
Effect of Low Level Imitation Strategy on an
Autonomous Multi-Robot System Using On-Line

Learning for Cognitive Map Building.

Abdelhak Chatty1,2,Syed Khursheed Hasnain2,Philippe Gaussier2, Ilhem Kallel1,Philipe Laroque2, and Adel M. Alimi1
1REGIM: REsearch Groups on Intelligent Machine

University of Sfax, National School of Engineers (ENIS) Sfax, Tunisia
2ETIS: Neuro-cybernetic team, Image and signal Processing

National School of Electronics and its Applications (ENSEA), Cergy-Pontoise University, Paris, France
{abdelhak chatty, ilhem.kallel, adel.alimi}@ieee.org , {Gaussier, syed-khursheed.hasnain}@ensea.fr, laroque@u-cergy.fr

Abstract—In this paper, we present the interest of low level
imitation strategy on individual and population levels in the
field of Multi-Robot System. Particularly, we show that adding
a simple imitation capability to our bio-inspired architecture
boosts the ability of individual cognitive map building. Taking
into account the notion of imitative behavior, we also show that
the individual discoveries in each robot (i.e. goals) could have an
effect on population level and therfore it induces a new learning
capability at the individual level. To analyze and validate our
hypothesis, a series of experiments have been performed with
and without a low level imitation strategy.

I. INTRODUCTION

In an unknown environment, interactions among robots can
be based on Stigmergy [1] which reflects indirect commu-
nication through the environmental changes. To share partial
knowledge of this environment in a cognitive1 multi-robot
system, which is based on the cognitive map for navigating
and planning, several benefits can be expected from imitation
capability [2], [3], [4], [5], [6]. The imitation strategy can be
considered as a powerful tool for autonomous robots to learn
and discover new tasks and places. Learning by imitation and
observation is an intuitive and natural method, it is not only
the tool for learning but also a way to speed up the learning
process. Therefore modern robotics considers imitation as a
powerful behavior that enables learning by observation [7] [8].
The idea of imitation learning for robots is inspired by the
notion of imitation described by developmental psychologists.
According to psychologists immediate or low-level imitation
corresponds to the ability of a child (few months old) to imitate
(spontaneously) meaningless gestures. This low level imitation
may serve to higher level functions for instance, learning by
observation [9].

In our case, we associate this concept of very low level
imitation with our architecture of exploring environments and
creating cognitive maps. In the onset of the experiment, a
mobile robot (Robot A) creates its own cognitive map (without

1Here cognitive means each robot is able to build online an internal
cognitive topological map of its environment.

the imitation strategy) while exploring the environment to
discover the resources for its needs. This random exploration
takes a long time to build a cognitive map. As robot A
completes its cognitive map, a second mobile robot (Robot B)
which is able to perform low level imitation starts exploring
the environment. When Robot A is in the field of view of
Robot B, it imitates the first robot by following its current di-
rection of movement. As robot A visits resources several times
depending on its needs, robot B discovers these resources
during its low level imitation and builds its own cognitive
map. Once the resources are discovered the imitation strategy
is turned-off and robot B visits the resources independently
depending on its needs.

In section 2 the theory and the bio-inspired architecture of
our proposed cognitive map and its adaptive capability are
presented. Section 3 describes the imitation process and fi-
nally, before concluding, section 4 details experimental results
along with comprehensive discussion and analysis on positive
feedback of imitation strategy in cognitive multi-robot system.

II. THE BIO-INSPIRED ARCHITECTURE

Starting from neurobiological hypothesis which highlights
the importance of hippocampus in the spatial navigation, [10],
[11], [12], [13] has brought to light special cells in the
rat’s hippocampus that fire when the animal is at a precise
location. These neurons are called place cells (PC). We do
not directly use them to navigate, plan or construct a map, we
rather use neurons called transition cells (TC) [14]. This kind
of cells is inspired by a neurobiological model of temporal
sequence’s learning in the hippocampus [15], [16], [17]. A
transition cell codes a spatio-temporal transition between two
PCs successively winning the competition, respectively at time
t and δt. The set of the PCs and the TCs constitute a non-
cartesian cognitive map. The reason behind using transition
cells is that their association with an action is univocal
and quite straightforward. There is no need of an external
algorithm to extract the action from the cognitive map. The
model [18], also describes the role of the hippocampus: The



