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Abstract—In the problems of localization using inaccurate
maps, navigation agents have to match available information
from sensors to maps in order to find their locations. A map
contains a set of constraints that can be expressed in the form
of a graphical model that matching algorithm has to satisfy.
There are two generally categories of constraints: absolute and
relative. We propose a relaxation-based algorithm for the NP-
hard problem of one-to-one feature matching with absolute and
relative constraints. The algorithm is a combination between
relaxation labeling and the Kuhn-Munkres method where the
former is known for its highly parallel structure imitated the
human visual process. To test the performance, we applied the
algorithm in a robotics application where the objective is to match
range scanner features to those in inaccurate template maps
provided by humans. Our experiments show that the proposed
algorithm can achieve qualified matching results in artificial and
real situations.

I. INTRODUCTION

In this paper, we are interested in matching problem be-
tween inaccurate scenes that involves distortion and absence
of some features. This is a sub-problem of navigation using
inaccurate maps framework [1], [2] where the goal is to
localize agents from environments into human-provided maps
in order to retrieve proper actions. The human-provided maps
are very convenient to create, for example from drawing, but
they suffer from abstraction and from lacking of accuracy.
These characteristics may hinder the task of localization into
this type of maps. Examples of this idea are presented by
Skubic et al.[2], [3] where they aim to use a hand-drawn map
for controlling a robot. However, their assumptions may not
support certain types of scenes, such as ones that are noisy
and filled with redundant features. We propose an algorithm
to address a more general version of the matching problem.

In the scope of matching, many approaches across various
fields have been explored: optimization, algorithmic methods,
computer vision, and machine learning [4]–[6]. Currently,
representing and solving the matching problem using graphs
has been particularly an interesting topic [7]–[9] especially
when dealing with certain types of graphs, such as chains
and trees, where matching can be done efficiently. A more
general version of graph matching is the inference problem in
graphical models [10]. While the exact inference algorithms
can provide the optimal results, they can either only apply in
certain cases of graphical models or suffer from intractable
computation time. Approximate inference algorithms, such as
Monte Carlo and Variational methods, have been proposed as

alternatives and have been proven successful in real applica-
tions [11]. However, if there is such a requirement of the one-
to-one matching constraint, which seems to be general enough
to appear in many matching situations, this constraint makes
the inference problems become harder because it relates to
every node in the graphs creating fully connected models.

We address the problem of one-to-one feature matching
between a world and a given template map. The likelihood of a
world feature to be matched with a template feature is defined
by the similarity factor between the two features and also
the support factors from potentially assigned neighbors. We
call these factors absolute constraints and relative constraints
respectively. This work proposes an algorithm for the matching
problem based on both types of constraints that are provided
in the map in form of a graph. It is based on relaxation
labeling (RL) by Hummel and Zucker [12] and Kuhn-Munkres
algorithm (KM) [13]. RL is a well-established bio-inspired
framework based on the highly parallel neural structure of the
human visual system. It has been widely adopted in computer
vision problems [14], [15] and sometimes appears in graphical
model inference [16]. However, there is only a limited number
of existing literature that explore the combination of RL
and KM algorithm [17]. The details of our algorithm are
explained in section III. We demonstrate the effectiveness of
our algorithm in a robotics application that involves matching
detected range scanner features (or world features) to human-
provided features in given template maps. The experimental
results are provided in section IV.

II. PROBLEM STATEMENT

Given a set of features X in a map, we seek to find an
injective correspondence of these features to a set of extracted
world features Y that satisfies provided map constraints. We
first define each type of constraints and discuss its benefits.
Then, we formulate the matching problem based on these
constraints and derivation from graphical model inference.

A. Constraints

The simplest way to design a map is by independently
defining matching preference from each map feature to each
individual world feature. This kind of preference is what we
refer to as absolute constraint. An absolute constraint is a
function that computes matching eligibility of a map-world
feature pair, A : X × Y → R.



However, merely absolute constraints may not be suitable
for some circumstances. For example, there may be several
instances of a map feature type A in the world, but we
wish to match A to one of the world instances that is
nearby an instance of feature B. Grouping the two features
to create a new unique feature is an ad-hoc way to solve this
problem that we try to avoid. Consequently, we turn to relative
constraints, which we define here to allow more flexibility
when designing a map. A relative constraint is a function that
computes matching eligibility based on neighbor assignments,
R : Xn+1 × Y n+1 → R where n is the size of influential
neighborhood. It is worth noting that the one-to-one constraint
can also be regarded as a relative constraint that covers the
entire set of features.

