
Learning search behaviour from humans

Guillaume de Chambrier and Aude Billard

Abstract—A frequent method for taking into account the
partially observable nature of an environment in which robots
interact lies in formulating the problem domain as a Partially
Observable Markov Decision Process (POMDP). By having
humans demonstrate how to act in this partially observable
context we can leverage their prior knowledge, experience and
intuition, which is difficult to encode directly in a controller, to
solve a task formulated as a POMDP. In this work we learn
search behaviours from human demonstrators and transfer this
knowledge to a robot in a context where no visual information
is available. The task consists of finding a block on a table.
This is a non-trivial problem since no visual information is
available and as a result, the belief of the demonstrator’s
state (position in the environment) has to be inferred. We
show that by representing the belief of the human’s position
in the environment by a particle filter (PF) and learning a
mapping from this belief to their end-effector velocities with a
Gaussian Mixture Model (GMM), we model the human’s search
process. We compare the different types of search behaviour
demonstrated by the humans to that of our learned model, to
validate that the search process has been successfully modelled.
We then contrast the performance of this human-inspired
search model to a greedy controller and show that (similarly
to humans) the learned controller minimises uncertainty, hence
demonstrating more robustness in the face of false belief.

I. INTRODUCTION

Constructing controllers or policies to act within a con-

text where the state space is partially observable is of

high relevance to all real robotic applications. Because of

inaccurate perception information, only an approximation

of the environment is available at any given time. If this

inherent uncertainty is not taken into account during planning

or control there is a non-negligible risk of missing goals,

getting lost and wasting valuable resources. This work takes

a Programming by demonstration (PbD) approach to learn a

control policy in a partially observable environment where

no visual information is available. In this context an expert

(human or robot) demonstrates how to accomplish a given

task.

Partially Observable Markov Decision Processes

(POMDP) are an extensive area of research in the operational

research, planning and decision theory community [1][2].

The emphasis is to be able to act optimally when the state

information is only partially available. Most large scale

state-space POMDP planning problems are resolved via

approximate methods such as point-based value iteration

(PBVI) [3], in which the policy is optimized at a set of

sampled points drawn from the belief space (a simplex in

which a point is a probability distribution over the state

G. de Chambrier and A. Billard are with the Learning Algorithms and
Systems Laboratory (LASA), School of Engineering, École Polytéchnique
Fédérale de Lausanne (EPFL), Switzerland

Fig. 1: Left: Human demonstrator searching for the green

wooden block on the table given that both vision and hearing

senses are impeded. Right: WAM Robot 7 DOF reproduces

the search strategies demonstrated by humans to find the

object.

space). These methods rely on exploratory/search heuristics

to discover a sufficient set of probability densities to able to

discover an optimal policy. Taking human demonstrations to

estimate the parameters of a policy acting in a POMDP is

advantageous over classical PBVI approaches, as it avoids

performing the time consuming exploration step and is

applicable to both continuous actions and state spaces.

The demonstrations immediately provide a set of examples

of the (assumed) optimal decisions. Humans perform an

informed search contrary to stochastic sampling methods

since they utilise past experience and are able to evaluate

the cost of their actions in the future. This foresight and

experience are implicitly encoded in the parameters of

the learned policy. Planning and Reinforcement Learning

(RL) methods reason with respect to a Markovian process

where all the information required to make a decision is

encapsulated in the current state and no other information

is used. The discovery of the optimal path, embedding the

implicit information, is difficult to retrieve in this Markovian

setting.

In this work we consider a task in which both a robot and

a human must search for an object on a table whilst deprived

of vision. The environmental setup is prior knowledge to the

robot and the human making this a specific search problem

with no required mapping of the environment. In figure 1, a

human has his sense of vision and hearing impeded, making

the perception of the environment partially observable and

only leaving the sense of touch available for solving the

task. Before each demonstration the human volunteer is

disoriented. His transitional position is varied with respect to

the table and his heading remains the same (facing the table)

leaving the uncertainty component out of the orientation.

The reason for the disorientation step is to ensure that the

human’s believed location is uniform. At the first time step,

the human’s state of mind can be considered observable. All

proceeding beliefs can then be recursively estimated from

the initial belief. The hearing sense was impeded since it can

facilitate localisation when no visual information is available

and the robot has no equivalent giving an unfair advantage to

the human. By impeding hearing we reduce the perception

correspondence between the human and robot.

A crucial aspect of our work is that the robot should be

capable of inferring the belief of the human doing the search.