entorhinal cortexwhich is the main input to the hippocampus
(EC) which receives signals from associative cortical areas and
then filters and merges the multimodal information. In order to
transfer it to CA3 pyramidal cells and dentate gyrus (DG), the
DG operates an eminence between the signals and puts them
together in a temporal hierarchy which later on is retransmitted
on CA3 cells. This temporal hierarchy allows CA3 to be
aware of past events and put them in correspondence with
present events, therefore it behaves like an associative memory
through stocking possible transitions between these events.
The recognition of the ongoing sequence happens at the level
of CA1 using EC and CA3 information. It also extends to the
prefrontal cortex (PRC) to serve the higher levels of cognitive
processes. Based on the same research, [19] form a model
of the cognitive map in the hippocampus representing the
entire environment and suggest the shortest paths to a given
goal. The model proposed by [20] provides a complete neural
architecture of the learning process. His model uses a cognitive
map and associates it with a mechanism of action selection.
[21], [22] also proposed a model of cognitive embedded in a
parieto-fronatl network, which is based on cortical columns.

A. The cognitve map

To develop a cognitive multi-robot system we took in-
spiration from the model of [18]. A schematic view of our
architecture is shown in figure 1:
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Fig. 1. Model of loop hippocampo-cortical of the creation of the cognitive
map

To create the PC, the robot takes a visual panorama of the
surrounding environment. A camera mounted on a pan system
allows to perceive the environment or the surroundings. The
visual images are processed to extract visual landmarks. These
landmarks are learnt and a visual code is created by combining
the landmarks and their corresponding azimuth. This configu-
ration serves as a code for PCs. The signals provided by the EC
are solely spatial and consistent with spatial cells’ activities.
In order to select (only) the cell with the strongest response
at a specific location, spatial cells’ activities are submitted to
a Winner-Take-All competition. We subsequently speak about
the current location by indicating the spatial cell which has
the highest activity at a given location. The temporal function
at the level of the DG is reduced to the mere memorization
the past location. The acquired association at the level of the
pyramidal cells CA3 is then the transition from a location to
another aside from all information concerning the time spent
to carry out this transition. Once the association from the past
location and the new one is learned, every new entry will

reactivate the corresponding memory in the DG. During the
exploration of the environment, the cognitive map is gradually
created when the robot moves from one place to another. The
equations governing learning in the cognitive map are given
below 1 and 2:

dWCC
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T (t) is a binary signal (0 or 1) activated when a transition
is made (moving from one place to another). This signal
controls the learning of recurrent connections WCC . γ is
a parameter less than 1 which regulates the distribution of
motivation activity on the map. λ1 and λ2 are parameters
of active and passive oblivion respectively on the recurrent
connections. S(t) is a signal marking the satisfaction of a goal
(for example the resources discovery). This signal controls the
learning of synaptic connections between neurons in WMC

motivations’ activity XM and neurons of the cognitive map
of activity XC . After having explored the environment, the
robots are in a position of predicting the locations directly
reachable in each situation. Figure 2 presents an example of
a cognitive map according to the perception of one robot.

Fig. 2. From the perception of an unknown environment to the building of
a cognitive map. This figure is a simplified view of the the robot’s cognitive
map based on transition cells. The construction process is based on: place
recognition using PCs, activation of one PC and delayed activation of another
allowing for transition prediction (green transition) and the need for sources
(R1 and R2) which therefore triggers maximum motivation for a given goal.
Figure (a) shows the real environment and figure (b) shows the cognitive map
of one robot after 30 minutes of learning.

The environment is composed of 2 sources, 2 obstacles and
2 identical robots (robulab 10 from robosoft) that are able to
avoid the stable and dynamic obstacles, to navigate, to learn
and to construct their on-line own cognitive map in a unknown
environment (with a threshold of vigilance to learn news places
equal to 0.65 and a duration of learning equal to 30 minutes).
This model has been used in Cognitive multi-robot system
navigation tasks [23] where the robots were able to build their
cognitive map on-line and learn how to move towards various
goals in unknown environment.



B. The selection of the shortest path

Our Cognitive robots are also able to select the shortest
path [23] in order to reach their targets: when discovering a
source (food, nest or water), the motivation associated with
it (thirst, hunger or stress) is associated with the cognitive
map at the location where it was found. This motivation then
spreads to the graph, indicating the shortest path to reach the
source from any known location. We can therefore merge these
motivation activities with the transition prediction activities
coming from the hippocampus. The level of prediction of
different transitions from the hippocampus is substantially the
same. The activity derived from the cognitive map comes then
to predetermine the transition choice among those that have
been predicted, through selecting thereby the transition leading
the fastest towards the target. A field of neurons gathers the
information on the robot’s direction during its entire passage
of a location. It provides therefore, at the exit of a location,
the direction and the length of the trajectory performed at
the location. This direction is considered to be the one which
is required to perform the transition. During the selection
of a particular transition in order to reach the target, we
can replicate, in terms of direction, the motion associated
which has already been learned during the discovery of the
environment.

