

Delft University of Technology

EasySRRobot
An Easy-to-Build Self-Reconfigurable Robot with Optimized Design
Yu, Minjing; Liu, Yong-Jin; Wang, Charlie

DOI
10.1109/ROBIO.2017.8324563
Publication date
2017
Document Version
Accepted author manuscript
Published in
2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)

Citation (APA)
Yu, M., Liu, Y.-J., & Wang, C. (2017). EasySRRobot: An Easy-to-Build Self-Reconfigurable Robot with
Optimized Design. In 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 1-6).
IEEE. https://doi.org/10.1109/ROBIO.2017.8324563

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ROBIO.2017.8324563
https://doi.org/10.1109/ROBIO.2017.8324563

EasySRRobot: An Easy-to-Build
Self-Reconfigurable Robot with Optimized Design

Minjing Yu, Yong-Jin Liu
National Lab for Information Science and Technology,

Department of Computer Science and Technology,
Tsinghua University, Beijing, China

Charlie C.L. Wang
Department of Design Engineering,

TU Delft Robotics Institute,
Delft University of Technology, The Netherlands

Abstract—Self-reconfigurable modular robots (SRRobot) that
can change their shape and function in different environments
according to different tasks have caught a lot of attention recently.
Most existing prototypes use professional electronic components
with relatively expensive cost and high barrier of fabrication.
In this paper, we present a low-cost SSRobot with double-
cube modules. Our system is easy-to-build even for novices
as all electric components are off-the-shelf and the structural
components in plastics are made by 3D printing. To have a better
design of interior structures, we first construct a design space for
all feasible solutions that satisfy the constraints of fabrication.
Then, an optimized solution is found by an objective function
incorporating the factors of space utilization, structural sound-
ness and assembly complexity. Thirty EasySRRobot modules are
manufactured and assembled. The functionality of our algorithm
is demonstrated by comparing an optimized interior design with
other two feasible designs and realizing different motions on an
EasySRRobot with four modules.

I. INTRODUCTION

A self-reconfigurable modular robot (SRRobot) is formed
by a number of modules, which is physically independent and
encapsulates a certain simple function. Complex tasks per-
formed by a SRRobot are usually realized by the joint effort of
all modules. A SRRobot can change their shape and therefore
the function according to different tasks or environments – e.g.,
the EasySRRobot developed in our approach can transform
into a snake shape for slithering into narrow tunnels / valleys
or into a wheel shape for quickly traveling on flat terrains.
Limited types of modules are used in a SRRobot so that self-
repair is easier to be realized by replacing damaged modules.
Due to above nice properties, the research of SRRobots has
caught a lot of attention recently (ref. [1]).

Many types of SRRobots have been proposed in literature,
among which the ones with double-cube modules have been
widely used – e.g., M-TRAN series (ref. [2]–[4]), SuperBot
[5], PolyBot [6], iMobot [7], Molecule [8], Shady [9] and Dtto
[10]. Most of these double-cube modules are constructed by
professional components including actuators, sensors, micro-
processors, inter-module communication/power-transmission
devices and electronic/magnetic connectors. As one of the
most representative SSRobots, the M-TRAN III module [4]
has the specifications as listed in Table I. The total cost of
components used in M-TRAN III is $399.6, which is much
more expensive than the components in our system (i.e., $31
in total). Moreover, M-TRAN III needs professional tools and

skills for the fabrication and assembly. But our system can be
easy even for novice to build. Noted that all existing design
of double-cube modules including ours have similar exterior
shapes and structures (i.e., each module consists of two semi-
cylindrical boxes and a link). Similar functionality is provided
to rotate each box independently around its axis by up to±90◦.

Inspired by the success of Dtto [10], we present a low-cost
and easy-to-build SRRobot in this paper, which has a price
similar to Dtto but with both the hardware design and the
interior-layout design optimized. Different from Dtto, all the
on-board components used in our solution are off-the-shelf by
following the design principle of using as-many-as-possible
standardized components [11]. This hardware design simpli-
fies the process of fabrication and meanwhile improves the
reliability of our SSRobot. Even novice users can easily make
the self-reconfigurable robot presented in this paper – this
is why we name it as EasySSRobot. Another distinct feature
of EasySRRobot is an optimized design of interior structures
obtained by numerical computation, which are detailed below.

