
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scaling Sampling-based Motion Planning to Humanoid Robots

Citation for published version:
Yang, Y, Ivan, V, Merkt, W & Vijayakumar, S 2017, Scaling Sampling-based Motion Planning to Humanoid
Robots. in IEEE International Conference on Robotics and Biomimetics ROBIO 2016. Institute of Electrical
and Electronics Engineers (IEEE), pp. 1448-1454, IEEE INTERNATIONAL CONFERENCE ON ROBOTICS
AND BIOMIMETICS 2016, Qingdao, China, 3/12/16. https://doi.org/10.1109/ROBIO.2016.7866531

Digital Object Identifier (DOI):
10.1109/ROBIO.2016.7866531

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE International Conference on Robotics and Biomimetics ROBIO 2016

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 29. Mar. 2024

https://doi.org/10.1109/ROBIO.2016.7866531
https://doi.org/10.1109/ROBIO.2016.7866531
https://www.research.ed.ac.uk/en/publications/413b2812-21e4-4d73-9a78-97e400e00e08


Scaling Sampling–based Motion Planning to Humanoid Robots

Yiming Yang, Vladimir Ivan, Wolfgang Merkt, Sethu Vijayakumar

Abstract— Planning balanced and collision–free motion for
humanoid robots is non–trivial, especially when they are oper-
ated in complex environments, such as reaching targets behind
obstacles or through narrow passages. We propose a method
that allows us to apply existing sampling–based algorithms
to plan trajectories for humanoids by utilizing a customized
state space representation, biased sampling strategies, and a
steering function based on a robust inverse kinematics solver.
Our approach requires no prior offline computation, thus one
can easily transfer the work to new robot platforms. We tested
the proposed method solving practical reaching tasks on a 38
degrees–of–freedom humanoid robot, NASA Valkyrie, showing
that our method is able to generate valid motion plans that
can be executed on advanced full–size humanoid robots. We
also present a benchmark between different motion planning
algorithms evaluated on a variety of reaching motion problems.
This allows us to find suitable algorithms for solving humanoid
motion planning problems, and to identify the limitations of
these algorithms.

I. INTRODUCTION

Humanoid robots are highly redundant systems that are
designed for accomplishing a variety of tasks in environ-
ments designed for human. However, humanoids have a large
number of degrees–of–freedom (DoF) which makes motion
planning extremely challenging. In general, optimization–
based algorithms are suitable for searching for optimal
solutions even in high dimensional systems [1] [2], but it
is non–trivial to generate optimal collision–free trajectories
for humanoids using optimization approaches, especially in
complex environments. This is mainly due to the highly non–
linear map between the robot and the collision environment.
This mapping can be modelled in some abstract spaces to
provide real–time collision avoidance capabilities on low
DoF robotic arms [3] difficult for high DoF humanoids
due to the curse of dimensionality and it often causes
local minima problems. Additionally, solving locomotion
and whole–body manipulation in complex environments as
one combined problem requires searching through a large
space of possible actions. Instead, it is more effective to
first generate robust walking plans to move the robot to a
desired standing location, and then generate collision–free
motion with stationary feet [4]. Although assuming fixed
feet position may be viewed as restrictive, we argue that
a large variety of whole body manipulation tasks can still
be executed as a series of locomotion and manipulation
subtasks. We propose an extension to a family of sampling
based motion planning algorithms that will allow us to plan

All authors are with School of Informatics, University of Edinburgh
(Informatics Forum, 10 Crichton Street, Edinburgh, EH8 9AB, United
Kingdom). email: yiming.yang@ed.ac.uk

Fig. 1: Collision–free and balanced whole–body motion
executed on the 38 DoF NASA Valkyrie robot.

collision–free whole–body motions on floating based systems
which require active balancing.