III. THE IMITATION PROCESS

In order to share a partial knowledge of the environment,
direct communication between robots could be used. However,
the presented architecture is based on the stigmergy to commu-
nicate between robots. Thus, imitation seems an intersting way
to strengthen this architecture. In this section, we describe a
very simple architecture for imitation in a navigation perspec-
tive. The proposed model is based on dynamical interactions
among mobile robots. Our aim is to provide limited capabili-
ties to a mobile robot to interact dynamically with other robots
by following their current direction of movement. Figure 3
shows the architecture of our imitation model.

Fig. 3. Architecture to imitate or follow the other robots depending on the
estimation of their velocity vectors (optical flow)

As shown on figure 3, perceived motions (by camera) in the
visual field (of mobile robot) are estimated by a classical
optical flow algorithm [24]. If the perceived motion is in
upward direction, it is considered as positive activity, on the

other hand, downward motion is accumulated as negative
activity. Similarly, motion on the left direction leads to positive
activity while movements on the right direction are considered
as positive activity. Figure 4 is a snapshot taken during the
experiment illustrating optical flow functioning. There are two
moving objects in the field of view of a mobile robot. One
moves left to right and it is transformed to negative activities
by the optical flow (gray and unfilled blocks) while the other
moves right to left and transformed into positive activities
(shown by black color).

Fig. 4. Optical flow function: left side movements shows as black and
realized by +ve activities while right side motion perceived as −ve activities
and shown by unfilled blocks. It also shows how an imitator robot perceives
the movements of the other robots (the arrows represent the robots directions).

To determine the correct direction (motion) of an interacting
partner or to follow the interactor, optical flow activities are
transferred to a short term memory block, this block is used
to avoid the fast changes in the environment. Then, all the
pixels of short term memory module are projected on the
x-axis (i.e all pixels in each column are added). Than, a
Winner Takes All (WTA) selects the highest activated column.
This selected column indicates the direction of the movement
and the robot can point and follow the interactor. For this
experiment the resolution of image is 32× 24 (32 columns or
location), these 32 possible locations are realized in 600 (−300

to 300) circular angles which are fed to the motor according
to the corresponding columns (column zero refers to −300

while 32th column corresponds to 300) and 00 when the agent
stands in front of mobile. If two or multiple visual stimuli are
present at the same time then our proposed Imitation algorithm
dynamically locates and selects the interacting agent who’s
estimated velocity vectors are larger.

IV. EXPERIMENTATIONS, RESULTS AND DISCUSSION

Our experimental results show how imitative strategy can
be useful in multi-robot system. We worked on a series of
experiments to validate that the imitation strategy, which works
among humans to improve the individual and social behaviors,
can also be applied on a cognitive multi-robot system.

A. The analysis of the imitation behavior
In this section, we detail our experimental environment and

procedures. To avoid complexities we use minimal setup which



includes 2 sources, 3 obstacles and 2 robots: leader robot LR
(which has already learnt the environment and the positions of
both resources R1 and R2) and the imitative cognitive robot
IR (which is capable of imitating and of following the other
cognitive robot LR and to create its cognitive map on-line).
Figure 5a, b, d and e shows that the IR tries to construct its
own cognitive map by following the cognitive robot LR (when
LR navigates towards the resources using its own cognitive
map). Figure 5c and f demonstrate that the IR is succeeded
in discovering both resources R2 and R1 during the imitation
process or following the LR. Throughout the experiments, it
was notable that the IR also has the capability of learning and
of constructing its own cognitive map (on-line) independently,
but if the same task is performed by using imitation tactic it
boosts the performance (as a function of time) of discovering
resources and creating a cognitive map. After discovering the
positions of both resources, the IR will be able to return
alone to the two resources using its own cognitive map. This
experience proves the importance of imitation in multi robot
system.