Although using only absolute constraints in a map has the
mentioned weakness, it has been known that

Lemma 2.1: one-to-one matching with only absolute con-
straints is in the polynomial-time complexity class because it
can be solved efficiently using the KM algorithm [13].

B. Matching problem

We can create a map using a graphical model where each
node belongs to a map feature and the relations between nodes
(or edges) are represented by relative constraints. The match-
ing problem itself can be regarded as the inference problem
where the goal is to properly assign each node with a world
feature. This problem is NP-hard in nature. In this section, we
reformulate the inference problem in terms of optimization
such that it can be used to derive a proper inference algorithm
(which will be discussed in the next section).

Every graphical model is defined by a joint distribution of
its nodes, which can be factorized into a product of local
distributions φ [11] if we temporarily disregard the one-to-
one constraint. From the a joint probability P (x = y), let x
and y present the lists1 of map features and assigned world
features respectively, we present a transformation using the
following steps:

max
y

P (x) ≡ max
y

∏
C

φC(xC = yC)

≡ max
q

∑
C,yC

log φC(xC = yC)
∏

∀xi∈xC

q(xi = yi)

where xC and yC are the node list in a local group C and
its current assignment respectively. We first apply logarithm
to turn product into summation. Then we sum over every
possible assignment and introduce indicators q (and their
vector container q) as a way to choose specific assignments
that have been being considered. The indicators q have the
following properties:

q(x = y) ∈ {0, 1};
∑
y

q(x = y) = 1; ∀x (1)

where q(x = y) = 1 if we assign node x with y.

1lists are sets with arranged elements.

In case that all relative constraints involve only two adja-
cency nodes x and x̃, let us define log φC(xC) = R(x, x̃) +
A(x) + R(x̃, x) + A(x̃) using both relative and absolute
constraints.2 This form allows us to bridge the graphical
model and the formulation described below. Furthermore, we
change our focus from summation over all local groups to
all individual nodes instead. The transformation continues as
follows:

≡ max
q

∑
x,y

∑
x̃,ỹ

(R(x, x̃) +A(x)) q(x = y)q(x̃ = ỹ)

≡ max
q

∑
x,y

∑
x̃,ỹ

R(x, x̃)q(x̃ = ỹ) + |x̃|A(x)

 q(x = y)

(2)

where x̃ is any node that shares a group with x and |x̃| is the
total number of such groups.

Finally, we wish to find values of the indicators such that
they maximize objective (2) with respect to the one-to-one
constraint

∑
x q(x) = 1 and properties (1). This problem is in

the category of the quadratic assignment problem [19] and 0-1
quadratic programming where the complexity of solving for
the optimal solution is NP-hard. However, it can be seen that
if we treat the inner terms of objective (2) as new absolute
constraints Ȧ(x = y,q), the objective becomes

max
q

∑
x,y

Ȧ(x = y,q)q(x = y) (3)

which is a linear summation of the indicator values where the
optimal result can be computed in polynomial time according
to Lemma 2.1. Next section will discuss an algorithm that
utilizes this idea.

III. METHODOLOGY

Solving the one-to-one matching problem that involves
relative constraints is generally hard. Alternatively, we can
convert all relative constraints into absolute ones and then
perform the assignment on this new constraint set using KM
algorithm. The whole idea of constraint conversion conforms
to the concept of maximizing average local consistency in
the relaxation labeling framework. It can be used to convert
objective (2) into (3). In this section, we discuss the approach
in detail.

A. Relaxation Labeling and Kuhn-Munkres method

The objective (3) is in an inner product form of the new
absolute constraint and the indicator vector. The main concept
of maximizing average local consistency in RL is to seek
a value for each individual q such that the two vectors
are aligned thus yielding the maximum result. We start the
conversion task by first disregarding the first constraint in (1)

2For appearances’ sake, let any individual x inside functional quantities
stand for x = y for some corresponding y.

Similar to many other approaches in matching, we assume that there is no
high order constraint that has more than two nodes in the maps [4], [18].
Although the same concept can be used to transform high order constraints
with slight changes in the structure of the final objective.



to allow q to have any value within range [0, 1]; following this
scheme is the concept of continuous RL.