Sampling–based planning (SBP) algorithms, such as RRT
[5] and PRM [6], are capable of efficiently generating glob-
ally valid collision-free trajectories due to their simplicity.
In the past two decades, SBP algorithms have been applied
to countless problems with a variety of derivatives, such
as RRT-Connect [7], Expansive Space Trees (EST, [8]),
RRT*/PRM* [9], Kinematic Planning by Interior-Exterior
Cell Exploration (KPIECE, [10]), and many others [11].
However, since the SBP algorithms were originally designed
for mobile robots and low DoF robotic arms, using them
on high DoF systems requiring active balancing is still
challenging. We will call a robot pose statically balanced
if the controller can achieve an equilibrium in this state
while achieving zero velocity and acceleration (e.g. when
the projection of centre of mass lies within the support poly-
gon). The subset of robot configurations with this property
forms a low dimensional manifold defined by the balance
constraint. In practice, the rejection rate of random samples
is prohibitively high without the explicit or implicit knowl-
edge of the manifold. Approaches have been proposed to
address this particular problem of using SBP algorithms for
humanoid robots. Kuffner at al. [12] use a heavily customized
RRT–Connect algorithm to plan whole body motion for
humanoids, where they only sample from a pre-calculated

ar
X

iv
:1

60
7.

07
47

0v
2 

 [
cs

.R
O

] 
 2

9 
Ju

l 2
01

6



pool of postures for which the robot is in balance. Hauser
at al. [13] introduce motion primitives into SBP algorithms
where the sampler only samples states around a set of
pre–stored motion primitives. A similar approach is used
in [14] with centre–of–mass (CoM) movement primitives.
These approaches share the common idea of using an offline
generated sample set to bootstrap online processes, thus al-
lowing algorithms to bypass the expensive online generation
of balanced samples. However, this leads to the problem
where one has to store a significant number of samples to
densely cover the balance manifold, otherwise the algorithms
may fail while valid solutions exist but were not stored during
offline processing. Another issue is that the pre–processing is
normally platform specific, which makes it difficult and time
consuming to transfer the work to other robot platforms.

To this end, instead of developing new SBP algorithms
specifically for humanoids, we focus on enabling the stan-
dard SBP algorithms to solve humanoids motion planning
problems by modifying the underlying key components of
generic SBP approaches, such as space representation, sam-
pling strategies and interpolation functions. In order to make
the method generic for any humanoid platforms, rather than
store balanced samples during offline processing, we use
a non–linear optimization based [15] whole–body inverse
kinematics (IK) solver to generate balanced samples on–
the–fly. Thus, the proposed method can be easily applied to
different humanoid robot platforms without extensive pre–
processing and setup. We evaluate the proposed method on
a 36 DoF Boston Dynamics Atlas and a 38 DoF NASA
Valkyrie humanoid robots, to show that our method is capa-
ble of generating reliable collision–free whole–body motion
for a generic humanoid. We also evaluate the difference
between sampling in end–effector and configuration spaces
for different scenarios, and compare the planning time and
trajectory length to find an optimal trade off between ef-
ficiency and optimality. In particular, we apply our work
to solve practical reaching tasks on the Valkyrie robot, as
highlighted in Fig. 1, showing that the proposed method can
generate reliable whole–body motion that can be executed
on full–size humanoid robots.

II. PROBLEM FORMULATION

Let C ∈ RN+6 be a robot’s configuration space with N
the number of articulated joints and the additional 6-DoF
of the under actuated virtual joint that connects the robot’s
pelvis (Tpelvis ) and the world W ∈ SE(3). Let q ∈ C be
the robot configuration state, Cbalance ⊂ C the manifold that
contains statically balanced configurations, Cfree ⊂ C the
manifold contains collision free configurations and Cvalid ≡
Cbalance ∩ Cfree the valid configuration manifold.