In this paper, we propose an algorithm to automatically
find an optimal interior structure design for placing a given
set of on-board components in a double-cube module. To
achieve this goal, we characterize spatial relationships among
on-board components by a set of design constraints and build
a search space that contains all feasible interior structure
designs. We propose a novel objective function that evaluates
each feasible design by considering three evaluation criteria,
including space utilization, structural soundness and assembly
complexity. The optimal design is then obtained by minimizing
the objective function in the search space, which is solved by
the simulated annealing method. This is different from two
existing parametric design techniques [12]:
• Propagation-based techniques, such as the OpenSCAD

system [13], need users to set up a family of initial param-
eters and build a hierarchy of mathematical / geometric
relations for generating a certain design;

• Constraint-based techniques, such as the SolidWorks sys-
tem [14], usually requires users to set up and modify a
set of non-linear constraints.

Neither of them can automatically obtain an optimal design.
To the best of our knowledge, the problem of automatic

optimization of interior structure design in a double-cube
module has not been studied before. To demonstrate the

Male block

Link

Female block

Hook
cavity

A double-cube module

Slit

Rotation axes

(a) Functionality of a double-cube module
(b) Exterior structure
 of M-TRAN III [4]

Electronics Connection mechanism

Mechanical parts
(c) Interior structure of M-TRAN III [4]

(d) Exterior and interior structures of Dtto v2 [10]

Electrodes

Driving mechanism

Hook

Sliding block

Motor & Gear

Fig. 1. All self-reconfigurable robots using double-cubic modules have similar
exterior structures and similar functions that: each module consists of two
semi-cylindrical boxes and a link, and each box can rotate independently
around its axis by ±90◦ (see (a) for the design of our EasySRRobot). The
male box (in green color) has slits on its three faces, and the female box (in
yellow color) has hook cavities on its three faces. The double-cube modules
used in M-TRAN III (see (b) and (c)) and Dtto v2 (see (d)) have different
interior structures for placing on-board components, which lead to different
placements of the link – the link of Dtto is placed closer to one side of the
box than the other side.

effectiveness and usefulness of our algorithm, we compare
the optimal design output from our algorithm with another
two feasible designs and build a EasySRRobot prototype using
the optimal design. Motions of two configurations (i.e., snake
and wheel) are achieved, showing the working ability and
effectiveness of the proposed EasySRRobot system.

II. HARDWARE AND MODULE DESIGN PRINCIPLE

In this section, we first present the hardware components
that are used in our EasySRRobot. After that, we summarize
the design principles that are common in most double-cube
modules (e.g., [2]–[6], [9], [10]).

TABLE I
COMPONENTS USED IN M-TRAN III

Type Description Cost∗ ($)
Motor Two HS-GM21-DSD/KS2 for the links and three

HS-GM21-ALG for the connections (all from
STL Japan);

203.0

Processors One 32-bit HD64F7047 for main CPU, and two
16-bit HD64F3687 and one 16-bit HD64F3694
for other tasks (all from Rensus Corp);

60.8

Network CAN bus with 1Mbps bandwidth; 0.1
Wireless Bluetooth wireless modem (Zeevo ZV3001Z); 5.0
Sensor 10 IR proximity sensors, 13 IR diode

(LNA2801A), 13 IR sensor (TAOS TSL260),
and two acceleration sensor (ADXL202E);

90.7

Battery Lithium-polymer (7.4V and 730mAh); 30.0
Structure ABS for the links and polyacetal for other

structural components.
10.0

∗The costs are specified in US dollar ($).

TABLE II
SPECIFICATION OF ON-BOARD COMPONENTS IN EASYSRROBOT

Item QTY Specification Weight Cost∗ ($)
HX1218D 2 Max. torque 2.2 kg-cm 12g 13.2Servomotor

SG90 3 Max. torque 1.8 kg-cm 9g 3.0Servomotor

1

Integrate with

10g 32.3Control ATmega328P CPU
Circuit HC-05 bluetooth module

nRF24L01 transceiver IC
Battery 1 Li-Po7.4v 500mAh 23.5g 5.6

∗The costs are specified in US dollar ($).