There are several implementations of continuous RL [18].
For simplicity, we adopt the radial projection update rule from
[20]. Let n be the index of RL’s iterations, for every map
feature x and every world feature y

Ä(x = y,qn) = Ȧ(x = y,qn)−min
y′

Ȧ(x = y′,qn)

qn+1(x = y) =
qn(x = y) + αÄ(x = y,qn)

1 + α
∑

y′ Ä(x = y′,qn)
(4)

This rule can be regarded as a version of gradient ascending
where α ∈ R is used to control the rate of convergence.
A proper starting point for q0 is the set of probabilities
that corresponds to the normalization of the original absolute
constraints. It is important that we first subtract the minimum
of all possible assignments from every new absolute constraint
to avoid the rule from producing negative probabilities.

However, using continuous version of the indicator poses
a new problem because any assignment can be tied with
a small indicator value, and we use summation over all
possible assignments of all surrounding nodes despite that we
in fact want to assign only one world correspondence to each
neighbor node. With respect to this contradiction, we redefine
the new absolute constraints as follows:

Ȧ(x = y,q) =
∑
x̃

R(x = y, x̃ = ỹmax) + |x̃|A(x = y) (5)

Where ỹmax = arg max
ỹ

R(x = y, x̃ = ỹ)q(x̃ = ỹ)

This setting can mitigate the effect of multiple supports
by selecting only a relative constraint from the most possible
assignment of each neighbor instead of one that is strong from
receiving supports from many weak assignments.

At the end of RL iterations, we reach objective (3) where
the optimal one-to-one matching can be given by the KM
algorithm. In order to address missing features in real circum-
stances, we augment the world space of KM with additional
|X| dummy features. KM always chooses assign a map feature
to a dummy if it can produce a better matching strength than
a threshold ¯̇Ax defined as follows:

¯̇Ax =
∑
x̃

R̄x,x̃ + |x̃|Āx

where R̄x,x̃ and Āx are the threshold for classifying as missing
of each relative and absolute constraint respectively. These
thresholds must be provided into the process as parameters.

At the perfect situation where the indicator values q con-
verge to the true optimal solution during the radial projection
process, the newly converted absolute constraints must be
equivalent to the ideal absolute constraints that perfectly en-
code the information of relative constraints; and therefore the
results of KM must also be the optimal results for maximizing
objective (2). However in general, there is no guarantee that
solving relaxation labeling with radial projection can provide
the optimal q; and thus the results of KM might not correspond
to the true optimal matching. Because of this, we additionally

present an improvement routine that helps enhance the quality
of matching results.

B. Improvement steps

Improvement steps are required to improve the matching
quality as it may be spoiled during the RL process. The
intuition behind these steps is analogous to the concept of
molecular lattice formation in chemistry where we try to
destroy weak bonds and reform stronger ones. It can be seen
that each matching result from KM can be visualized using
a graph by overlaying relative constraints on matched world
features. The nodes of the graph are the world features and
the edges are the relative constraints. We can treat the graph
as a lattice structure; and by selectively splitting the graph
and passing the result components into the matching process
again, we acquire a better graph. The steps can be described
in detail as follows:

1) Identify and remove the edges that are worse than their
thresholds R̄; this may produce some disjoint compo-
nents.

2) Remove assignments from all features in small compo-
nents. The small components are the components that
have the number of feature nodes less than a criterion
∈ N; this criterion has to be given as a parameter.

3) For all unassigned features that are adjacent to assigned
features, let the relative constraints act as additional
absolute constraints. This step is required to ensure that
the new features are assigned correspondingly with the
previous ones.

4) Repeat the matching process on the unassigned features.

The number of repetition can be given. Alternatively, the
algorithm may run until there is no unassigned feature left
or when all the new formed edges are worse than R̄.

C. Summary and Complexity Analysis

In summary, the algorithm can be described as follows:
1) Initialize the setting q0 from the original absolute con-
straints. 2) Convert constraints using relation (5) and radial
projection rule (4). 3) Perform one-to-one matching on objec-
tive (3) using KM algorithm. 4) Improve the output result and
repeat the process from the second step.