Work on modelling human being beliefs and intentions [4][5]

has been undertaken in cognitive science. This work was able

to show that humans perform inference in a similar fashion to

Bayesian models. Our work takes this further by combining

the modelling of both belief and action. The performance of

the model is evaluated in three separate ways: 1) whether the

search output of the model is comparable to that of humans

2) how well the model performs against a greedy approach

when solving the search task and 3) how robust the model

is to false beliefs.

II. RELATED WORK

The domain of our work lies at the intersection of three

fields namely programming by demonstration, cognitive sci-

ence and acting under uncertainty. We review the latest

developments in each field, highlighting the relevance to our

work.

In many PbD research studies, single one-shot successful

demonstrations (such as Pick & Place) in fully observable

environments have been encoded through either statistical

methods such as GMM with Stable Estimator of State Dy-

namics (SEDS) [6], in a latent space with Gaussian Process

(GP) [7] or trajectory encoding methods such as Dynamic

Motion Primitives (DMP) [8] and splines. For an in-depth

review of PbD the reader may refer to [9]. The benefits of

these approaches is the dramatic reduction in the search space

of the optimal policy through leveraging human knowledge,

but no work has be undertaken to make them compatible in

a context where the state space in not fully observable.

One aspect of our work employs a probabilistic repre-

sentation of a human’s belief over his state in the envi-

ronment. Human mind attributes, such as beliefs, desires

and intentions, are not directly observable. They have to be

inferred from actions. In [10], the authors present a Bayesian

framework for modeling the way humans reason about and

predict actions of an intentional agent. The comparison

between the model and humans’ predictions when asked to

infer the intentions of an agent in a 2D world yielded similar

inference capabilities. This provided evidence supporting

the hypothesis that human beings integrate information us-

ing Bayes rule. Further, in [4], a similar experiment was

performed in which the inference capabilities of humans,

with regards to both belief and desire of an agent, were

comparable to that of their Bayesian model.

Many robotic applications have to handle the partially

observable nature of the environment they act in. A widely

used approach to model the dynamics of the problem is

to formulate it as a POMDP. Value Iteration (VI) [11]

(employed for discrete state and action space in RL) is a

popular approach to learn a policy in a POMDP. However

an exact solution only exists in a discrete encoding of the

state-action space [12, p.513]. This is due to the fact that the

value function is defined over the space of state belief. As

the agent can occupy a large number of possible states, the

computational costs grow exponentially. As a result much

effort has been put into evaluating an approximation of

the value function at a set of representative beliefs rather

than over the full belief space. Such methods fall under the

category of PBVI [3] in which most research has focused on

determining the best set of beliefs, [13] to be evaluated by

the value function, see [14] for a review. Other approaches

compress the belief to sufficient statistics (mean and entropy)

as in [15] and perform standard VI. The draw back with

these methods is that they aren’t able to deal with both

continuous state and action space. The noticeable exception

is Monte Carlo POMDP [16] which represents the belief of

the position of a robot by a particle filter. However the value

function is difficult to compute and requires storing belief

instantiations for evaluating new unseen beliefs. The major

draw back of all these approaches lies with the exploration

problem which becomes infeasible as the number of states

and actions increase.

Decision-theoretic based approaches have also been ap-

plied. Notable examples are [17] and [18] where a decision

tree graph is constructed with nodes representing beliefs and

edges actions. An time horizon planner is used which makes

a trade of between reducing uncertainty and achieving the

wanted goal. The shortcomings of these methods lie with

the computational cost of constructing the search tree with

PF for the belief nodes. It also effects the responsiveness of

the system which takes time to perform the planning

Our work differs from the above approaches in that we

use human experts to provide training data on how to solve

a specific task in a POMDP setting. The benefits of our

approach are that we can use both continuous actions and

state spaces and largely reduce the exploration problem since

we can leverage the prior knowledge by means of the human

demonstrations. These demonstrations restrict the solution’s

search space and hence free us from having to explore all

the branches of the belief-state-action tree.

