
“© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.”

Key Feature-based Approach for Efficient Exploration of Structured
Environments

Gavin Paul, Phillip Quin, Chia-Han Yang, Dikai Liu

Abstract— This paper presents an exploration approach for
robots to determine sensing actions that facilitate the building
of surface maps of structured partially-known environments.
This approach uses prior knowledge about key environmental
features to rapidly generate an estimate of the rest of the
environment. Specifically, in order to quickly detect key fea-
tures, partial surface patches are used in combination with
pose optimisation to select a pose from a set of nearest
neighbourhood candidates, from which to make an observation
of the surroundings. This paper enables the robot to greedily
search through a sequence of nearest neighbour poses in
configuration space, then converge upon poses from which key
features can best be observed. The approach is experimentally
evaluated and found to result in significantly fewer exploration
steps compared to alternative approaches.

I. INTRODUCTION

Advances in robotics and sensor technology increasingly
enable complicated tasks to be automated, such as inspecting
the health of structures [1], [2]. In order to safely and reliably
perform robotic tasks in complex three dimensional (3D)
environments, a geometrically accurate and reliable map is
required - particularly when a robot must plan the precise
motions for a given workspace on-line. A robot that climbs
around on surfaces in the environment [1], must be able to
adhere to the 3D surfaces, whilst determining future surface
locations where it can attach, and plan to traverse these
surfaces. The need to adhere to surfaces makes planning
the stepping and traversal motions complex. In the case
of partial and spurious surface data, foot placements must
be accurately determined so as to avoid certain areas and
collisions. Planning can be significantly aided by augmenting
sensor data with prior knowledge about the structure of an
environment, such as by using surface templates.

Several algorithms exist for building a map of an envi-
ronment with a robot. Maximal C-space Entropy Reduction
(MER) involves finding the Next Best Viewpoint (NBV) that
most reduces C-space entropy [3]. Other approaches greedily
select a NBV based on estimates of how much information
can be seen from a set of candidate viewpoints [4]–[6].

When a 3D map must be generated from multiple ob-
servations, registration is generally required so that the
overlapping regions of different observations can be fused
together. Noisy and incomplete sensor data may mean that
even after exploring an environment, the geometry cannot be
determined with sufficiently high accuracy. In these cases,
data is registered and overlapping parts of several views
are fused together. However, a robot with the flexibility to

The authors are with the Centre for Autonomous Systems at the Univer-
sity of Technology, Sydney. E-mail: Gavin.Paul@uts.edu.au

traverse complicated surfaces, and carry its own adhesion
mechanism, has been found to be subject to deflection in
its links caused by gravity [1], [7], making sensor data
taken from multiple poses more complicated to fuse than for
a rigid industrial robot manipulator. Noisy and incomplete
sensor data, combined with inaccuracies in the robot model,
or flexible joints/links, mean that even after exploring an
environment the geometric map may be unusable.

Algorithms exist for scanning parts to generate CAD
models [8]. These focus on “outside-looking-in” viewpoint
planning [9], where the model to be acquired is bounded
by a closed volume and scans are taken from a limited set
of poses. The unseen areas of the part are analysed and the
sensor is moved, by means of the eye-in-hand industrial robot
such that the new areas are observed. Intuitively, there is a
difference when attempting to inspect and map a surrounding
environment where the robot and sensor are “inside-looking-
out”. An alternative strategy is to identify the location of key
features in the environment, to which a template can be fitted,
encapsulating prior knowledge of the environment [6], [10].

The scenario addressed in this paper involves a climbing
robot with 7 Degrees Of Freedom (DOF) in a caterpillar-
inspired configuration [1], which must explore and navigate
through the interior of a bridge’s steel box girder (forming a
tunnel environment). When the climbing robot is positioned
within the tunnel and such that several surfaces are visible,
it must have the ability to quickly determine the position
and orientation of key features in the environment. In this
environment a key feature is a view that contains multiple
surfaces and surface intersections. The ideal case is to
observe all four planes of the tunnel simultaneously [6].
This can be achieved by analysing the partial features in
the environment and generating robot motions that allow
subsequent observations to improve the view of key features.