For humanoid robots, valid trajectories can only contain
states from valid configuration manifold, i.e. q[0:T ] ⊂ Cvalid .
Generating collision free samples is straightforward by using
random sample generators and standard collision checking
libraries. However, generating balanced samples is non-
trivial, where a random sampling technique is incapable

of efficiently finding balanced samples on the low dimen-
sional manifold Cbalance by sampling in high dimensional
configuration space C. Guided sampling or pre–sampling
process is required for efficient valid sample generation.
In our approach, a whole-body inverse kinematic solver
is employed to produce statically balanced samples. Static
balance constraint is a combination of feet and CoM poses
constraints, i.e. the static balance constraint is considered as
satisfied when the robot’s feet has stable contacts with ground
and the CoM ground projection stays within the support
polygon.

A. Whole–body Inverse Kinematics
Given a seed configuration qseed and nominal config-

uration qnominal and a set of constraints C, an output
configuration that satisfies all the constraints can be generally
formulated as:

q∗ = IK (qseed ,qnominal ,C) (1)

The Constraint set for a whole–body humanoid robot may
include single joint constraints, such as position and velocity
limits for articulated joints, it may also include workspace
pose constraints, e.g. end–effector poses, centre-of-mass po-
sition. In the rest of the paper, unless specified otherwise, we
assume the quasi–static balance constraint and joint limits
constraints are included in C by default. We formulate the
IK problem as a non-linear optimization problem (NLP) of
form:

q∗ = arg minq∈RN+6 ‖q− qnominal‖2Qq
(2)

subject to bl ≤ q ≤ bu (3)
ci(q) ≤ 0, ci ∈ C (4)

where Qq � 0 is the weighting matrix, bl and bu are the
lower and upper joint bounds. We use a randomly sampled
state as the seed pose qseed . We then use this pose as the
initial value in the first iteration of SQP solver. Depending
on the implementation of the SBP algorithm, we either
choose qnominal to be the current robot state or one of the
neighbouring poses drawn from the pool of candidate poses
already explored by the SBP algorithm.

B. Sampling–based Motion Planning
Let x ∈ X be the space where the sampling is carried out.

The planning problem can be formulated as

q[0:T ] = Planning(Rob,Env,x0,xT ) (5)

where Rob is the robot model and Env is the environment
instance in which this planning problem is defined. x0 and
xT are the initial and desired states.

In order for SBP algorithms to be able to plan motions
for humanoid robots, we need to modify the following
components that are involved in most algorithms as shown
in Fig. 2: the space X where the sampling is carried out;
the strategies to draw random samples; and the interpolation
function which is normally used in steering and motion
evaluation steps. In the next section, we will discuss the
details of modifications we applied on those components for
scaling standard SBP algorithms to humanoids.



𝒙"#$%#
𝒙&'$%'"#

𝒙$

𝒙( 𝒙)*$+

𝒙%$&,*-

𝒙&'.

Motion evaluation

Interpolation

Sampling

Sampling	space	𝒳

Fig. 2: Instead of developing new algorithms, we mod-
ify those underlying components in SBP solvers to make
standard algorithms be capable of solving motion planning
problems for humanoid robots.

III. SAMPLING–BASED PLANNING FOR HUMANOIDS

We separate the work into two parts, configuration space
sampling and end–effector space sampling. In configuration
space sampling approach, the state is represented in RN+6

space with joint limits and maximum allowed base movement
as the bounds, the sampling state is identical to robot config-
uration, i.e. x = q ∈ C. For reaching and grasping problems,
one might be interested in biasing the sampling in the end–
effector related constraints, e.g. to encourage shorter end–
effector traverse distance. The end–effector space approach
samples in SE(3) space with a region of interests around
the robot as the bounds, the state is equivalent to the end–
effector’s forward kinematics, i.e. x = Φ(q) ∈ W where
Φ(·) is the forward kinematics mapping. However, the final
trajectories are represented in configuration space, thus we
associate a corresponding configuration for each end–effector
space state to avoid ambiguity and duplicated calls of IK
solver.