A. Hardware

All the electric components of a double-cube module must
be installed inside its two boxes, which are connected by
a link (see Fig.1(a)). Following the strategy of M-TRAN
series [2]–[4], we choose semi-cylindrical box as the mod-
ule’s shape in EasySRRobot. Each box can rotate around
its own axis by ±90◦. For self-reconfigurable robots, hard-
ware design must support efficient connection/disconnection
operations between modules. In the literature of SRRobot,
both magnetic (e.g., [2], [3]) and mechanical connections
(e.g., [4], [10]) have been considered. It is reported in [4]
that the connection/disconnection operation by a mechanical
connector is more than fourteen times faster than a magnetic
connector. Therefore, mechanical connections are used in our
EasySRRobots. Specifically, two types of boxes are defined in
each module (see also the illustration in Fig.1(a)):

• Male box: slits are made on its three planar faces so that
hooks can be rotated out to latch the female box in other
modules;

• Female box: hook cavities are produced on its three
planar faces to be latched by the hook of a male box
in the other module.

The mechanical connection between boxes designed in this
way shows excellent stability in our experiments.

HX1218D servomotor

SG90 servomotor

Li-Po7.4v 500mAh battery

Control circuit

Fig. 2. The components used in EasySRRobot that have been listed in Table
II. Specifically, the dimensions (Unit: mm) of their axis-aligned bounding
boxes are: HX1218D servomotor (32× 11.5× 30), SG90 servomotor (32×
12.2 × 29), the control circuits (one piece with 31.75 × 20.96 × 2.85 and
another piece with 27.94× 14.65× 1.71) and the battery (39× 21× 8).

Comparing to the existing double-cubic SRRobot (e.g., M-
TRAN and Dtto), the modular design concept has been em-
ployed in our hardware design. Only severn components (with
four different types) are used, where the major components
are five actuators including two HX1218D servomotors for
rotating the male and the female boxes respectively and three
SG90 servomotors for driving the hooks in the male box.
These actuators are driven by a control circuit built on the
Arduino MCU with ATmega328P CPU. The control circuit
also integrates a bluetooth module (HC-05) and a transceiver
IC (nRF24L01) for communication. As a result, every double-
cube module can communicate with a host PC through the
bluetooth module and two modules can communicate with
each other via the transceiver IC. All these components are
compatible with Arduino - an open-source electronics pro-
totyping platform1. The power for each dual-cubic module
is supplied by a Li-Po7.4v 500mAh battery. Table II lists
the on-board components used in the hardware design of our
EasySRRobot, and their dimensions are shown in Fig.2. Note
that, all these components and their drivers are off-the-shelf,
which greatly reduces the cost and simplifies the steps of
fabrication.

B. Spatial Relationships and Design Principle

We now start to analyze design constraints that reflect
spatial relationships between components to be placed inside
a double-cube module. To specify these constraints, we first
construct a coordinate system in the double-cube module (see
also Fig.3 for an illustration):

• the origin o is set to be located at the center of the male
box;

1http://www.arduino.cc/

x

y
z

o

Fig. 3. The coordinate system (left) of the double-cube module in its rest
pose (middle), where the male box and the female box are facing each other
in the rest pose. Both boxes have the same shape and their dimensions are
related to the parameters S and D.

(a) On a semi-disk face (b) On a rectangular face

Fig. 4. Constrained by the locations of slits, each SG90 servomotor cSGi

can only have two candidate locations {ΘSGi,1,ΘSGi,2} (above or below
the slit) on one of the three faces with slits in the male box.

• the rotation axes of both the male and the female boxes
are set along the y-direction;

• the cylindrical surface of the male box is facing up - i.e.,
along the +z direction;

• in the rest pose of the module, the cylindrical surface of
the female box is facing down;

• the centre of female box is located at (0, 0, S) with S
being the distance between two boxes rotation axes.

Note that, all the design constraints discussed below are
proposed according to the configuration of rest pose.

Both the male and female boxes in a module have the same
shape with dimensions S, S+1 and S/2 along the x, y and z
directions respectively (see the right of Fig.3). To reduce the
space of search in design optimization, quantization is applied
to the value of S to make it as one of the four values sampled
between the feasible maximum and minimum. And a fixed
value d is chosen according to experiments. More details can
be found in Section III as the step of paramterization. Now
we start to discuss the design constraints.