The main contribution of this paper is an approach to ex-
ploration which finds safe, viable poses that allow a robot to
maximise the number of observable surfaces. This approach
is used by climbing robot system required to identify a tunnel
which must be traversed. This paper is organized as follows,
Section II describes the process of partial map generation,
surface feature identification and template matching. It then
details the formulation of the objective functions before
presenting a pose optimisation nearest neighbour algorithm.
Section III presents experimental results using data collected
both in our laboratory and on-site, comparing the new
approach to alternative approaches [5], [7], [11]. Section
IV discusses the limitations and possible drawbacks to the
approach. Section V provides conclusions and future work.

Toes

Toe

Cameras

Footpad

“foot”

Footpad

“hand”

Controller

Joints

4-7

Joints

1-3

Toes

(a) (b)

Fig. 1. a) A 7DOF biologically climbing robot with 6 toes and depth and
RGB cameras mounted in the “hand”, b) A climbing robot walking along
the wall of a steel bridge box girder tunnel environment.

II. METHODOLOGY

A. Robot and Sensor Model

Consider a robot, such as the bio-inspired climbing robot
shown in Fig 1a, positioned at a base location described by a
homogeneous transform, 0Tb. The robot can be described as
an n-dimensional kinematic chain such that given the joint
angles, q = [q1, . . . qn]T , the end-effector location is,

bTf (q) =

n∏
i=1

i−1Ti(qi) (1)

Where a depth camera is rigidly mounted on the end-
effector, and its position relative to the end-effector is given
by fTc, then the position and orientation of the sensor is,

0Tc(q) = 0Tb
0Tf (q)fTc, (2)

which describes both the cameras center position, pc(q) and
a projection line from the camera’s center normal to the
image plane, nc(q).

A depth camera, such as a Structure Sensor, returns a
grayscale image with resolution Md×Nd (e.g. 640 x 480) of
depth values, D = dm,n∀m ∈ {1, ...,Md}, n ∈ {1, ..., Nd}.
By using the camera’s intrinsic parameters from calibration
and trigonometry, each pixel of the depth image can be
turned into a point cloud, P = pm,n∀m ∈ Md, n ∈ Nd.
Since the point cloud returned is an “organised” point cloud,
it is also possible to rapidly compute a set of normals
using the “Average 3D Gradient” technique of Integral Image
Normal Estimation [12] inside the Point Cloud Library.

B. Plane Set and Feature Detection

In a repetitive structural tunnel such as Fig 1b, the nature
and key features of the environment are known a priori, in
that it is bounded by four sets of main coplanar plane patches,
or manholes plates (perpendicular to the tunnel direction), as
well as many smaller plates with rivets connecting these.

When looking down a tunnel such that the camera’s view-
ing direction is almost parallel to most surfaces other than the
manhole plates, the points on the surfaces are generally noisy
and patchy (due to spurious sensor readings, and to the nature

of a depth camera that projects light and requires a reflection
from the surface). Extracting planes largely eliminates sensor
noise and turns the list of 3D points, {pi}i=1,...Nd×Md

, into
a set, Π, of NΠ planes, Πi = {pΠ,i,nΠ,i} for i = 1, . . . NΠ,
where each plane consists of a point, pΠ,i that is within that
ith plane’s region, and a normal, nΠ,i of the ith plane.

Our plane growing algorithm [6], based on [13] and [14],
uses an “organised” point cloud with associated normals.
Seed points are selected and tested against neighbouring
points to try and combine them into a larger plane group and
update the plane model. Points are iterated through using the
test/add step until no point can be added, then a new plane
is grown. A fast normal estimation algorithm [12] is used to
compute surface normals and update the plane model.

cn cp

},{ 1,1,1 ΠΠ=Π np

},{ 2,2,2 ΠΠ=Π np
},{ 3,3,3 ΠΠ=Π np

Fig. 2. Robot in a pose taking a scan of a surface with a cube on it so
3 planes are visible from the sensor. The plane equations, along with the
camera position and normal, are annotated.

Environment map templates can be described more com-
pactly with plane sets compared to point clouds as shown
in Fig. 2. Given a set of planes, a map of the environment
can be generated using a combination of prior knowledge
and template matching to detect the key surface features
that are within expected bounds. In the case of a robot
inside a tunnel environment it is necessary to detect the
surrounding tunnel. Template-based manhole plate or tunnel
detection [6] has been shown to robustly detect and generate
an environment map based upon prior knowledge of the
context of an application, provided that at least two sets of
parallel walls can be detected simultaneously.

