered in CALIPER [24] of the anthropomimetic robot arm shown in Fig. B
with 11 AM and 4 skeletal DoF which was manufactured by the ECCEROBOT
consortium.

Obtaining ∆q for revolute or linear joints is as simple as sub-

tracting the two vectors q and qref . However, for quaternions

Q and Qref , the corresponding ∆Q is not the difference, but

the rotation between the two, which is defined as follows.

∆Q = Qref ∗Q
−1 (16)

Since the zero rotation in quaternions is represented as

∆Q = [1 0 0 0], the error function ∆q can written as

follows [22],

∆q = ηǫref − ηrefǫ− S(ǫref)ǫ (17)

where S(·) represents the skew-symmetric operator.

Solving (7) for the muscle forces f is underdetermined,

as there are more muscles than DoF in the joints. The need

for additional constraints arises. This problem can be treated

by formulating a quadratic optimization problem [23]. Here

the objective function is the square of the euclidean distance

between the forces, which is minimized, subject to two con-

straints. First, the forces are to apply a certain reference joint

torque, and second, the muscle forces have a lower bound

(muscles can only pull, not push). By minimizing the muscle

forces, using these two constraints, it is guaranteed that the

resulting forces (a) lead to the desired behavior and (b) the

internal forces of the system are kept at a minimum.

min
f

||f ||
2

(18)

subject to

{

−LT (q) · f = τ

f > fmin

The forces that are obtained in this manner are then used by

the force controller introduced in Section IV-A.

V. RESULTS

The results in the following section were obtained in simula-

tion, with the model of an anthropomimetic robot arm with 11

AM, a revolute elbow joint and a spherical shoulder joint (see

Fig. 5). However, the control scheme is kept generic enough

to be easily applied to larger systems.
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The simulation is based on CALIPER [24], a generic

simulation framework based on the open source physics engine

Bullet1. This simulator was specifically developed to reflect

the robotic system introduced in Section II. Hence, a robotic

skeleton with different joint types, including static as well as

dynamic (Coulomb and viscous) friction can be simulated [11].

Furthermore it allows for a detailed simulation of the muscular

system, including a refined version of the motor dynamics

specified in Section III-B, additionally featuring Coulomb

friction. Furthermore, not only the robot itself but also the

control architecture as described in [2] is modeled, so the

force control loops are executed asynchronously both to the

simulation and the high-level control, as they would in a

distributed system [11].

A. Force Control

The performance of the state space force control, developed

in Section IV-A, was tested outside of the full robot set up.

For this purpose the force control, as well as a model of

the muscle setup was simulated in MATLAB/Simulink with

different reference, as well as disturbance signals.

Fig. 6 shows the controller performance, while being dis-

turbed by a sine wave. The system dynamics and seem rather

slow for a robotic system, but one has to bear in mind that

due to the flexibility of the muscle, the motor needs to actively

drive a certain distance to apply the new reference force.

B. Muscle Jacobian

The muscle jacobian is obtained using the method described

in Section III-C, while the major challenge is to be able

to cover the full joint space. Therefore, all samples used

to approximate the function l = f(q) are obtained by two

different methods: (i) the simulated joints are moved to dif-

ferent joint angles and (ii) random movements are performed

through motor babbling. These two processes lead to an overall

number of 103 055 data points consisting of joint angles and

corresponding muscle lengths.

1see www.bulletphysics.com
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Best results were obtained, when the ANN was divided into

simpler learning subtasks, relieving it of the task of identifying

the structure of the robot. Therefore, muscles that span specific

joints are represented by a network that takes only the corre-

sponding joint angles as inputs. In the anthropomimetic robot

arm that is used in this work, there is only one bi-articular

muscle. This muscle (the Biceps) is therefore represented by a

separate neural network, taking the quaternion of the shoulder

joint and the angle of the elbow as an input. Muscles that only

span the elbow joint (Triceps and Brachialis) are incorporated

in a second network. The rest of the muscles (see Fig. 5)

that only affect the shoulder are covered by a third network.

The network sizes were determined experimentally and were

chosen to have 20, 5 and 30 hidden units for the biceps, the

elbow and the shoulder network, respectively.

C. Trajectory Control

The whole-body control scheme covered in Section IV-B

is tested for stability with the learned muscle jacobian, by

using it to follow given trajectories. We consider movements



of all joints, including combined movements (see Fig. 7-A).

The maximum error of each of the angles during the whole

trajectory is [0.1121 0.0596 0.1142]T for the shoulder joint

and 0.1475 for the elbow joint angle, while the RMSD2 evalu-

ates to [0.0302 0.0135 0.0230]T and 0.0399, respectively.
Fig. 7-B depicts the forces resulting for the same trajectory.

The reference forces obtained by solving the optimization

problem (see Section IV-B) show high frequency changes,

during the transition between poses, but the force controller

is able to follow. During the steady state phases between the

movements the reference forces move to a constant level. A

major concern in tendon driven robotics is that tendons should

never be allowed to go slack. While the control approach

ensures that commanded forces are always greater than the

minimum force, it is observed that forces do go to zero (see

Fig. 7-B), which implies that tendons go slack for short periods

of time. However, the maximum time a tendon force has a

force of zero is 84.3ms in this experiment. This time is too

short for tendons to go slack enough to get tangled or jerk

the arm in a manner that would be problematic for the control

performance.

A video, showing the simulated robot arm performing this

trajectory, is available online [13].

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this work we developed a scalable controller for mus-

culoskeletal robots that is based on standard techniques from

the field of robotics, while the complex relationship between

muscles and the skeleton is automatically acquired. It has

been shown before that the use of the composite rigid body

algorithm scales well also to very large robotic systems in the

order of 50 DoF and more [25]. This and the usage of machine

learning techniques for obtaining the muscle jacobian makes

it possible to control large robotic systems. Simulation results

proved that the proposed control scheme performs well for a

musculoskeletal system with bi-articular muscles and spherical

joints.

B. Future Work

In the future we would like to verify the functionality of

the proposed control scheme in robotic systems with more

DoF, like the full upper-torso, developed in the ECCEROBOT

project. Naturally, this will not be limited to simulated systems,

as functional models become available. By doing this it will

also become necessary to study the effect of muscles that

collide with the robot’s skeleton. Finally we would like to

extend this scheme to handle not only joint space but also

operational space control.
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