III. PROBLEM STATEMENT

The search task being considered is to find a wooden

block on the table given that both vision and hearing senses

have been impeded. The first consideration is that the human

or robot localises himself in the environment. He/It then

navigates towards the goal using a range of strategies ranging

from risk averse strategies, where the path taken remains

close to salient features so as to not to get lost, to risk taking

strategies where the person follows the shortest path to the

goal’s location. It is non-trivial to have a robot learn the

Fig. 2: A participant is trying to locate the green wooden

block on the table given that both vision and hearing senses

have been inhibited. A black glove is worn which has had

its fingers sewn together in order to limit the variability of

motion. These two measures were taken in order to equate

the human’s level of perception to that of the robot, and hence

reduce the correspondence problem. The top of the glove

harbours a small platform with three reflective markers which

are used to track the hand with the OptiTrack R© system.

behaviour exhibited by humans performing this task. As we

cannot encapsulate the true complexity of human thinking,

we take a simplistic approach and model the human’s state

through two variables. The first variable is the human’s

uncertainty about his current location. The second variable

is the human’s belief of his position. The various strategies

adopted by human’s are modelled by building a mapping

from the state variables to actions, consisting of the motion

of the human arm. Aside from the problem of correctly

approximating the belief and its evolution over time, the

model need to take into consideration that people act very

differently given the same situation. As a result it is not just

a single strategy that will be transferred but rather a mixture

of strategies. While this will provide the robot with a rich

portfolio of search strategies, appropriate methods must be

developed to encode these, at times, contradictory strategies.

A. Experimental setup

In the experimental setup, a group of 15 human volunteers

were asked to search for a wooden green block located

at a fixed position on a bare table, see figure 2. Each

participant repeated the experiment 10 times from each of 4

mean starting points with an associated small variance. These

starting positions were: in front, to the left, to the right, and

being on the table itself. Before each trial the participant was

told that he would always be facing the same direction with

respect to the table (so always facing the goal, like in the

case of a door) but his transitional starting position would

vary. For instance, the table might not be always directly in

front of him and his distance to the edge or corner could be

varied.

B. Formulation

In the standard PbD formulation of this problem, a

parametrised function is learned, mapping from state x,

which denotes the current position of the demonstrator’s

hand, to ẋ, which denotes the displacement of the hand at the

next time step. In our case since the environment is partially

observable we have a belief or probability density function

p(xt|z0:t), which is conditioned on all sensing information z

up to time t, over the state space at any given point in time.

We seek to learn this mapping from demonstrations:

f : p(xt|z0:t) 7→ ẋ (1)

During each demonstration we record a set of variables

consisting of the following:

1) ẋ ∈ R
3, velocity of the hand in Cartesian space, which

is normalised.

2) x̂ = argmaxx p(xt|z0:t), the most likely position of

the end-effector, or believed position.

3) U ∈ R, the level of uncertainty which is evaluated

through the entropy of p(xt|z0:t).

A statistical controller was learned from a data set of triples

{(x, x̂, U)} and a desired direction (normalised velocity),

was obtained from conditioning on the belief and uncertainty.

Having described the experiment and the type of data, we

proceed to give an in-depth description of the mathematical

representation of the belief and that of the dynamics.

IV. MODEL OF BELIEF

A human’s belief of his location in an environment can

be multimodal or unimodal, gaussian or non-gaussian and

may change from one distribution to another. To be able to

represent such a wide range of probability distributions we

chose a particle filter. From previous literature [4] it has been

shown that there is a similarity between Bayes update rule

and the way humans integrate information over time. Under

this assumption we hypotheses that if the initial belief of

the human is known then the successive update steps of the

particle filter should correspond to a good approximation of

the next beliefs.

A particle filter is a Bayesian probabilistic methods which

recursively integrates dynamics and sensing to estimate a

posterior from a prior probability density. The particle filter

has two elements. The first estimates a distribution over

the possible next state given dynamics and the second

corrects it through integrating sensing. Given a motion model

p(xt|xt−1, ẋt), and a sensing model p(zt|xt), we recursively
apply a prediction phase, where we incorporate motion to

update the state time index, and an update phase, where

the sensing data is used to compute the state’s posterior

distribution. The two steps are depicted below.

prediction:

p(xt|z0:t−1) =

∫

p(xt|xt−1, ẋt) p(xt−1|z0:t−1) dxt−1 (2)

update:

p(xt|z0:t) =
p(zt|xt)p(xt|z0:t−1)

p(zt|z0:t−1)
(3)

The probability distribution over the state p(xt|z0:t) is

represented by a set of weighted particles {wi, xi}i=1...N

which represent hypothetical locations of the end-effector

and their density which is proportional to the likelihood.The

particular particle filter used was the Regularised Sequential

Importance Sampling [19, p.182]. We proceed to describe

the two components needed for filtering namely the sensing

and the motion models.

A. Sensing model

The sensing model represents the likelihood, p(z|x), of a
particular sensation z given a position x. In a human’s case,

the sensation of a curvature indicates the likelihood of being

near an edge or a corner. However the likelihood cannot

be modelled through using the human’s sensing information.