The asymptotic running time of RL in a single thread
process is O(N |X|2|Y |2) where N ∈ N is the number of
RL’s iterations. The complexity of KM method with dummy
features is bounded within O

(
(|X|+ |Y |)3

)
[13]. The im-

provement steps can be achieved in O(|X|2 log(|X|)) using a
disjoint set; the |X|2 part comes from the maximum possible
number of the relative constraints. Let K ∈ N be the total
number of repetition, the overall complexity of our algorithm
is O

(
K
(
N |X|2|Y |2 + (|X|+ |Y |)3

))
. However, because

RL was originally designed to be highly parallel, we can utilize
this characteristic of RL to help reduce computation time.



Fig. 1. The artificial maps and their matching results in the world data with 200 irrelevant features and seeds generated with 0.2 m2 position variance. Each
pair contains a map (left) and its matching result overlays on the noisy world data (right).

IV. EXPERIMENTS

In this section, we show quantitative and qualitative perfor-
mance of our algorithm in feature matching tasks from human-
provided maps to artificial and real world datasets that have
the characteristics of range scanner data.

We proposed three types of features including corner, line,
and ending. Every feature had three properties which were
type, location in m2, and orientation in radian. Each absolute
constraint was a likeness between a world and a map feature
which is defined by an inner product of the orientation vectors
from the features. But when the features were different in
type, we penalized the likeness by a constant factor. A line
and an ending are similar; therefore, the likeness was three
quarters times the inner product. The factor for a line or
an ending against a corner was one half, but the orientation
of either the line or the ending was tested with the closest
of the two lines, in angular distance, that form the corner.
Furthermore, we normalized all absolute constraints by the
size of its neighborhood to make them all equally impor-
tant. Each relative constraint was defined by the negative of
square distance between neighbors in the world and the map,
R(x = y, x̃ = ỹ) = −||(xl − x̃l) − (yl − ỹl)||2 where the
subscript l denote features’ locations.

We used average relative constraint strength (ARCS) as
the evaluation metric where the goal is to maximize it. The
ARCS provides direct information for how well the relative
constraints are formed and provides indirect information about
the amount of features that have been classified as missing; in
particular, when all features are missing, the ARCS must be
equal to the constraint thresholds R̄.

A. Artificial Dataset
In the first two experiments, we numerically evaluated the

performance of our algorithm by comparing the result ARCS
with statistical average. The statistical average was computed
by matching map features to certain world features called
seeds. The seeds were generated from map features with
normally distributed positions and orientations around the orig-
inal ones at different variance magnitudes. They were added

into the world feature sets and would be chosen when none
other alternatives produce better matching results. For the first
experiment, we varied the variance magnitude of the seeds’
positions. In the second experiment, we varied the amount of
irrelevant world features. The irrelevant world features were
randomly generated features that had been inserted into the
world apart from seeds and we introduced them into the
experiment using irrelevant/relevant ratio where the number
of relevant features was |X|.

We used six testing maps shown in Figure 1. For each map
the minimum component criteria were 2,1,3,3,3,3 respectively.
Each seed feature had orientation variance at 0.05 radians.
The default value of position variance and irrelevant/relevant
ratio are 0.05m2 and 1.0 respectively. In each experiment, we
fixed one value to its default and allowed another to change.
Our algorithm involved 5 steps of radial projection with rate
factor α = 0.5. For each configuration, we run the experiment
50 times on each map and the results were reported on the
average. Figure 3a and 3b show the results.

(a) variance (b) irrelevant/relevant ratio

Fig. 3. Quantitative performance of our algorithm when compared with
direct matching to the seeds across three constraint thresholds. The plots show
square root magnitude of the ARCS against increasing a) seeds’ variance b)
irrelevant/relevant ratio.

Intuitively, changes in variance must have a direct influence
toward the seed results; the higher the variance, the lower
ARCS is produced from seed matching. Therefore, an optimal
algorithm must perform as good as seed matching when the
position variance is low and better when the variance increases.
Figure 3a shows that our algorithm tends to follow this
behavior. At low variance, ARCS from our algorithm followed



Fig. 2. Comparison between our algorithm’s and optimal results; For each tuple from left to right, there are the map, the result from our algorithm, and the
optimal result respectively. We also show the final ARCS and objective values from (our algorithm)/(optimal) in each map.

the seed’s tightly or loosely depending on the threshold value.
And when the variance was high, our algorithm could maintain
ARCS and never allowed it to become lower than the threshold
value. Since the threshold controlled the elimination process,
lower threshold allowed only strong assignments to survive
leading to higher ARCS closer to the seed’s3.