A. Configuration Space Sampling

Algorithm 1 highlights the components’ modifications
required for sampling in configuration space:

1) Sampling Strategies: For sampleUniform(), we first
generate random samples from X and then use fullbody IK
solver to process the random samples to generate samples
from the balanced manifold Xbalance

qrand = IK (q̄rand , q̄rand ,C) (6)

where q̄rand ∈ X is a uniform random configuration and
qrand ∈ Xbalance is random sample from the balanced
manifold. We use q̄rand as nominal pose since we want
to generate random postures rather than postures close
to other already existing samples. This is to indirectly
encourage exploration of the null-space of the task. The
constraint set C contains static balance constraint and joint
limits constraints. When sampling around a given state,
sampleUniformNear(qnear , d), we first get a random state
q̄rand that is close to qnear within distance d. The IK solver
is invoked with q̄rand as the seed pose, and qnear as the

Algorithm 1 Humanoid Configuration Space SBP
sampleUniform()

1: succeed = False
2: while not succeed do
3: q̄rand = RandomConfiguration()
4: qrand , succeed = IK (q̄rand , q̄rand ,C)

return qrand

sampleUniformNear(qnear , d)
1: succeed = False
2: while not succeed do
3: A← Zeros(N + 6)
4: while not succeed do
5: q̄rand = RandomNear(qnear , d)
6: Set constraint ‖qrand − q̄rand‖W < A
7: qrand , succeed = IK (q̄rand ,qnear ,C)
8: Increase A
9: if distance(qrand ,qnear ) > d then

10: succeed = False
return qrand

interpolate(qa,qb, d)
1: q̄int = InterpolateConfigurationSpace(qa,qb, d)
2: succeed = False
3: A← Zeros(N + 6)
4: while not succeed do
5: Set constraint ‖qint − q̄int‖W < A
6: qint , succeed = IK (q̄int ,qa,C)
7: Increase A

return qint

nominal pose. An additional configuration space constraint
is added to the constraint set

‖qrand − q̄rand‖W ≤ A (7)

where A ∈ RN+6 is a tolerance vector initially set to
zero. In most cases the system will be over constrained,
in which case we need to increase the tolerance to ensure
balance. Normally, the lower–body joints are neglected first,
i.e. increasing corresponding wi, meaning that we allow the
lower–body joints to deviate from q̄rand in order to keep
feet on the ground and maintain balance. We use xnear as
the nominal pose since later on the random state is likely to
be appended to qnear , where one wants the random state be
close to the near state. The new sample is discarded if the
distance between qnear and qrand exceeds the limit d.

2) Interpolation: In order to find a balanced state interpo-
lated along two balanced end–point states, we first find the
interpolated, likely to be un–balanced state

q̄int = qa + d‖qb − qa‖. (8)

A similar configuration space constraint to (7) is applied to
constrain the balanced interpolated state qint close to q̄int

|qint − q̄int‖ ≤ A (9)



Algorithm 2 Humanoid End–Effector Space SBP
sampleUniform()

1: succeed = False
2: while not succeed do
3: x̄rand = RandomSE3 ()
4: Set constraint ‖x̄rand − Φ(qrand)‖ ≤ 0
5: qrand , succeed = IK (q̄rand , q̄rand ,C)

6: xrand = Φ(qrand)
return xrand ,qrand

sampleUniformNear(xnear , d)
1: succeed = False
2: while not succeed do
3: x̄rand = RandomNearSE3 (xnear , d)
4: Set constraint ‖x̄rand − Φ(qrand)‖ ≤ 0
5: qrand , succeed = IK (qrand ,qnear ,C)

6: xrand = x̄rand

return xrand ,qrand

interpolate(xa,xb, d)
1: x̄int = InterpolateSE3 (xa,xb, d)
2: succeed = False
3: B ← Zeros(SE3)
4: while not succeed do
5: Set constraint ‖x̄int − Φ(qint)‖ < B
6: qint , succeed = IK (qa,qa,C)
7: Increase B
8: xint = Φ(qint)

return xint ,qint

The two end-point states qa and qb are valid samples
generated using our sampling strategies. Due to the convex
formulation of the balance constraint, a valid interpolated
state is guaranteed to be found. It is worth mentioning that
in some cases the interpolation distance equation no longer
holds after increasing the tolerance, i.e. ‖xint−xa‖

‖xb−xa‖ 6= d.
However, this is a necessary step to ensure that the balance
constraint are satisfied.

