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Abstract— In this paper we present an effective and robust
system to classify fruits under varying pose and lighting
conditions tailored for an object recognition system on a mobile
platform. Therefore, we present results on the effectiveness of
our underlying segmentation method using RGB as well as
depth cues for the specific technical setup of our robot. A
combination of RGB low-level visual feature descriptors and 3D
geometric properties is used to retrieve complementary object
information for the classification task. The unified approach
is validated using two multi-class RGB-D fruit categorization
datasets. Experimental results compare different feature sets
and classification methods and highlight the effectiveness of
the proposed features using a Random Forest classifier.

I. INTRODUCTION

A. Motivation

Object category classification and recognition is an essen-
tial and widely studied task in computer vision. Since the
introduction of low-cost RGB-D sensors like the Microsoft
Kinect, the demand for RGB-D-based approaches has be-
come even more universal. By utilizing the additional depth-
information and derived features, identification of objects
becomes even more precise and thus more feasible for
practical applications [1]–[6].

Inspired by those advances, we utilize a mobile service
robot as an identification system for fruits. A simple practical
scenario would be a supermarket, where the robot should be
able to deduce the prices of different fruits without additional
input of the customers.

The task at hand involves two main goals. Firstly, from a
technical point of view, we extend the setup of our existing
mobile platform (MetraLabs Scitos G5, see Fig. 1) to provide
RGB-D data for the fruits to be classified. Secondly, we build
an accurate and robust fruit classification system tailored to
utilize the RGB-D data of our specific hardware setup.

Hence, we firstly introduce our segmentation process,
which utilizes background subtraction on RGB and depth im-
age data. Then, we review several visual feature descriptors
and 3D intrinsic shape measures [3], [7]–[10]. Afterwards,
we give details on our feature vector, which fuses color,
texture, geometry and 3D shape measures for a compact
representation of essential RGB-D data characteristics. Com-
pared to single visual feature descriptors or geometrical
features, the combined descriptor provides complementary
cues about the fruit category even under varying lighting
conditions. Finally, we apply several machine learning (ML)
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Fig. 1. SCITOS G5 robot equipped with a tray and the Microsoft Kinect.

methods and evaluate their performance. The results show
that combining visual color and depth cues can noticeably
improve the accuracy.

The remainder of the paper is structured as follows:
Section I-B gives an overview of the related work. In
Section II we present the modifications to the hardware of
our mobile robot. Section III introduces the datasets we
acquired for training and evaluation. After describing our
segmentation approach in Section IV we present and review
several visual descriptors and 3D intrinsic shape measures
in Section V. Finally, we present the results obtained from
different classifiers in Section VI and conclude the paper in
Section VII.

B. Related Work

Although there have been enormous advances in object
classification and recognition in computer vision and robotics
in recent years, it still represents a challenging field of
study [1], [2], [4], [5], [8], [10]–[12]. Previous fruit clas-
sification and recognition approaches applied global low-
level visual features in color, edge and texture properties
[12], [13]. Rocha et al. [12] proposed an automatic fruit and
vegetable classification system using color, texture, shape
and local appearance features in 2D RGB images. They
reported an error rate of approximately 3%, thus being able to
correctly classify 15 different fruit and vegetable categories
at an accuracy of 97% on 2,633 image samples using Linear
Discriminant Analysis (LDA).



(a) red apple (b) green apple (c) yellow apple (d) apple

(e) banana (f) kiwi (g) lemon (h) orange

(i) saturn peach (j) peach (k) pear (l) depth

Fig. 2. Raw RGB(-D) image data samples of fruits.

As an alternative to global low-level features, several
object classification or recognition schemes build on more
sophisticated local features (e.g. [14], [15]) that focus on
the description of a local neighbourhood around a point of
interest. Although local features show a good performance
regarding textured objects or regions of interest, they do
not perform well for homogeneous regions. To address this
problem, several approaches extend to RGB-D data. Hin-
terstoisser et al. [6] presented a template matching method
for the detection of textureless objects. Karpathy et al.
[3] provided a method for discovering object models from
3D meshes in indoor environments. For this purpose, they
propose different intrinsic shape measures to achieve a good
segmentation result. Lastly, Lai et al. [2] published a large
scale hierarchical RGB-D object dataset that contains several
different object classes, e.g. fruits and vegetables, and may
be used for performance evaluation.