The Surface Focused Nearest Neighbour (SFNN) approach
shown in Fig. 3 is provided with the latest plane set. SFNN
determines the nearest neighbour poses, computes the values
of objective functions (devised based upon key features), it
then checks pose safety, sorts viewpoints and moves the robot
to the best viewpoint to take a scan, which is used to update
the map and provide a plane set for the next iteration.

C. Objective Functions

In order to make decisions about where the robot should
move next so as to detect surface features, a type of “pose
selection” [15] is required to find a pose, q, which corre-
sponds to a desirable viewpoint. A relationship between q
and the quality of the resulting viewpoint is thus established.

Compute

objective

functions

Check

safety of

poses

SFNN

Move to

viewpoint

NO

END

YES

Terminate?

START

Set of

nearest

neighbour

poses

qnbv

Sort &

select

viewpoint

Scan from

viewpoint
MapPlane set

Fig. 3. Surface Focused Nearest Neighbour (SFNN) approach overview.

As shown in (2), it is possible to compute the position and
orientation of the sensor tool, 0Tc(q). For the potential set of
key feature objectives that encode the efficacy of a view of
a tunnel situation, Fig. 4a shows an example of a scan from
a low scoring and undesirable pose, while Fig. 4b shows
the robot pose and scan from a high-scoring and thus more
desirable pose where key features are likely to be detected.

(a) (b)

Fig. 4. For the given set of key feature objectives these are examples of:
a) Low-scoring undesirable pose, b) High-scoring desirable pose.

An optimisation approach such as AXBAM [7], where a
sample of the solution space is selected and the contending
viewpoints are ranked, is unsuitable. The high dimensionality
of the problem makes it intractable to sample the solution
space finely enough to ensure an appropriate sensing view-
point. Instead, the viewpoint determination process requires a
fine-tuning optimisation approach. Therefore each objective
function will be formulated as a “score function”, gi(q),
which reflects whether key identifying features of the en-
vironment have been observed, or are likely to be observed.

Given a candidate set of nearest neighbourhood con-
figurations, the highest scoring candidate is selected. The
objectives will be shown for the Tunnel and Manhole Plate
cases. It would be straightforward to replace these objectives
with alternative surface or key feature detection objectives in
order to use the nearest neighbourhood pose search to explore
for different surface feature or templates.

1) Tunnel Alignment Case: For each of the NΠ planes
in a plane set, given the ith plane normal, nΠ,i and plane
location, pΠ,i, and the candidate robot pose, q that results in
the camera being located with a position, pc(q), and normal,
nc(q), a score is computed. For the ith plane, the sensor’s

centre ray meets an object’s surface at an angle of incidence.
This angle is defined as the absolute value of the dot product
between the camera normal and the plane normal,

φi(q) = |nc(q) · nΠ,i| (3)

which is maximised (i.e. unity) when the camera is looking
directly at a plane such that the angle between the plane
normal and the camera viewing direction is 0◦ (or 180◦), and
a value of zero occurs when the angle between the camera
viewing direction and the plane normal is 90◦.

A plane with a large area is more trustworthy and less
prone to sensor noise, therefore a plane’s score is scaled by
its area. So if there are two planes Πi,Πj , with equal φi(q),
and if Πi has a larger area (e.g. 0.5m2), then it will have a
higher score than Πj , which has a smaller area (e.g. 0.25m2).
The plane’s area, aΠ,i is computed using a technique in [6].

The sensor to plane distance is also considered since short
distance readings are more trustworthy and sensor errors are
magnified by distance. So where ||x|| is the length of the
resulting vector, the distance is calculated as,

d1(pc(q),pΠ,i) = ||pc(q)− pΠ,i|| (4)

The score for a single plane, Πi and pose, q is given by,

st(Πi,q) =

∣∣∣∣aΠ,i
1− φi(q)

d1(pc(q),pΠ,i)

∣∣∣∣ (5)

In the tunnel alignment case, the objective function for the
plane set is made by combining the scores for each plane,

gt(q,Π) =

NΠ∑
i=1

st(Πi,q) (6)

2) Manhole Alignment Case: In the case where the RGB-
D image is analysed to find a particular ellipsoidal feature
which appears to be a manhole plate, then the objective
function is different. This score takes into account the area
of the plane, angle to the plane, the distance to the plane,
and in certain cases where previous context exists about the
existence of the manhole, an estimate of the distance to the
manhole’s center. This objective function incorporates three
sub-scores and several filters to remove certain planes, such
as those that are almost parallel to the camera view (i.e. φi(q)
is larger than θignore) radians, or are too far away, i.e. further
than a threshold, dmax, which is heuristically determined to
be beyond the required level of accuracy for the camera.