B. End-Effector Space Sampling

Algorithm 2 highlights the components’ modifications
required for sampling in end–effector space:

1) Sampling Strategies: It is straight forward to sample in
SE(3) space, however, it is non–trivial to sample balanced
samples from the Xbalance manifold. For sampleUniform(),
we first randomly generate SE(3) state x̄rand within a region
of interest in front of the robot. The whole–body IK is
invoked with an additional end–effector pose constraint

‖x̄rand − Φ(qrand)‖ ≤ 0 (10)

The sampler keeps drawing new random states x̄rand until
the SQP solver returns a valid output q∗. The valid ran-
dom state xrand can be calculated using forward kinemat-
ics, e.g. xrand = Φ (q∗). The same procedure applies to

TABLE I: Planning time of empty space reaching problem
crossing different algorithms, in seconds.

Algorithms Sampling Space
End–Effector Space Configuration Space

RRT 25.863± 22.894 1.4129± 1.4466
PRM 4.2606± 3.0322 0.5912± 0.5912
EST 28.055± 18.270 0.3112± 0.3112

BKPIECE 5.3989± 5.9470 0.1781± 0.0332
SBL 3.0602± 0.9859 0.2804± 0.0480
RRT–Connect 2.8228± 0.3412 0.1853± 0.0450

sampleNear(xnear , d), but using xnear as the seed configu-
ration.

2) Interpolation: Similar to sampling near a given state,
for interpolation in end–effector space, we first find the
interpolated state x̄int ∈ SE(3) and add the following term
into constraint set

‖x̄int − Φ(q)‖ ≤ B (11)

where B ∈ R6 is a tolerance vector initially set to zero.
If the system is over constrained after adding end–effector
pose constraint, we need to selectively relax the tolerance
for different dimensions (x, y, z, roll, pitch, yaw) until the
IK solver succeeds. Then we reassign the interpolated state
using forward kinematics, xint = Φ(qint).

3) Multi-Endeffector Motion Planning: Some tasks re-
quire coordinated motion involving multiple end–effectors,
e.g. bi–manual manipulation and multi–contact motion. It
is obvious that, from a configuration space point of view,
there is no difference as long as the desired configuration
is specified. It is also possible for end–effector space sam-
pling approach to plan motion with multiple end–effector
constraints. Let y∗k ∈ SE(3) be the desired pose constraints
for end–effector k ∈ {1, . . . ,K}. A meta end–effector
space X ∈ R6×K can be constructed to represent the
sampling space for all end–effectors. Similar sampling and
interpolation functions can be implemented by constructing
extra constraints for each end–effector k.

IV. EVALUATION

We aim to generalize the common components of
sampling–based motion planning algorithms for humanoid
robots so that existing algorithms can be used without
extra modification. We implemented our approach in the
EXOTica motion planning and optimization framework [16]
as humanoid motion planning solver, which internally in-
vokes the SBP planners from the Open Motion Planning
Library (OMPL, [17]). We have set up the system with
our customized components, and evaluated our approach on
the following 6 representative algorithms: RRT [5], RRT-
Connect [7], PRM [6], BKPIECE [10], EST [8]) and SBL
[18]. The evaluations are performed on a single thread of the
4.0 GHz Intel Core i7-6700K CPU.