II. TECHNICAL SETUP

As shown in Fig. 1, the development platform used for
this paper is a Scitos G5 service robot from MetraLabs. It is
equipped with a laser scanner that is used for Monte-Carlo-
based self-localization and an integrated PC for on-board
processing. Additionally, the touchscreen is used for IO-tasks
and human-machine interaction.

For our work, we extended the experimental platform with
a gray plastic tray, where the object samples (i.e. fruits) to be
recognized can be put on. The tray is mounted at a height of
approximately 0.6m parallel to the ground plane and serves
as the general experimental area. Additionally, a Microsoft
Kinect was mounted at a vertical distance of approximately
0.5m orthogonal (i.e. pointing downwards) to the tray. The
Kinect RGB-D sensor concurrently records both color and
depth images at a resolution of 640 × 480 pixels with 30
frames per second. Since the off-the-shelf Kinect XBox 360
sensor specifies a minimum distance of approximately 0.8m
for the retrieval of depth data, we equipped the robot with a
Kinect for Windows that supports the so-called near mode.
With near mode enabled, the Kinect for Windows provides
depth data for objects at a minimum distance of 0.4m
without loss in precision.

(a) daylight (b) dim lighting (c) artificial light

Fig. 3. Same apple at different poses and lighting conditions.

This specific setup gives the test subjects (e.g. customers)
an intuitive access for the placement of fruit samples. Fur-
thermore, it provides us with the desired image samples that
are necessary for the classification task, as can be seen in
Fig. 2. And it finally also introduces some constraints that
can be exploited in the upcoming segmentation task.

III. DATASETS

A. Subset of External Object RGB-D Dataset

To test feature descriptors and the classifiers, we carried
out all our experiments on the fruit samples of the object
RGB-D dataset proposed by Lai et al. [2]. The dataset overall
includes 32 instances of seven different fruit categories with
21,284 image samples.

B. Collected Fruit RGB-D Dataset

To prove the effectiveness of our approach on our actual
robot, we collected our own fruit RGB-D dataset using our
system described in Section II. The structure of our dataset
includes categories and instance levels which are similar
to the larger scale RGB-D object dataset [2]. This dataset
builds a set of approximate 330 RGB-D sample images for
each of a total of seven categories under three different
lighting conditions that include daylight, dim lighting and
artificial light in the night. Fig. 3 shows the same fruit in the
three different lighting conditions. It can be seen that color,
brightness as well as background for the same fruit may
vary greatly due to different lighting conditions. The images
also show that the poses of the same fruit instances were
randomly perturbed, even for subsequent sample images,
to be able to analyse performance in regard to variance in
orientation and position.

Working on RGB-D datasets, it is essential to correctly
align depth and RGB images, to be able to identify cor-
respondencies between depth- and RGB-image pixels, and
vice-versa. We use the transformation implemented in hard-
ware within the Kinect before storing the image samples.
Our recorded dataset for evaluation consists of 2,333 samples
with a resolution of 640× 480 pixels in total. Fig. 2 shows
some examples of the resulting RGB and depth images.

In the following, we refer to the external dataset as obj-
dataset and to the collected dataset as own-dataset.

IV. SEGMENTATION

The purpose of the segmentation process is to detect object
candidates in a complicated scene. An effective segmentation
technique may greatly decrease computational complexity
for the later stages of the pipeline, since it reduces the input
data to only the significant regions that should be processed.



(a) raw RGB image (b) raw depth image (c) depth-filtering
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Fig. 4. Segmentation example.

Additionally, prior image segmentation is the basis of region-
based feature extraction, since it allows using global features,
which afterwards can directly be computed from the prepro-
cessed image. Therefore, we apply a combined segmentation
on RGB- as well as depth-image data.

A. Depth Filtering

Filtering out irrelevant background regions is essential
for our subsequent work, since it reduces computational
complexity greatly and minimizes the search space. Using
the specifications of our setup, the goal is to segment out
the tray and test objects placed on it, by taking advantage
of the known 3D tray shape and its distance to the sensor.
Therefore, we first apply a simple pass-through filter on each
dimension of the 3D target domain using depth data. The
constraints for each dimension can simply be derived from
our fixed setup and the a priori known camera pose. The
filtered points satisfying the X-, Y - and Z-axis constraints,
are considered to belong to the object or the tray.