The planes that remain after filtering are processed. The
angle between the camera and the plane normal varies from
0◦ to 90◦, and hence the dot product varies from 1 to 0 (i.e.
desirable to undesirable). An example of the two extreme
cases is: (a) the ideal case, when the angle is 0 and the
camera is looking straight at the planes which will produce
a high score of 1; and (b) non-ideal case, when the angle is
less than 45◦ and hence will produce a low score. The angle
sub-score is calculated as,

s∗angle,i =

∣∣∣∣cos−1(||nc · Pn||)− π/4
π/4

∣∣∣∣ (7)

Planes that are further from the camera are more prone
to spurious results, and hence are made to decrease the
plane score, whereas a small distance will leave the score
unaffected. In the case of two planes with equal normal and
area but Πi is 1m away the Πj is 2m away, then Πi should
have a higher score than Πj . The distance from the camera
image plane to the center of the plane is calculated as,

d2(pc(q),pΠ,i) = 1− (nΠ,i · (pc(q)− pΠ,i)− d∗) (8)

which is different from the point-to-point distance (4), and
includes an ideal distance, d∗ where detection of the key
features is most straightforward and thus positively affects
the score. To ensure the distance sub-score is with the range
0 to 1, it is bound using,

s∗dist,i = argmax(0, 1− |d2(pc(q),pΠ,i)− d∗|) (9)

which is largest (i.e. 1) when d2(pc(q),pΠ,i) = d∗, and
smallest (i.e. 0) when the distance is more than 1m from d∗.

If there have been previous scans that have detected a
manhole center, pmc but have failed the confidence test due
to suspected inaccuracies, then the estimated pmc is used to
improve the sub-score for poses that position the center ray
of the camera at the manhole center as follows,

s∗center,i = 1− ||pc(q)− pmc|| (10)

where ||x|| denotes a vector’s length. If there is no a priori
context then s∗center,i = 0 and does not affect the score.

The plane’s score is based upon the summation of three
sub-scores, scaled by the area of the plane,

sm(Πi,q) = aΠ,i(s
∗
angle,i + s∗dist,i + s∗center,i) (11)

so a plane with a small area multiplied by a poor angle and
with a low distance score will receive an overall low score,
while a plane with a larger area that is directly in front of
the camera, at a good distance will receive a high score.

In the manhole alignment case the objective function for
the plane set is made by combining the scores for each plane,

gm(q,Π) =

NΠ∑
i=1

sm(Πi,q) (12)

D. Nearest Neighbour Optimisation

The SFNN algorithm is designed towards the rapid dis-
covery of a valid joint configuration for a viewpoint of a
target which contains significant key feature information. A
joint vector, q, is determined to achieve a viewpoint which
will maximise the score from the objectives and thus enable
the targeted surface features to be appropriately sensed and
a template map generated.

A viewpoint is the result of the robot being in a particular
joint configuration, q, which must fall within the physical
angular limitations. For the i ∈ {1, . . . n} joints these are
defined as the maximums, qi,max, and minimums, qi,min. In
exploration, the solution space, Q is sampled so all solutions
that fall within the joint limits are allowable, and those that
fall outside the space are discarded.

Algorithm 1: Nearest Neighbour Pose Selection
Input: qcurr ←−Current robot pose , Π←−Set of

planes, Q←−Set of poses under consideration
Output: qnbv,Q
Qn = Generate Neighbour Poses(qcurr,M);
qnbv = ∅;
best neighbour score= 0;
if Qn 6= ∅ then

for q ∈ Qn do
score = gi(q,Π);
if score > best neighbour score then

best neighbour score = score;
qnbv = q;

The set of nearest neighbour poses can be generated using
Algorithm 1 and then by comparing the scores and selecting
the pose associated with the best score from amongst the can-
didates. Beginning with the current pose, qcurr = (1, . . . , j),
a vector of j joint angles, each joint angle in qcurr is iterated
over, adding or subtracting a chosen angle δq, such that if
pose qt at time, t is safe, given a map, M , and if pose qt+δqi
is safe, then the trajectory, qt + v × δqi,∀v ∈ R, 0 ≤ v ≤ 1
will also be safe and no extra trajectory path planning is
required. The resulting pairs of poses are then added to Qn.