Direct access to pressure, temperature and such salient infor-

mation is not available. Real sensory information needs to be

matched against virtual sensation at each hypothetical loca-

tion x of a particle. Additionally, for the transfer of behaviour

from human to robot to be successful, the robot should be

able to perceive the same information as the human, given the

same situation. An approximation of what a human or robot

senses can be inferred, based on the end-effector’s distance

to particular features in the environment. In our case four

main features are present, namely corners, edges, surfaces

and an additional dummy feature defining no contact, air.

The choice of these features is prior knowledge given to

our system and not extracted through statistical analysis of

recorded trajectories. We represent the sensing model as a

Multinomial distribution, M , evaluated from the normalised

histogram of the euclidean distance to the closest features

in the environment. The likelihood is evaluated by taking

the Jensen-Shannon divergence (JSD) of the Multinomial

distribution of the actual real inferred sensation Mr and that

of the hypothetical virtual Mv sensation.

p(z|x) = 1− JSD(Mr||Mv) (4)

B. Motion model

The motion model is straight forward compared with the

sensing model. In the robot’s case the Jacobian gives the

next Cartesian position given current joint angles and angular

velocity of the robot’s joints. From this the motion model is

given by:

ẋ = J(q)q̇ + ǫ (5)

where q is the angular position of the robot’s joints, J(q) is
the Jacobian and ǫ ∼ N (0, σ2I) is white noise. The robot’s

motion is very precise and it’s noise variance is very low.

For humans, the motion model is the velocity of the hand

movement provided by the tracking system.

V. STATISTICAL MODEL OF SEARCH

A detailed description is given next on, A) the computation

of the uncertainty and belief, B) the statistical encoding of

the strategies demonstrated by the human volunteer and C)

the combination of the two in a control loop.

Fig. 3: Representation of the estimated density function.

Top Left and Right: Initial starting point, all Gaussian

functions are uniformly distributed with uniform priors. The

red cluster always has the highest likelihood (indicated by

the yellow arrow) is taken to be the believed location of

the robots/humans end-effector. Bottom Left: Contact with

the table has been established, the robot location differers

with his belief. Bottom Right: Contact has been made with

a corner, the clusters reflect that the robot could be at

any corner (note that weights are not depicted, only cluster

assignment).

A. Uncertainty & Belief

A natural framework to represent uncertainty in the context

of probability distributions is entropy. It is the expectation

of a random variable’s total amount of unpredictability. The

higher the entropy the more uncertainty, and the lower the

less uncertainty. In our context we don’t have at our disposi-

tion the true probability density function of the belief, p(x|z),
but instead a set of weighted samples, {wi, xi}i=1...N ,

drawn from it. A reconstruction of the underlying proba-

bility density is achieved by fitting a set weighted Gaussian

functions to the particles. The main difficulty of this step

is determining the number of parameters of the density

function in a computationally efficient manner. We approach

this problem by finding all the modes in the particle set

via mean-shift hill climbing and set these as the means of

the Gaussian functions. Their covariances are determined

by maximizing the likelihood of the density function via

Expectation-Maximization (EM).

Given the estimated density we can compute the upper

bound of the differential entropy [20], H , which is the

uncertainty U .

H(x) =

K
∑

k=1

πk

(

− log(πk) +
1

2
log((2πe)D|Σk|)

)

(6)

Where e is the base of the natural logarithm and D the

dimension (being 3 in our case). The reason we use the

upper bound is because the exact differential entropy of a

Mixture of Gaussian functions has no analytical solution. We

computed both the upper and lower bound and found that the

difference between the two were insignificant, making any

bound a good approximation of the true entropy. The choice

of the believed location of the robot/human end-effector is

taken to be the mean of the Gaussian function with the

highest weight π. Figure 3 depicts different configurations of

the modes (clusters) and believed position of the end-effector

(yellow arrow).

B. Model of human search

From the trajectories recorded during the experiments, dif-

ferent actions are present for the same belief and uncertainty

making the data multimodal (for a particular position and

uncertainty different velocities are present). The Gaussian

Mixture Model (GMM) was chosen as the statistical method

to model the normalised velocity, belief and uncertainty.

It is assumed that a mixture of strategies are present with

the data gathered from the demonstrations. That is multiple

actions are possible given a specific point in space or belief.

This results in a one-to-many mapping which is not a valid

function, eliminating any regression technique which directly

learns a non-linear function.