The increasing irrelevant/relevant ratio reduced performance
of our algorithm as opposed to the seed performance which
was unaffected by both the ratio and the threshold because
matching to seeds did not take them into account. To see where
it ended, we solely tested matching performance in the extreme
condition where each world set has 200 irrelevant features.
The qualitative results are shown in Figure 1; it can be seen
that our algorithm still managed to find proper correspondence
between the map and the world domains.

Next, we show comparison between matching results of our
algorithm and the optimal solutions from combinatorial search.
We fixed constraint threshold to 4. The minimum component
criteria for every map was 1. Again, our algorithm involved
5 iterations of both 0.5-α radial projection and improvement
steps. Results are shown in Figure 2.

It can be seen our algorithm could produce close-to-optimal
matching results and even the optimal results themselves
sometimes. It is worth pointing out that our algorithm com-
puted each result in less than 1 second which was clearly much
more efficient than adopting combinatorial search, which took
several hours.

B. Real Dataset

In addition, we tested our algorithm on actual range scanner
datasets4 to show that it also works well in real scenes. World
features were extracted from snapshots of these datasets by a
process briefly described as follows: 1) We scanned for large
intervals, continuous points, and sharp turns between the out-
put data points from range scanners. These landmarks indicate
promising places where corner, line, and ending should appear
respectively. 2) From these landmark locations, we extended

3If the threshold was too low, only few assignments could survive the
elimination process; sometimes this might not be satisfactory.

4The data used in this experiment were acquired from the Robotics Data
Set Repository (Radish) and Datasets of Cyrill Stachniss [21], [22]; we would
like to thank D. Fox, N. Roy, and D. Haehnel for providing them.

the scanning forward and backward to count number of points
that form straight lines and structurally support appearance of
features. 3) To become a line or an ending, we evaluated the
least squares error when we tried to fit a straight line to the
supporting points. As for a corner, we used the least squares
errors from both lines that form corner and also the magnitude
of cross product, measuring how close the two lines form the
right angle. The complexity of the algorithm is O(hk) where
h is the number of the output data point and k is the size of
supports.

Maps were created from a user-interface that enables human
operators to draw scenes in range data format (each drawing
point is presented in polar coordinate system from an arbitrar-
ily chosen viewing point). The map features were extracted
from the drawings using the same extraction routine for the
world features. Then, using the same interface, the operators
were allowed to create links between the extracted features in
the maps in order to define relative constraints.

Matching results with ARCS are shown in Figure 4. The
constraint threshold was 4 and the minimum component
criteria was 3 for all maps. Our algorithm involved 5 steps
of radial projection with α = 0.5 in the constraint conversion
process and 2 improvement steps. The results were computed
in real-time manner and it can be seen that all ARCS results
are better than the threshold.

V. CONCLUSION AND DISCUSSION

The main contributions of this paper are the formulation of
the one-to-one matching problem from graphical models based
on the use of relative and absolute constraints and a relaxation-
based algorithm to solve it. The algorithm is a combination
of the RL and KM methods with the additional improvement
steps to enhance matching quality. We evaluated the algorithm
on the matching problems between human-provided maps and
range scanner data. The results show effectiveness of our
algorithm in term of matching quality and speed.

This work is related to the graduated assignment algo-
rithm [8], but with an additional elaboration whereby we
enforce the one-to-one matching constraint using the KM
method. Also, our objective (2) is in form of a quadratic
assignment problem; therefore, we can use any quadratic



Fig. 4. Sixteen pairs of real experiment results are shown. Each pair contains a map (left) and the matching result with ARCS overlays on the extracted
features from a snapshot of range scanner data (right). The raw range scan datasets were obtained from Radish and Datasets of Cyrill Stachniss [21], [22].

assignment algorithm to solve it. Thus, our proposed algorithm
has some distinct features. Not only quadratic assignment
problems, but RL can also be extended to non-quadratic
versions, which is when the objective (2) includes higher order
terms [12]. Though this extension comes with an increase in
run-time complexity, the highly parallel structure of RL allows
it to be computed efficiently on multithreading systems.
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