Fig. 5. The influence of the imitation behavior in a multi-robot system.
The experiment is done with two robots IR: imitator cognitive robot and
a simple cognitive robot LR that has already learned the environment
and the position of the resources R1 and R2. The figure is presented
with chronological order and proves that thanks to imitation, the imi-
tator robot was able to find the two resources R1 and R2. The video
is available at http://perso-etis.ensea.fr/neurocyber/Videos/Cognitive Multi-
Robot System /Imitation LR-IR.mov

Figure 6 demonstrates the trajectories and the individual
behavior of robots in more details. The arrows are the initial
positions of the two robots. The dashed line sketches the
trajectory of IR whereas trajectory of LR is shown by a
continuous line. LR’s trajectory shows that the robot tries to
go to the position of LR when IR detects it in its visual field.
It is evident that when IR is close to the LR, its trajectory
tries to follow the trajectory of LR (the two trajectories are
confounded). The trajectories of the robots show that IR is
able to find the two resources R1 and R2 by imitating the
trajectory of LR. It is worth to notice that instead of following
the complete trajectory of LR, IR imitates and follows LR
only for α seconds and then stops the imitation strategy in

order to detect another robot. In this case it may happen that
IR do not detect LR again because LR continue to move and
disappear from the visual field of IR. Since for this experiment
we used only one robot (LR), IR always detects or loses the
same robot.

(a)                        (b)

IR

LR

IR

LR

Fig. 6. The trajectories of robots to reach the resources. The cognitive map
allows the LR to find the two resources. Thanks to the imitation strategy the
IR is able to find the same resources when it follows the trajectory of the
LR. The IR has the capability to learn the environment and the positions
of the resources through creating its own cognitive map. Thus, after the first
discovery of the two resources, the IR is able to return alone to the resources.
Figure (a) and (b) show the discovery of the resources R1 and R2 respectively.

B. The effect of imitation on the cognitive map

As the cognitive map is a way to describe the environment,
we assumed that the sum of the individual cognitive maps
allows to describe all the complexity of the environment. By
adding a simple imitation strategy we allow the IR to share
this complexity and to learn the experience of the LR to
achieve its goals. Since the IR has the capability to create
its cognitive map, when it follows the trajectory of the LR,
its cognitive map will be influenced by the one of the LR.
Figure 7 a and b show the cognitive maps of the LR and the
IR respectively.

             (a) Cognitive map of the LR                  (b) Cognitive map of the IR           (c) Resemblance of the 2 cognitive map

Fig. 7. The influence of the imitation on the creation of the cognitive map
of the imitator robot. Figure (a) shows the cognitive map of the LR which
already learnt the environment and the positions of both resources R1 and
R2, figure (b) shows the cognitive map of IR that is created after applying
the imitation strategy. Figure (c) presents the two cognitive maps in the same
plan. The figure proves the positive effect of the imitation strategy which
allows the IR to find the two resources and to create a cognitive map which
resembles the cognitive map of the LR at the level of the PCs, TCs and the
shape of the cognitive map.

In order to see the difference between the two cognitive maps,
we put them in the same plan (see figure 7c). It is noticeable
that there is a resemblance between the two cognitive maps
at the level of the PCs, TCs and the shape of the cognitive
maps. Generally, in emergent collective systems, the behavior



of an agent becomes a cause for the emergent property of
another agent and it helps the whole system to solve a specific
task. With the imitation strategy we show the same system, In
our experiments, LR who had already acquired and learnt the
environment, helps another robot to satisfy its motivations.
Thus, adding a simple imitation strategy to our cognitive
architecture allows the cognitive multi-robot system to help
the individual robot.

C. The effect of imitation on the resources discovery time

Three different schemes of experiments have been tested
to analyze the comparative behavior between a robot having
imitative capabilities and a robot without imitation skills
during the discovery of the environment and the resources (in
our experiments we used 2 resources). For these experiments
our main goal is to observe the time of exploration of the
resources. For every experiment the robot starts with random
positions and resources which are placed randomly. For the
first scheme, a single robot moving randomly allows the in-
vestigation of the environment and its resources. In the second
scheme, the same mobile robot along with a cognitive robot
(who already knows the environment and frequently visits
the resources according to its needs.) allows the discovery
of the resources. The difference between this experiment and
the previous one is the way of exploring and the access to
resources. In the first experiment, the random robot discovers
the resources without any difficulty. However, in the second
experiment it is not easy to discover them because the cogni-
tive robot (which has already learned the resources’ position)
acts as a dynamical obstacle. It means that when both robots
are colse to a resource the random robot instead of heading
towards this resource it turns in wrong direction to avoid the
dynamical obstacle. In this case it loses the learning of the
resource’s position. Finally, in the last scheme, an imitative
robot (that can follow the other robot) along with the cognitive
robot allows to discover the resources and the environment.
For all these three schemes we interested to compute the
discovering time of both resources. For each experiment stated
above, we were looking for time to find the resources and
every single experiment in each category differs in time (to
discover the environment). To find the average time in each
category, we conducted several experiments. The number of
experiments to take the average value is determined by the
Fisher exact test or F test. It is a hypothesis test (statistical),
it compares the difference between two variances of two sets
of experiments (having the same number of observations) by
taking ratio between them;