The velocity was normalised, in order to reduce the

amount of information to be learned and to take into

consideration that velocity is more specific to embodiment

capabilities: the robot might not be able to reproduce safely

some of the velocity profiles demonstrated.

The training data set comprised a total of 20’000 triples

(ẋ, x̂, U), from the 150 trajectories gathered from the demon-

strators. A generative GMM P(ẋ, x̂, U) was fitted, which

had a total of 7 dimensions, 3 for direction, 3 for position

and 1 scalar for uncertainty. The definition of the GMM is

presented below in equation 7.

P(ẋ, x̂, U |θ) =
K
∑

k=1

πk N (ẋ, x̂, U |µk,Σk) (7)

µk =





µẋ

µx̂

µU



Σk =





Σẋẋ Σẋx̂ ΣẋU

Σx̂ẋ Σx̂x̂ Σx̂U

ΣUẋ ΣUx̂ ΣUU





Where K is the number of Gaussian components, the

scalar πk represents the weight associated to mixture com-

ponent k (indicating the component’s overall contribution to

the distribution) and
∑K

k=1 πk = 1. The parameters µk and

Σk are the mean and covariance of the normal distribution k.

The total set of parameters of the GMM is θ = {π,µ,Σ}.
The following section details the model selection, akin to

finding the number of mixture componentsK , and parameter

fitting, finding the values of θ.

1) Model selection & Parameter learning: The trajecto-

ries were segmented based on whether they are either on

or off the table and then on their direction. This step was

necessary since the optimisation employs EM which only

guarantees local maximisation of the likelihood function. It

is difficult to find the global optimum when starting the

learning process from the whole data set in one go. For each

segmented data set (one for trajectories off the table, and

4 for trajectories on the table), the Bayesian Information

Criterion (BIC) was used to find the optimal number of

mixture components and five sets of parameters were learned.

Fig. 4: The resulting GMM for the table, a total of 67

Gaussian mixture components are present. We note the many

overlapping Gaussians: this results from the level of uncer-

tainty over the different choices taken. For example, humans

follow along the edge of the table in different directions and

might leave the edge once they are confident with respect to

their location.

The parameters from each set (mean and covariance) were

combined and served as an initialisation when retraining over

the whole data set which resulted in the final model. A total

of 83 Gaussian functions were used in the final model, 67 for

trajectories on the table and 15 for those in the air. In figure 4

we illustrate the model learned from human demonstrations

where we plot the 3 dimensional slice (the position) of the 7

dimensional GMM to give a sense of the size of the model.

C. Control

To get a control output from a GMM we condition on the

most likely position and uncertainty and the result is a new

distribution over direction. The output is the expected value

of the conditional (see equation 8 below).

ẋ = E{P(ẋ|x̂, U)} =

K
∑

k=1

πk
ẋ|x̂,U · µk

ẋ|x̂,U (8)

The problem with this expectation approach, also know

as Gaussian Mixture Regression (GMR), is that it averages

out opposing directions or strategies and may leave a net

velocity of zero. One possibility would be to sample from the

conditional, however this can lead to non-smooth behaviour

and flipping back and forth between modes resulting in no

displacement. To maintain consistency between the choices

and avoid random switching we perform a weighted expec-

tation on the means so that directions (modes) similar to the

current direction of the end-effector receive a higher weight

than opposing directions. For every mixture component k, a

weight αk is computed based on the distance between the

current direction and itself. If the current direction agrees

with the mode then the weight remains unchanged but if it

is in disagreement a lower weight is calculated according to

the equation below.

αk(ẋ) = πk
ẋ|x̂,U · exp(− cos−1(< ẋ, µk

ẋ|x̂,U >)) (9)

GMR is then performed with the normalised weights α

Fig. 5: Overview of the decision loop. At the top given an

initial belief p(x0|z0) of the location of the end-effector a

strategy is chosen (initially through sampling the conditional)

and based on the believed distance to the goal a speed

is applied to the given direction. This velocity is passed

onwards to a low level impedance controller which sends

out the required torques. The resulting sensation, encoded

through the Multinomial distribution over the environment

features, and actual displacement are sent back to update the

belief.

instead of π, the initial weight obtained when conditioning.

ẋ = Eα{P(ẋ|x̂, U)} =

K
∑

k=1

αk(ẋ) µ
k
ẋ|x̂,u (10)

The final output of equation 10 gives the desired direction (ẋ

is re-normalised). In the case when the mode suddenly disap-

pears (because of sudden change of the level of uncertainty

caused by the appearance or disappearance of a feature)

another present mode is selected at random For instance,

when the robot has reached a corner, the level of uncertainty

for this feature drops to zero. A new mode, and hence new

direction of motion, will then be computed. However this is

not enough to be able to safely control the robot. One needs

to control the amplitude of the velocity and ensure compliant

control of the end-effector when in contact with the table.