In order to ensure the safety of the robot during the selec-
tion of candidate poses, collision avoidance is implemented
using the ellipsoidal bounding fields around each robot link
based upon [4]. The ith joint is enclosed in ellipsoidal virtual
bounding fields, centred at pc,i and with semi-principal axes
eccentricity parameters, [ae,i, be,i, ce,i]. These ellipsoids are
used for collision checks. An obstacle (or unexplored voxel),
p ∈ P, within an ellipsoid has an algebraic distance less
than 1, therefore all known obstacle, and unknown voxels
are checked for each joint to ensure that none of the them
are inside any of the ellipsoids. For each of the joints, qi in
q, the corresponding ellipsoid’s algebraic distance, dist(q)
to all obstacles and unknown voxels is returned using

dist(q) = min
p∈P

 min
i∈{1,...n}

dT · a−2
e,i 0 0

0 b−2
e,i 0

0 0 c−2
e,i

· d


(13)

where d =
(
p

0Ti(q)−1 − pc,i

)
. Provided that the smallest

dist(q) from all ellipsoids to all obstacle and unknown points
in the environment is greater than 1 then the points lie outside
all ellipsoids and the pose is safe.

Practically, the joints of any robot cannot be moved
precisely to infinitesimally small increments. Therefore, in
order to prevent against a potential infinite loop condition
where the same poses continue to be identified as the next
best potential pose, poses that are used are stored rounded to
the nearest integer. Each time new poses are generated, their
rounded integer pose is checked against the stored database

for the current base location. Poses are discarded if their
rounded value has been visited. In the case where all nearest
neighbour poses have been determined as being visited, or
the number of exploration poses goes over a pre-specified
application-specific threshold, then exploration is terminated.

III. RESULTS

Two experiments have been conducted in replicas of
steel bridge tunnel environments shown in Fig. 5 using a
7DOF climbing robot with two cameras mounted to the end-
effector: a Structure Sensor depth camera, and a Logitech
C930e RGB camera. The robot can attach one or two
footpads to steel surfaces in the environment using the 3
actuatable, permanent-magnet toes in both footpads.

Experiment 1 was conducted with a simulated climbing
robot in two environments: (a) simple tunnel consisting of
4 parallel walls connected together with L-beams (Fig. 5a);
(b) a tunnel environment collected on-site in a real-world
steel bridge box girder containing 12 approximately parallel
planes, rivets, rust and a manhole plate (Fig. 5b). The robot
is always attached to one surface, simulated depth data is
collected by ray casting into the environment and generating
a mock image without noise that replicates the ideal scan.

Each RGB-D frame is collected and processed: the re-
sultant point cloud data is triangulated to generate a mesh
and plane set which is analysed to detect the key features
(e.g. the tunnel and manhole plate) [6]. The dimensions and
length of the tunnel are initially unknown to the detection
process. If the detection process fails to output the tunnel
dimensions then exploration continues, or if valid dimensions
are determined then exploration terminates.

In order to compare the presented SFNN approach, several
other alternative approaches have also been implemented and
are described in Table I along with their advantages and
disadvantages.

Method Advantages Disadvantages
SFNN: Surface Focused
Nearest Neighbour ap-
proach presented in this
paper

Deterministic, can
detect key features,
computationally
inexpensive

Objective functions
must be formulated

RAND: selects a pose
at random from the
nearest neighbour can-
didates instead of using
objective functions

Least complexity,
no objective func-
tions, simple to im-
plement

Stochastic, unpre-
dictable, expected
to regularly fail,
cannot guarantee
map improvement

NN: Based on [5] it
estimates the informa-
tion gain (i.e. unknown
voxel penetration count)
for each scan

Deterministic, im-
proves surface &
occupancy maps,
generally faster
than AXBAM [7]

Unlikely to detect
key features, infor-
mation gain compu-
tation is expensive

NNB: based upon [11]
as an extension to NN
with the added facility
to backtrack if no good
option is found

Deterministic, im-
proves surface &
occupancy maps,
more likely to
succeed than NN

Unlikely to detect
key features, similar
computational over-
head to NN

TABLE I
DESCRIPTION AND CHARACTERISTICS OF COMPARATIVE METHODS.