F = S2
x/S

2
y (3)

where S2
x and S2

y are the variances of two sets of experi-
ments. S2

x is the numerator and it always has the larger value
between two variances. If the ratio (F ) does not exceed a
certain theoretical value (available in the table of fisher), it
can be accepted. On the other hand, if F is greater than the
theoretical value, we reject the hypothesis of equality of two

variances, in this case we increase the number of experiments
to close the theoretical value of equality of two variances. For
the first category, where a random robot (without imitation)
looks for resources, we conducted two sets of experiments
(4 experiments in each set) and computed the Fisher value
(F = 5.387), it is less than 19 which is given in the table
of fisher. For the second category, where a random robot
explores the environment along with a cognitive robot, we
conducted two sets of experiments (8 experiment in each set)
and computed the Fisher value (F > 100), it is greater than
19 and unacceptable. To reduce the difference in variance, we
conducted another set of experiment and computed F = 15.79,
it is less than 19 (does not exceed Fisher’s theoretical value).
Finally, for the last category, where the imitative robot imitates
the cognitive robot to find the resources, we applied two sets
of experiments (8 experiments in each set) and calculated the
Fisher value (F = 2.153), it is less than theoretical value (19).

The average time to find two resources for each category is
plotted in figure 8. It is clear from the results shown in figure
8, that the imitative robot takes less time to find both resources
(R1 and R2), its accumulative time is about 5 minutes (2 min.
for R1 and 3 min. for R2). However, the random robots of the
first and second category take much more time (about 3 times
more) to discover resources. The first category’s accumulative
time is 22 minutes (6 min. for R1 and 16 min. for R2)
similarly, the second takes 19 minutes (6 min. for R1 and
13 min. for R2).

Fig. 8. The average time of the resources discovery. The first curve (from
the left) shows the time to discover the resources by a robot having imitation
capability along with a cognitive robot which already knows the resources.
The second curve (dotted line) describes the time taken by a robot (without
imitation capability) to explore the resources along the same cognitive robot
as in the previous case. The last curve demonstrates the average time needed
to find the resources when single robot explores the environment randomly.

We also have validated the positive feedback of the imitation
strategy in a simulated cognitive multi-agent system based on
the same bio-inspired architecture. We have shown that with
imitation strategy, our cognitive agents are able to optimize
the time of discovering the resources as well as increase the
average number of the survivors (see figure 9).
By the above stated results, we can conclude that Imitative
strategy that is vital in humans for social behaviors can
be equally implemented in cognitive multi-robot system for



Fig. 9. The positive feedback of the imitation strategy in a simulated cognitive
multi-agent system. Figure (a) shows that without imitation cognitive agent 1
is able to find the three resources (R1,R2 and R3) after 1683 time steps
(5 minutes). However, in figure (b), the imitation strategy allows cognitive
agent 2 to reach the resources after 505 time steps (1,5 minutes).

effective learning and other behaviors. We can also conclude
that our bio-inspired architecture is able to maintain the same
performances and results whether it is tested by simulated
agents or examined by the real robots. Thus, we prove that
the cognitive map aims to teach our cognitive robots the way
to navigate, to reach the sources, avoid planning problems
before complete exploration of the environment and adapt to
a dynamic environment. Moreover, adding a simple imitation
strategy to our bio-inspired architecture, allows our cognitive
robots to have the same behavior as the ants algorithm (when
they try to look for food) but without the need to leave physical
trace in the environment.

V. CONCLUSION

In this paper, we highlighted the importance of the imitation
strategy. It boosts the capability (as a function of time) of a
cognitive multi-robot system to adapt to an unknown envi-
ronment. It allows to solve the navigation task among various
targets. We proved that combining the learning capability with
simple imitation tactic leads (in a real multi-robot system)
to a positive feedback in the individual and population level.
Moreover, it optimizes the time to explore the resources, and
it allows to create a cognitive map for the imitator robot IR
(approximately the same shape as the Leader robot LR). Thus,
to keep the rules of the stigmergy, imitation strategy is a better
way to share the knowledge between robots without direct
communication between them. As prospects, we are trying to
study the effect of the imitation in cognitive multi-robot system
which is able to take and withdraw objects.
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