This behaviour is not learned here, as this is specific to the

embodiment of the robot and unrelated to the search strategy.

The amplitude of the velocity is computed by a proportional

controller based on the believed distance to the goal.

ν = max(min(β1,Kp(xg − x̂), β2) (11)

where the β’s are lower and upper amplitude limits, xg is

the position of the goal, and Kp the proportional gain which

was tuned through trials.

As mentioned previously, the other important aspect when

having the robot duplicate the search strategies is compli-

ance. As a result of the uncertainty, collisions with the

environment occur. To avoid risks of breaking the table or

the robot sensors we have at the lowest level an impedance

controller which outputs appropriate joint torques τ . The

overall control loop is depicted in figure 5.

−0.2

0

0.2

−0.2
0

0.2

0

0.2

0.4

x

Human demonstrations

y

z

−0.2
0

−0.4
−0.2

0
0.2

0.4
0.6

−0.1

0

0.1

0.2

0.3

x

GMM trajectories

y

−0.2

0

0.2

−0.2

0

0.2

0

0.1

0.2

x

Emergent trajectories

y

z

−0.2
0

0.2
0.4

−0.4
−0.2

0
0.2

0.4
0.6

0

0.1

0.2

0.3

x

Greedy trajectories

y

Fig. 6: Illustration of trajectories. Top left: 5 sample tra-

jectories from the human volunteers. Top right: 6 sample

trajectories generated from the learned model and controller.

The red and orange trajectories are risk-prone since they are

either not fully localised (orange) or take a long straight

shot toward the goal through featureless space (red). On

the other hand the pink and green trajectories stay close to

features until as close as possible to the goal. Lower left:

3 emergent strategies not witnessed in training data due to

the combination of multiple strategies. The blue trajectory is

similar to the inverse of the purple trajectory in the top left

figure, however it goes in opposite direction. Lower right:

6 trajectories from the greedy controller, non-smooth and

abrupt. The scale is in meters.

VI. EXPERIMENTAL RESULTS

We evaluate our system by firstly comparing search roll

outs against those of the human demonstrators. We make a

qualitative analysis of the modes present in the GMM. We

contrast the performance, with respect to the distance taken

to reach the goal and how the uncertainty decreases over

time for three controllers (greey, GMM and hybrid). Finally,

we test the robustness of the system with respect to false

beliefs.

A. Human & GMM search trajectories

We visually compare the trajectories gathered from the

human volunteers with those of the learned controller. We

notice that humans like to play safely, meaning that they

remain as close as possible to informative features such as

the edges. Once close to the goal they go straight towards it.

Figure 6 contrasts the trajectories of the human’s hand (top

left) with those generated by our GMM controller (top right).

Starting points were drawn from a uniform distribution over

the table and the colour coding is to better differentiate the

different trajectories in each sub-figure. The generated trajec-

tories from the GMM model are similar to the training data

provided by the human demonstrators, as one would expect.

0 20 40 60
0

0.5

1

1.5

2

2.5

3

3.5
Distance taken to reach goal

sorted search trajectories

d
is

ta
n
c
e
 [
m

]

Greedy
GMM
Hybrid

0 5 10 15 20 25 30
−8

−6

−4

−2

0

U
n
c
e
rt

a
in

ty

seconds

Greedy controller

0 5 10 15 20
−8

−6

−4

−2

0

U
n
c
e
rt

a
in

ty

seconds

GMM controller

0 2 4 6 8 10 12 14 16
−8

−6

−4

−2

0

U
n
c
e
rt

a
in

ty

seconds

Hybrid controller

Fig. 7: Top Left: Plot of distance taken to reach to goal for all

three controllers. The x-axis values correspond to a specific

roll out, whilst the y-axsi values, are the distances taken

to reach the goal. The trajectories are sorted in ascending

order. The greedy controller by far takes the most time to

reach the goal as oppose to both the GMM and hybrid. Using

the variance (uncertainty) at the beginning plays a vital part

in the performance of the controllers. The hybrid goes even

faster than the GMM since once localized it goes straight

to the goal. Other three plots: Level of uncertainty with

variance (gray shaded area) decreasing over time for greedy,

GMM and hybrid controllers. The decrease in uncertainty of

the GMM and hybrid controllers is much more rapid than

the greedy one. This reflects the fact that as humans we tend

to play safe and avoid taking risks as opposed to the greedy

controller. For the three controllers a total of a 70 trials were

gathered for this analysis.