A. Empty Space Reaching

In the first experiment, we have the robot reach a target
pose in front of the robot in free space, where only self–
collision and balance constraints are considered. This is a



TABLE II: Evaluation of whole–body collision–free motion planning. RRT–Connecte sampling in end–effector space, all
other methods sampling in configuration space. C cost is the configuration space trajectory length,W cost is the end–effector
traverse distance in workspace, CoM cost is the CoM traverse distance in workspace. No. evaluation shows the number of
state evaluation calls, i.e. evaluate if a sampled/interpolated state is valid. No. IK indicates the number of online whole–body
IK calls, and IK time is the total time required for solving those IK, which is the most time consuming element. The result
is averaged over 100 trails.

Tasks Algorithms Planning time (s) C cost (rad.) W cost (m) CoM cost (m) No. evaluation No. IK IK time (s)

Task 1

BKPIECEc 42.5 ± 26.4 7.37 ± 2.43 2.10 ± 0.80 0.24 ± 0.10 1946 ± 1207 2598 ± 1582 41.4 ± 25.7
SBLc 27.8 ± 8.59 6.25 ± 1.06 2.14 ± 0.71 0.23 ± 0.06 1313 ± 418 1508 ± 445 27.0 ± 8.33
RRT–Connecte 9.91 ± 4.80 2.93 ± 0.96 0.58 ± 0.11 0.07 ± 0.02 597 ± 354 727 ± 387 9.51 ± 4.58
RRT–Connectc 1.53 ± 0.80 2.71 ± 0.68 0.99 ± 0.23 0.11 ± 0.03 95 ± 54 118 ± 64 1.48 ± 0.77

Task 2

BKPIECEc 40.5 ± 21.7 6.59 ± 2.43 1.95 ± 0.59 0.27 ± 0.09 1911 ± 970 2473 ± 1254 39.4 ± 20.1
SBLc 22.2 ± 9.51 5.34 ± 2.00 1.79 ± 0.80 0.24 ± 0.09 1089 ± 472 1259 ± 547 21.5 ± 9.23
RRT–Connecte 12.4 ± 6.65 4.12 ± 2.02 0.77 ± 0.08 0.09 ± 0.04 656 ± 405 826 ± 458 11.9 ± 6.41
RRT–Connectc 2.25 ± 0.85 3.29 ± 1.14 1.20 ± 0.33 0.14 ± 0.05 106 ± 42 166 ± 59 2.19 ± 0.83

Task 3

BKPIECEc 45.7 ± 19.8 7.49 ± 2.52 1.96 ± 0.73 0.25 ± 0.08 2057 ± 949 2758 ± 1166 44.5 ± 19.3
SBLc 33.8 ± 22.2 8.68 ± 2.26 2.10 ± 0.44 0.28 ± 0.11 1414 ± 950 1756 ± 1151 33.0 ± 21.6
RRT–Connecte 25.3 ± 13.9 7.19 ± 4.93 0.92 ± 0.13 0.16 ± 0.05 1031 ± 532 1436 ± 720 24.6 ± 13.7
RRT–Connectc 3.45 ± 0.77 4.68 ± 0.59 1.38 ± 0.12 0.14 ± 0.03 165 ± 49 200 ± 53 3.36 ± 0.75

Fig. 3: Evaluation tasks, from left to right: task 1, target
close to robot; task 2, target far away from robot; and task
3, target behind bar obstacle.

sanity check to show that the proposed method can be used
robustly across different planning algorithms to generate
trajectories for humanoid robots. We solve the reaching
problem using the 6 testing algorithms in two different
sampling spaces, each across 100 trials. The results are
shown in Table I. Although the planning time varies across
different algorithms and sampling spaces, the result shows
that standard planning algorithms are able to generate motion
plans for humanoid robots using our method. However, as
expected, bi–directional algorithms are more efficient than
their unidirectional variants. Also, sampling in configuration
space is much more efficient than in end–effector space due
to the higher number of IK calls.