In the next step we apply RANdom SAmple Consensus
(RANSAC) plane fitting to get an estimate of the tray plane
represented by its Hessian Normal form. After obtaining the
set of points belonging to the plane, we are able to separate
the object from the plane and thus get the object’s point
cloud. Although RANSAC succeeds well in separating the
plane from the object, the depth-based filtering itself does
not provide adequate results for the segmentation process.

As can be seen in Fig. 4(c), the depth-masked RGB
image obtained by projecting the depth-pixels onto the
corresponding RGB-pixels exhibits many gaps. This is due
to the fact that the depth sensor does not gather valid depth
measurements on surfaces that are exposed to too much light,
which is a well-known issue of the Kinect. Additionally,
sampling artifacts and (re)projection errors may lead to this
noise in the depth data. These gaps can generally be observed
in the inner region of the object’s depth-mask. Another issue
can be observed at the outline of the projected 3D-shape.

The sensor again is not able to generate depth information,
since the surface normals of the object are close to being
perpendicular to the directions of the camera rays. Thus, the
infrared pattern projected by the sensor is subject to strong
distortions in these areas and cannot be recognized.

Unfortunately, basic morphological operators do not pro-
vide satisfying results to solve this problem. Therefore, to
optimize the result of the segmentation, we pass the depth-
mask obtained from depth-filtering to the next segmentation
stage building upon RGB data.

B. RGB Segmentation

To refine our previously obtained depth-mask, we ap-
ply the watershed transform (F. Meyer et al. [16]), which
is a morphological algorithm for image segmentation. It
uses a grey-level representation of the input image that
may be interpreted as a topographic surface. During the
sequential flooding of the minima on the grey value relief,
it partitions the gradient image into watershed lines and
catchment basins. The result of the watershed transform pro-
duces closed object contours and requires low computation
times as compared to other more sophisticated vision-based
segmentation methods. However, practically, this traditional
transform leads to over-segmentation due to noise in the
data, as shown in Fig. 4(f). In order to deal with the over-
segmentation, we use the marker-based watershed approach
in combination with the previously computed depth mask.

The structure of this segmentation method is as follows.
At first, we need to define the marker regions as seed
nodes, that identify foreground, background and uncertain
regions by different labels. As can be seen in Fig. 4(d) and
4(e), this is an important step towards the watershed-based
segmentation process, since it has a significant influence on
the flooding process. To obtain preliminary foreground and
background regions in the image, we perform simple and fast
morphology operators (erosion and dilation) on the depth
segmentation result. The foreground region is computed
by performing erosion on the depth mask, the background
boundary is computed by dilation. By taking the union of
the complements of the foreground mask and the background
mask (B ∪ F = B̄ ∩ F̄ ) we get the uncertain area, that is
the region of interest for the watershed process.

Using these regions, we apply the classical marker-based
watershed transform. Figs. 4(g-i) show segmentation results
using the combined RGB- and depth-based segmentation.
As can be seen, the method provides good segmentation
quality for our fruit data and features low computational costs
as compared to other segmentation methods (e.g. GrabCut
[17]). After successful segmentation, color, texture and shape
descriptors can be extracted to describe the significant object
region(s) in the image.

V. FEATURE EXTRACTION AND OBJECT
REPRESENTATION

In automatic object categorization, it is important to get a
semantic representation and an understanding of the underly-
ing input data. Because the available data generally consists



Fig. 5. Edge histogram descriptor.

Fig. 6. Filters for edge detection. (a) vertical edge filter, (b) horizontal
edge filter, (c) 45◦ edge filter, (d) 135◦ edge filter, (e) isotropic edge filter.

of unstructured multidimensional arrays of pixels or voxels
represented by 2D RGB images or 3D point clouds, features
that are able to characterize images or regions of interest need
to be extracted and used. Features usually aim to capture
different properties of the image or object represented by
the image itself, and the choice of features is of significant
importance for the description and recognition of the object.
Therefore, in this section, we review color, texture, shape
appearance features for RGB image data and intrinsic shape
measures for 3D points in order to propose a system to solve
a multi-class fruit classification problem using a combined
feature vector.

A. Visual Feature Extraction

Our visual feature extraction method focuses on low-level
features of the RGB image. The extraction process is carried
out by using some descriptors from the MPEG 7 library [7]–
[9]. Since the regions obtained by segmentation are generally
homogeneous in color and texture, the following descriptors
were chosen.