For both the human and GMM trajectories they all start by

going downwards until a contact with the table is made. Then

proceed to an edge and follow it until as close as possible to

the goal (risk-averse). Other trajectories (orange in top left

sub-figure) once localised go straight to the goal through a

featureless space where no edges or corners are present (risk-

prone). However, this does not hold true for all generated

trajectories (lower left sub-figure). This is due to the way

we perform the control. A trajectory is generated from a

mixture of strategies which can lead to the emergence of

previously unseen behaviour and the zig-zagging behaviour

of the green trajectory is due to unstable attractors. We also

note, through observing resulting generated trajectories from

the GMM model, that not all strategies demonstrated are

encoded in the GMM. For example, there is an instance when

a demonstrator cuts across the table (see red trajectory in the

top left plot of figure 6). There were not many examples

of such behaviour, making it statistically insignificant with

respect to the GMM which in the EM learning stage did not

attribute a Gaussian function to represent it. However since

the search strategy of the robot is composed from a mixture

of strategies it is possible that new trajectories emerge which

are similar to these one-off demonstrations.

0 1-1

0

-2,5

2,5

[cm]

Fig. 8: Illustration of three different types of modes present

during the execution of the task where the robot is being

controlled by the learned model. The white ball represents

the actual position of the robot’s end-effector. The blue

ball represents the believed position of the robot’s end-

effector and the robot is acting according to it. Arrows of

the blue ball represent modes, colours encode the modes

weights given by the priors πk after conditioning (but not

re-weighted as previously described). The spectrum ranges

from red (high weight) to blue (low weight). Top left: Three

modes are present, but two agree with each other. Top

right: Three modes are again present indicating appropriate

ways to reduce the uncertainty. Lower left: Two modes in

opposing directions, no flipping behaviour between modes

occurs since preference is given to the modes pointing in the

same direction as the robot’s current trajectory. Lower right:

GMM modes when conditioned on the state represented in

the lower left figure. The two modes represent the possible

directions (un-normalised).

B. Qualitative analysis of modes

We next illustrate some of the modes (action choices)

present during simulation and evaluated their plausibility.

Figure 8 shows that multiple decision points have been

correctly embedded in the GMM model. All directions (red

arrows) indicate directions that reduce the level of uncer-

tainty.

C. Greedy vs GMM vs Hybrid controller
We evaluated the performance of a greedy controller,

which takes the most likely position x̂ and goes straight to-

wards the goal, as opposed to a controller solely learned from

human demonstrations and a hybrid controller which uses

the GMM controller until a minimum uncertainty threshold

is reached before switching to the greedy controller. We

performed 70 runs in each case and evaluated the uncertainty

and distance taken to reach the goal. The results are illus-

trated in figure 7 and six trajectories of the greedy controller

are depicted in the lower right of figure 6. The results confirm

that the GMM controller decreases uncertainty quadratically

as opposed to the greedy method where the uncertainty

does not seem to decrease in a consistent fashion. The

trajectories of the greedy controller are also non-smooth,

abrupt and unnatural. The Hybrid controller takes even less

time/distance to reach the goal since it does not seek to stay

close to informative features once localized and goes straight

Fig. 9: Depiction of the robustness with respect to false

beliefs. Top left: both the believed and actual position of

the end-effector coincide with each other and most of the

probability mass p(x|z) lies on top of them. Top right: the

actual end-effector’s position, white ball, has been teleported

to another position making the believed position, blue ball,

inaccurate. Bottom left: all the particles which were at the

end-effector’s believed position were resampled to feasible

areas which yield similar sensing to the actual position.

Bottom right: the overall search process continues until the

goal is reached.

towards the goal. The GMM on the contrary reflects the risk-

averse behavior of humans. When we don’t have any visual

feedback our behavior is very different and this is not taken

into account by the Hybrid controller (in the final stage of

the search) which has no such concept of prudence.

D. Robustness

We now turn to the evaluation of robustness of the learned

model with respect to false beliefs. False belief, in our

experiment, corresponds to situations where the ”believed”

location of the end-effector is far from the true position. To

simulate this situation, once the robot had localised itself

(that is, the uncertainty level is close to zero) and was

heading towards the goal, it was teleported to one of four

possible locations (middle of the table in the air, near top

right, bottom right and bottom left corners of the table).