B. Collision–free Reaching

We setup three different scenarios, from easy to hard, as
illustrated in Fig. 3, to evaluate the performance of different
algorithms in different sampling spaces. Unfortunately, the
evaluation suggests that standard unidirectional algorithms
are unable to solve these problems (within a time limit
of 100 seconds). Without bi–directional search, the high
dimensional humanoid configuration space is too complex
for sampling–based methods to explore. Table II highlights
the results using four different bidirectional approaches.
Note that when sampling in end–effector space, only RRT–

(a) Trajectories generated using configuration space sampling.

(b) Trajectories generated using end–effector space sampling.

Fig. 4: Whole–body motion plans generated using different
sampling spaces. The task is identical for each column. In
general, configuration space sampling leads to shorter tra-
jectory length; end–effector space sampling leads to shorter
end–effector traverse distance.

Connect is able to find a valid solution in the given time,
other bidirectional search algorithms like BKPIECE and
SBL are also unable to find valid trajectories. The result
indicates that RRT–Connect sampling in configuration space
is the most efficient and the most robust approach for
solving humanoid whole–body motion planning problems.
It requires the least exploration, thus bypassing expensive
online IK queries. Algorithms like BKPIECE and SBL use
low–dimensional projections to bias the sampling, however,
the default projections which are tuned for mobile robots
and robotic arms do not scale up to high DoF humanoid
robots, which leads to long planning time and trajectories



(a) Reaching motion on the NASA Valkyrie robot. (b) Reaching motion on the Boston Dynamics Atlas robot.

Fig. 5: Collision–free whole–body motion generated in different scenarios with different robot models. The corresponding
CoM trajectories are illustrated in the second row (red dots). The framework is setup so that one can easily switch to new
robot platforms without extensive preparing procedures.

with high costs. This can be improved by better projection
bias, but it is non–trivial to find a suitable bias without fine
tuning. Also, the trajectories generated using RRT–Connect
are shorter, meaning that the motion is more stable and
robust. It is worth mentioning that RRT–Connect takes longer
time to plan when sampling in the end–effector space than it
does in the configuration space, but the planned trajectories
have shorter end–effector and CoM traverse distances. In
some scenarios where planning time is not critical, one
choose to use RRT–Connect in end–effector space to generate
trajectories with shorter end–effector traverse distance. These
results also suggest that the whole–body IK computation
dominates the planning time. This is in contrast with classical
SBP problems where collision–detection is the the most time
consuming component. However, the IK solver is necessary
for keeping balance, as shown in Fig. 5, where the trajecto-
ries’ CoM projections are within the support polygon.

In more complex scenarios, such as reaching through
narrow passages and bi–manual tasks, most algorithms fail
to generate valid trajectories apart from RRT–Connect. As
mentioned, some algorithms’ performance depends on the
biasing methods, e.g. projection bias and sampling bias.
However, it is non–trivial to find the appropriate bias for
humanoids that would generalize across different tasks.
Fig. 5 highlights some examples of reaching motion in more
complex scenarios with different robot models. As stated
earlier, this work focuses on generalising SBP algorithms
for humanoids, where as one can easily setup the system
on new robot platforms. For instance, one can easily switch
from Valkyrie (Fig. 5a) to Atlas (Fig. 5b) in minutes without
extensive pre–processing and setup procedures.

In order to test the reliability and robustness of the
proposed method, we applied our work on the Valkyrie robot
accomplishing reaching and grasping tasks in different sce-
narios, as highlighted in Fig 6. During practical experiments,
the collision environment is sensed by the on–board sensor
and represented as an octomap [19]. The experiment results
show that our method is able to generate collision–free
whole–body motion plans that can be executed on full–size

humanoid robot to realise practical tasks such as reaching and
grasping. A supplementary video of the experiment results
can be found at https://youtu.be/W48miMKWnW4.