Scalable Color Descriptor (SCD): Color is the most fun-
damental property of visual content. The herein used de-
scriptors characterize the color distribution inside the object
region. The SCD [7] is based on color histograms extracted
in the hue-saturation-value (HSV) color space, which is used
for storage efficiency. It can be used as a global color feature
by measuring the color distribution over an entire image. The
descriptor extraction begins with the calculation of the color
histogram with 256 bins. Therefore the Hue (H) component
is quantized into 16, saturation (S) and value (V) into 4 bins
each. To attain a more efficient encoding, the histograms
are compressed using a 1D Haar transform. By iteratively
applying the transform, the dimension of the descriptor can
be reduced (e.g. 128, 64, 32, 16) since the respective Haar-
coefficients are used in the representation.

Edge Histogram Descriptor (EHD): Texture is an impor-
tant feature to describe structure and neighbourhood infor-
mation in an image. The EHD represents the spatial local
distribution of edges in the image. A local edge histogram is
computed for each of the 16 sub-regions, which are obtained
by subdividing the source image into a regular 4 × 4 grid,

see Fig. 5. Five different edge filters are used for feature
extraction, as shown in Fig. 6. The resulting descriptor is
composed of 5×16 = 80 values, with each bin representing
different semantic information based on the location of the
sub-region and the corresponding edge type.

B. Object Shape Representation

Shape clearly also offers important semantic information,
since humans can recognize many objects given their shape
alone. Shape features working on RGB-D images should
utilize area, contour and shape information of an object in
both RGB and depth images. In the following, we give a
brief overview of the employed shape measures, introduced
in the work of Karpathy et al. [3].

Compactness (Co): Characterizes the spherical similarity
of 3D objects.

Symmetry (Sy): Describes the reflective symmetry along
the principal axes for each cropped object.

Local Convexity (LC): Measures the convexity of the
object representation in local regions.

Smoothness (Sm): Rewards points with more uniformly
distributed neighbouring points in a local region.

These measures form the descriptor of the object’s 3D
shape (3DSM) based on depth data defined as:

3DSM = {Co, Sy, LC, Sm}
Image Moments (Hu7): Image moments are easily com-

putable scalar values that describe the distribution of pixels
belonging to an object and their intensity. They are typically
chosen to describe certain geometrical properties of an
object. In this, we use seven well-known image moment
invariants proposed by Hu [18], since they are invariant to
image scale, rotation and (in parts) reflection.

Our final shape descriptor (SH) of each object candidate
consists of the image moments and the intrinsic shape
measures: SH = {Hu7,3DSM}

= {Hu7, Co, Sy, LC, Sm}

VI. EXPERIMENTAL RESULTS

In the quest to discover the best features and classifi-
cation algorithm, we carried out extensive experiments in
order to analyse classification performance based on color,
texture and shape image descriptors using multiple mutually
exclusive image samples from the two datasets described in
Section III. We trained and tested various classifiers using
six machine learning algorithms, namely Native Bayes (NB),
Sequential Minimum Optimization (SMO), k-Nearest Neigh-
bors (KNN), Bagging based on REPTree, Decision Trees
(DT) and Random Forests (RF), in the Waikato Environment
for Knowledge Analysis (Weka) [19].

A. Evaluation of Different Features

Firstly, we evaluate different scales of the SCD feature de-
scriptor on the previously chosen classifiers. Fig. 7 presents
accuracy results of six machine learning approaches with
10-fold cross-validation as a function of the SCD scales
on both datasets presented in Section III. The results show



(a) Accuracy of SCD on own-dataset.

(b) Accuracy of SCD on obj-dataset.

Fig. 7. Classification accuracy of SCD with different scales.

TABLE I
CLASSIFICATION ACCURACY OF EHD ON BOTH DATASETS.

Accuracy(%) NB SMO KNN Bagging DT RF

own-dataset 44.62 68.97 83.54 63.14 49.12 81.40
obj-dataset 53.09 75.78 95.13 73.46 61.80 91.15

that the SCD descriptor, at low scales, does not perform
well in our fruit recognition task. Good classifier results are
achieved using at least 128 bins. This is mainly due to lossy
compression using the Haar transform, which, as expected,
has a negative effect on the classification. For both datasets,
the 256 bin version of the SCD using the Random Forest
classifier obtains the best classification results.

Furthermore, we compared the EHD descriptor on both
datasets. The results are presented in Table I. It can be
seen that the texture descriptor solely is unable to achieve
satisfying results for our classification task.