The system recovered well from such failure, as the end-

effector moved towards the goal but failed to reach it as it had

expected, the probability density p(x|z) redistributes itself

across the feasible locations in the environment, see figure

9. This is made possible since we keep 1% of the particles

distributed at random across the environment at all times.

A total of 50 runs were performed with the teleportation

mentioned above and in the runs the goal was found.

VII. CONCLUSION

In this work we have shown a novel approach in teaching

a robot to act in a partially observable environment. Through

having human volunteers demonstrate the task of finding an

object on a table, we recorded both the inferred believed

position of their hand and associated action (normalised

velocity). A generative model mapping the believed end-

effector position to actions was learned, encapsulating this

relationship. As speculated and observed, multiple strate-

gies are present given a specific belief reflecting the fact

that humans act differently given the same situation. Some

trajectories generated by the model were similar to those

of the human demonstrations while others emerged through

the combination of multiple strategies. When compared to a

greedy controller humans prefer to first reduce uncertainty

and then minimise risk. The model is able to handle false

beliefs and environmental perturbations. Future research will

focus on adding another probability density function to

represent the believed location of the goal. In this way the

goal no longer has to be fixed and this situation makes for

a more interesting problem, where interacting probability

density functions need to be addressed.

ACKNOWLEDGMENT

This research was supported by the European project,

Flexible Skill Acquisition and Intuitive Robot Tasking for

Mobile Manipulation in the Real World (First-MM), in

Robotic Research.

REFERENCES

[1] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial intelli-

gence, vol. 101, pp. 99–134, 1998.
[2] T. Smith, “Probabilistic planning for robotic exploration,” Ph.D. dis-

sertation, Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, July 2007.

[3] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: an
anytime algorithm for pomdps,” in IJCAI, 2003, pp. 1025–1030.

[4] C. Bake, J. Tenenbaum, and R. Saxe, “Bayesian theory of mind:
Modeling joint belief-desire attribution,” Journal of Cognitive Science,
2011.

[5] H. Richardson, C. Bake, J. Tenenbaum, and R. Saxe, “The devel-
opment of joint belief-desire inferences,” Cognitive Science Socitety,
2012.

[6] S. M. Khansari-Zadeh and A. Billard, “Learning stable non-linear
dynamical systems with gaussian mixture models,” IEEE Transaction

on Robotics, 2011.
[7] A. P. Shon, K. Grochow, and R. P. N. Rao, “Robotic imitation from

human motion capture using gaussian processes,” in Humanoids, 2005.
[8] H. et. al, “Learning and generalization of motor skills by learning from

demonstration,” ICRA, pp. 763–768, 2009.
[9] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-

ming by demonstration,” in Springer Handbook of Robotics, 2008, pp.
1371–1394.

[10] C. Bake, J. Tenenbaum, and R. Saxe, “Bayesian models of human
action understanding,” NIPS, 2006.

[11] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-

tion. Cambridge, MA: MIT Press, 1998, a Bradford Book.
[12] W. B. Sebastian Thrun and D. Fox, Probabilistic Robotics. MIT

Press, 2005.
[13] H. Kurniawati, D. Hsu, and W. S. Lee, “Sarsop: Efficient point-based

pomdp planning by approximating optimally reachable belief spaces,”
in In Proc. Robotics: Science and Systems, 2008.

[14] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based pomdp
solvers.” Autonomous Agents and Multi-Agent Systems, vol. 27, no. 1,
pp. 1–51, 2013.

[15] N. Roy, J. Pineau, and S. Thrun, “Spoken dialogue management using
probabilistic reasoning,” Proceedings of the 38th Annual Meeting of

the Association for Computational Linguistics, 2000.
[16] S. Thrun, “Monte carlo pomdps,” Carnegie Mellon University, Tech.

Rep., 1999.
[17] K. Hsiao, L. Kaelbling, and T. Lozano-Perez, “Task-driven tactile ex-

ploration,” in Proceedings of Robotics: Science and Systems, Zaragoza,
Spain, June 2010.

[18] P. Hebert, “Action inference: The next best touch,” RSS, 2012.
[19] M. S. A. et. al, “A tutorial on particle filters for online nonlinear/non-

gaussian bayesian tracking,” IEEE Transactions on Signal Processing,
vol. 50, pp. 174–188, 2002.

[20] M. Huber, T. Bailey, H. Durrant-Whyte, and U. Hanebeck, “On entropy
approximation for gaussian mixture random vectors,” in Multisensor
Fusion and Integration, 2008, pp. 181–188.