V. CONCLUSION

In this paper we generalise the key components required
by sampling–based algorithms for generating collision–free
and balanced whole–body trajectories for humanoid robots.
We show that by using the proposed methods, standard algo-
rithms can be invoked to directly plan for humanoid robots.
We also evaluate the performance of different algorithms
on solving planning problems for humanoids, and point out
the limitations of some algorithms. A variety of different
scenarios are tested showing that the proposed method can
generate reliable motion for humanoid robots in different
environments. This work can be transferred to different
humanoid robot models with easy setup procedure that can
be done in very a short period of time, without extensive pre-
computation for adapting the existing algorithms to different
robot models, as we have tested on the 36 DoF Boston
Dynamics Atlas and the 38 DoF NASA Valkyrie robots. In
particular, we applied this work on the Valkyrie robot accom-
plishing different tasks, showing that the proposed method
can generate robust collision–free whole–body motion that
can be executed on real robots.

The result in Table II shows that the whole–body IK solver
dominates over 95% of the online computation time, which
currently only runs on a single–thread but can be parallelised
on multi–threaded CPU/GPU. The future work will include
investigating parallelised implementation of the IK solver
on GPU to bootstrap sampling and interpolation. This will
make the state space exploration more efficient, so that other
standard algorithms may be able to find valid solutions within
the same time window.

REFERENCES

[1] K. Rawlik, M. Toussaint, and S. Vijayakumar, “On stochastic optimal
control and reinforcement learning by approximate inference,” RSS,
2012.



(a) Reach and grasp target on table without facing target.

(b) Reach and grasp target on top of box.

(c) Reach and grasp target on top of shelf.

Fig. 6: Collision–free whole–body motion execution on the NASA Valkyrie humanoid robot. In each scenario, the first figure
highlights the motion plan, followed by execution snapshots.

[2] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” in
ICRA, IEEE, 2009.

[3] Y. Yang, V. Ivan, and S. Vijayakumar, “Real-time motion adaptation
using relative distance space representation,” in ICAR, IEEE, 2015.

[4] Y. Yang, V. Ivan, Z. Li, M. Fallon, and S. Vijayakumar, “iDRM:
Humanoid Motion Planning with Real-Time End-Pose Selection in
Complex Environments,” in Humanoids (submitted to), 2016.

[5] S. M. Lavalle, “Rapidly-Exploring Random Trees: A New Tool for
Path Planning,” tech. rep., 1998.

[6] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” ICRA, 1996.

[7] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in ICRA, IEEE, 2000.

[8] D. Hsu, J. C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” in ICRA, IEEE, 1997.

[9] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” IJRR, pp. 846–894.

[10] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning
by interior-exterior cell exploration,” in Algorithmic Foundation of
Robotics, 2009.

[11] M. Elbanhawi and M. Simic, “Sampling-Based Robot Motion Plan-
ning: A Review,” IEEE Access, 2014.

[12] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion
planning for humanoid robots,” in ISRR, 2005.

[13] K. Hauser, T. Bretl, K. Harada, and J.-C. Latombe, “Using mo-
tion primitives in probabilistic sample-based planning for humanoid
robots,” in Algorithmic foundation of robotics, 2008.

[14] M. Cognetti, P. Mohammadi, and G. Oriolo, “Whole-body motion
planning for humanoids based on CoM movement primitives,” in
Humanoids, IEEE, 2015.

[15] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP
Algorithm for Large-Scale Constrained Optimization,” SIAM, 2005.

[16] V. Ivan, Y. Yang, and M. Camilleri, “EXOTica: a library for easy
creation of tools for optimisation and planning,” 2016.

[17] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” Robotics Automation Magazine, IEEE, 2012.

[18] G. Sánchez and J.-C. Latombe, “A single-query bi-directional prob-
abilistic roadmap planner with lazy collision checking,” in Robotics
Research, 2003.

[19] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An Efficient Probabilistic 3D Mapping Framework
Based on Octrees,” Autonomous Robots, 2013.