In Experiment 1, the robot is initialised at a different
base location for each environment. At each base location

there are 20 initial poses in which the robot starts for all
approaches. Then the different approaches are used to select
the next best viewpoint, the simulated robot moves there and
takes a depth image. The image is analysed by a detection
module, and the tunnel or manhole is either found or it isn’t.
Once the tunnel or manhole is found, the test is stopped
and the number of scans required is recorded. If no desired
feature is found within cmax = 20 iterations then the test
is terminated and cmax is recorded. The mean iteration
count required, c̄1 is then computed as well as the standard
deviation (SD), (σ1) and shown on the left in Table II.

Experiment 1 Experiment 2
Map: a b c d
mean(SD) c̄1(σ1) c̄1(σ1) c̄2(σ2) c̄2(σ2)

SFNN 7.1(7.1) 4.3(2.4) 2.9(2.3) 5.3(4.1)
RAND 9.8(7.1) 8.5(5.97) N/A N/A
NN 9.7(8.7) 15.3(8.4) N/A N/A
NNB 9.7(8.7) 6.2(3.7) N/A N/A

TABLE II
EXPERIMENTAL RESULTS.

Experiment 2 was conducted in two lab scenarios. The
first as shown in Fig. 5c is a robot attached to the side wall
and scanning into the simple lab tunnel which consists of 4
parallel walls. The second as shown in Fig. 5d is a replica
bridge tunnel and manhole including rivets. The robot walked
to a position where it is close enough to the manhole to detect
the key environment features (i.e. the tunnel or manhole).

For Experiment 2, one base location is used for each
environment with the centre toe facing approximately into
the tunnel. Our approach is run from 10 different initial poses
and the number of scans required to find a solution is once
again recorded. Note that the maximum number of iterations
allowed is set to 20, due to time constraints and to limit
the wear on the robot’s joints. The right side of Table II
shows the mean scan count, c̄2 and standard deviation, (σ2)
calculated for the 10 poses used for each environment map.

IV. DISCUSSION

It has been shown that the proposed SFNN approach works
well for the target environments and rapidly converges upon
poses that allow the key features of an environment to be
observed. The previous approaches (NN, NNB and thus by
extension, AXBAM) do not perform much better than simply
randomly selecting the next pose, especially in environment
a which has the fewest features. The proposed approach is
able to determine the structure rapidly, particularly in the
case of feature-rich environments such as b that is based
upon field scan data, and the two real-world cases (i.e. c
and d). An additional benefit is that the path and pose is
found as a by-product of the search. This path could be
improved upon using a separate planner, however the results
are already safe and any additional planning is not likely
to reduce the movement time significantly. The tunnel and
manhole detection is still by far the most time consuming
part with each frame taking several seconds to process, while

(a) (b) (c) (d)

Fig. 5. Simulated environment and robot: a) Tunnel only based on field measurements; b) Tunnel and manhole based on field scan data. Real environments
and climbing robot: c) simple laboratory tunnel; d) Replica field tunnel with rivets and nearby manhole.

the proposed SFNN approach takes between 400-600ms to
compute the objective function results, optimise and confirm
the safety of the path to the next pose.

If the initial pose is looking directly at a side wall or
roof, then it is theoretically possible that the optimisation
may not converge and may stop or get caught in a local
minima as has been observed in some difficult simulated
cases. However this behaviour was only observed in 5%
of cases, and only in the simulation environment with the
artificially decreased feature set (i.e. a) where alternative
approaches also found no solutions. When using real-world
data (i.e. b-d) the key environment features were successfully
found in every instance, and thus for SFNN the upper limit
to force the optimisation to terminate was never reached.

V. CONCLUSIONS

This paper has presented an exploration approach for
robots to determine future sensing actions that can best
facilitate the building of surface maps within repetitive
structured environments. Key features that describe an envi-
ronment are used to create objective functions. Using these
objective functions, the approach repeatedly searches through
a sequence of nearest neighbour poses in configuration space
from which the next observation will be made, until the
key features are observed. The approach in this paper has
been experimentally evaluated using a climbing robot that
must adhere to surfaces in order to traverse and navigate
in an environment. The approach is compared to previous
exploration approaches and has been shown to converge upon
viewpoint poses, which are predicted to contain sufficient key
features that can be observed, given starting poses that are
sufficiently close.

Future work will evaluate improvements and additions to
the objective functions, such as the maximisation of depth
values in depth images to aid in quickly finding a viewpoint
that observes down the length of the tunnel, as well as
increasing the number of objective functions that can be
simultaneously used in this exploration approach.