Fig. 8 shows the results of our shape descriptor evaluation.
Again, the accuracy is shown as a function of the ML-
methods using different shape descriptors including image
moments (Hu7), 3D shape measures (3DSM) and the com-
bined shape descriptor (SH). Although both shape features
perform far from optimal individually, we can get signif-
icantly better results by combining 3D shape information
and image moments. The best classification accuracy is again
obtained using Random Forests.

B. Evaluation of the Combination of All Features
To further improve the classification accuracy, we evaluate

the combined descriptor defined as

SESH = {SCD,EHD,Hu7, SH}

We include color, texture, image moments and 3D shape
measures. Fig. 9 shows the results regarding the classification

(a) Accuracy of shape features on own-dataset.

(b) Accuracy of shape features on obj-dataset.

Fig. 8. Classification accuracy of shape features on both datasets.

TABLE II
CLASSIFICATION ACCURACY OF SHAPE FEATURES ON own-dataset.

Accuracy(%) NB SMO KNN Bagging DT RF

Hu7 34.29 10.09 51.35 69.40 15.09 75.18
3DSM 54.39 52.21 67.12 69.65 66.61 71.97

SH 64.55 55.04 73.73 85.73 76.08 90.27

TABLE III
CLASSIFICATION ACCURACY OF SHAPE FEATURES ON obj-dataset.

Accuracy(%) NB SMO KNN Bagging DT RF

Hu7 15.15 16.64 72.04 84.89 5.76 91.49
3DSM 33.66 34.67 64.07 66.31 61.50 69.81

SH 20.99 52.84 87.53 94.00 86.67 98.20

accuracy of different classifiers using SESH. For comparison,
also the best performing single descriptors are visualized in
the graph. As can be seen, the SESH descriptor outperforms
all our tested classifier/descriptor combinations. Best results
are achieved using Random Forests, where the accuracy rises
up to 99.36% and 99.91% on both datasets, respectively.

C. Comparison on Datasets

The accuracy on our own-dataset is lower than that of
the obj-dataset in all of our experiments. After analyzing
the results in more detail, we found out that the similarity
between the yellow apple and the lemon (see Fig. 2(c)
and 2(g)) is often suspect to misclassification. Even for the
human perception system, both samples are not easy to be
distinguished from each other regarding the image data. For
results with a very high accuracy (' 95% ), more than 50%
of the errors arise through the (mis-)classification of the
yellow apple as the lemon. The rest of the errors is dominated
by inter-category level errors (≥ 40%), where e.g. a peach
instance is identified as another peach instance inside the



(a) Accuracy of combined features on own-dataset.

(b) Accuracy of combined features on obj-dataset.

Fig. 9. Classification accuracy of single descriptors and combined feature-
vector on both datasets.

TABLE IV
CLASSIFICATION ACCURACY OF COMBINED DESCRIPTOR (SESH) ON

BOTH DATASETS.

Accuracy(%) NB SMO KNN Bagging DT RF

own-dataset 82.12 98.03 97.26 95.76 92.71 99.36
obj-dataset 66.03 98.02 99.58 97.65 95.61 99.91

same category. With the remainder of the errors being of
cross-category type, where a fruit is recognized as another
fruit at very low error-rates (≤ 10%).

VII. CONCLUSION

This paper approaches the multi-class classification of
fruits on a mobile robot. For this purpose, we investigated the
performance of different descriptors under varying sample
conditions (e.g. pose and lighting) to find the best feature
descriptor and ML-method for our fruit recognition task. We
introduced our RGB-D-based segmentation approach with
a focus on robustness and speed as well as the specific
technical setup of our service robot. The results of our
segmentation prove its effectiveness and that we can robustly
separate the desired fruit object candidates in a complicated
scene at low computational costs. Importantly, we present
a unified RGB-D feature descriptor that combines low-
level RGB features and 3D shape information. We evaluated
different combinations of state of the art classifiers and
several feature descriptors on both RGB-D datasets. The
results demonstrate that the combined RGB-D descriptors are
highly suited for our fruit recognition task. Furthermore, we
observe that the Random Forest classifier is the best choice,
although it was slightly outperformed by kNN for the EHD

descriptor. The classification process using Random Forests
with the proposed combined descriptor (SESH) delivers a
peak accuracy of over 99% on both experimental datasets,
which is very promising regarding further applications and
extensions of our approach.

As future work, we plan to enlarge the RGB-D dataset
and to further analyse other features and texture descriptors.
Additionally, we intend to make the collected RGB-D fruit
dataset accessible to the research community.
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