ACKNOWLEDGMENTS

This work is supported by the NSW Roads and Maritime
Services, and the Centre for Autonomous Systems (CAS) at
the University of Technology, Sydney

REFERENCES

[1] P. Ward, G. Paul, P. Quin, D. Pagano, C. Yang, D. Liu, K. Waldron,
G. Dissanayake, P. Brooks, P. Mann, W. Kaluarachchi, M. P., and
L. Matkovic, “Climbing robot for steel bridge inspection: Design
challenges,” in 9th Austroads Bridge Conference, Sydney, 2014.

[2] M. Eich and T. Vogele, “Design and control of a lightweight magnetic
climbing robot for vessel inspection,” in 19th Mediterranean Conf. on
Control Automation, Corfu, 2011, pp. 1200–1205.

[3] Y. Yu and K. K. Gupta, “C-space entropy: A measure for view
planning and exploration for general robot-sensor systems in unknown
environments.” I. J. Robotic Res., vol. 23, no. 12, pp. 1197–1223, 2004.

[4] G. Paul, S. Webb, D. K. Liu, and G. Dissanayake, “Autonomous
robot manipulator-based exploration and mapping system for bridge
maintenance,” Robotics and Autonomous Systems, vol. 59, no. 7-8, pp.
543–554, 2011.

[5] P. Quin, G. Paul, A. Alempijevic, D. Liu, and G. Dissanayake, “Effi-
cient neighbourhood-based information gain approach for exploration
of complex 3d environments,” in IEEE Int. Conf on Robotics and
Automation (ICRA), 2013, pp. 1343–1348.

[6] G. Paul, P. Quin, A. To, and D. Liu, “A sliding window approach
to exploration for 3d map building using a biologically inspired
bridge inspection robot,” in IEEE Int. Conf. on CYBER Technology in
Automation, Control, and Intelligent Systems, 2015, pp. 1097–1102.

[7] G. Paul, S. Mao, L. Liu, and R. Xiong, “Mapping repetitive structural
tunnel environments for a biologically inspired climbing robot,” in
18th Int. Conf. on Climbing and Walking Robots and the Support
Technologies for Mobile Machines, 2015, pp. 325–333.

[8] S. Son, S. Kim, and K. Lee, “Path planning of multi-patched freeform
surfaces for laser scanning,” The International Journal of Advanced
Manufacturing Technology, vol. 22, no. 5-6, pp. 424–435, 2003.

[9] J. Wang, D. Gu, Z. Yu, C. Tan, and L. Zhou, “A framework for 3d
model reconstruction in reverse engineering,” Computers & Industrial
Engineering, vol. 63, no. 4, pp. 1189–1200, 2012.

[10] S. Sehestedt, G. Paul, D. Rushton-Smith, and D. Liu, “Prior-knowledge
assisted fast 3d map building of structured environments for steel
bridge maintenance,” in IEEE Int Conf. on Automation Science and
Engineering (CASE), 2013, pp. 1040–1046.

[11] P. Quin, G. Paul, A. Alempijevic, and D. Liu, “Nearest neighbour
exploration with backtracking for robotic exploration of complex 3d
environments,” in Australasian Conf. on Robotics and Automation,
2013, pp. 1343–1348.

[12] S. Holzer, R. B. Rusu, M. Dixon, S. Gedikli, and N. Navab, “Adaptive
neighborhood selection for real-time surface normal estimation from
organized point cloud data using integral images,” in IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2012, pp. 2684–2689.

[13] J. Xiao, J. Zhang, B. Adler, H. Zhang, and J. Zhang, “Three-
dimensional point cloud plane segmentation in both structured and un-
structured environments,” Robotics and Autonomous Systems, vol. 61,
no. 12, pp. 1641–1652, 2013.

[14] C. Feng, Y. Taguchi, and V. Kamat, “Fast plane extraction in organized
point clouds using agglomerative hierarchical clustering,” in IEEE Int.
Conf. on Robotics and Automation (ICRA), 2014, pp. 6218–6225.

[15] G. Paul, N. Kirchner, D. K. Liu, and G. Dissanayake, “An effective
exploration approach to simultaneous mapping and surface material-
type identification of complex 3d environments,” Journal of Field
Robotics (S.I. 3D Mapping), vol. 26, no. 11-12 SI, pp. 915–933, 2009.