For each on-board component ci, we denote its axis-aligned
bounding box as B(ci). Then, the pose of ci can be specified
by Θ(ci) = (xi, yi, zi, αi, βi), where (xi, yi, zi) is the position
of B(ci)s centre and (αi, βi) gives two spherical angles
indicating its orientation. Let ΩM and ΩF be the spaces
enclosed by the boundary surfaces of male and female boxes.
The first design constraint is about enclosure.

Constraint 1: The axis-aligned bounding box B(ci) for each
on-board component ci in a designed pose Θ(ci) must be
inside ΩM ∪ ΩF .

In our hardware design, three SG90 servomotors
{cSG1 , cSG2 , cSG3} are used to drive the hooks in the
male box. They need to attached onto faces with slits –

Fig. 5. Examples of possible orientations of two HX1218D servomotors for
driving the link. Rotation axes of servomotors coincide with the rotation axes
of boxes, and the link connecting two servomotors must be perpendicular
to rotation axes. In our design, the link is hollowed such that electric wires
connecting the male and female boxes can be placed inside.

one for each slit, which is located in the middle of the
corresponding face (see Fig.4). The second design constraint
is for locating the actuators for connection/disconnection.

Constraint 2: A SG90 servomotor, cSGi
, for driving a hook

for connection can only be placed at one of the two locations
ΓSGi

= {ΘSGi,1,ΘSGi,2}, i = 1, 2, 3.

Two HX1218D servomotors {cHX1
, cHX2

} are used to
drive the link connecting two boxes in a module, where each
box contains a HX1218D servomotor with its rotation axis
coinciding with the rotation axis of the box (i.e., the y-axis in
rest pose). Moreover, the line connecting the centers oHX1 and
oHX2 of two servomotors should be perpendicular to y-axis
to enable the rotation of a link to both boxes. These design
factors are summarized into the following two constraints.

Constraint 3: All the possible poses of a HX1218D servo-
motor cHXj

in a male / female box should be mapped from
R5 into R2 = (yHXj

, αHXj
) because xHXj

, zHXj
and βHXj

are fixed as constants to enable the rotation between boxes
around y-axis.

Constraint 4: To achieve a stable cooperation in rotation, the
constraint with the same value of yHXj

is also imposed to the
two HX1218D servomotors cHX1

and cHX2
.

Each HX1218D servomotor has two ends along its rotation
axis that can be mounted to the link, we design a weight bal-
anced link during rotation as shown in Fig.5. Besides of above
actuators, the placement of two control circuits {cctrl1 , cctrl2}
and the battery cbattery will only follow Constraint 1 – located
in Γctrl1 , Γctrl2 and Γbattery respectively, which are subsets
of R5 = (xi, yi, zi, αi, βi), i = ctrl1, ctrl2, battery.

III. INTERIOR STRUCTURE OPTIMIZATION

The design of interior structure is optimized by changing the
poses of components inside a double-cube module according
to the constraints introduced in Section II-B.

First of all, we determine the minimal and the maximal
dimensions of the boxes with reference to the dimensions of
components. As a result, S ∈ [68mm, 81mm] is obtained.
In order to reduce the searching time of optimization, this
feasible range of S’s value is quantized into four choices in
our algorithm that is S = 68mm, 72mm, 76mm or 81mm.
Second, for each on-board component ci, our algorithm will
automatically add a structural socket S(ci) in ΩM (s)∪ΩF (s)
to fix it. Examples of such sockets can be found in Fig.6 and

(a) Three examples of sockets in the female box

(b) Three examples of sockets in the male box

Fig. 6. Some examples of using additional sockets to fix the HX1218D
servomotors according to the poses shown in Fig.5.

(a) On the semi-disk face

(b) On the rectangular face

Fig. 7. Sockets of SG90 servomotors for the two candidate locations shown
in Fig.4.

7 for the servomotors. The socket for battery is similar to
Fig.6, and the sockets for control circuits are similar to the
examples shown in Fig.7. According to the constaints, each
on-board component ci has its own feasible space of poses Γi.
Therefore, the design space can be defined by the Cartesian
product of all these feasible spaces as Γ =

∏
i Γi. For any

point p ∈ Γ, our algorithm will check whether it is collision-
free together with the automatically added sockets.

A. Objective Function

The objective function consists of three factors to be con-
sidered in the design, including structural soundness, space
utilization and assembly complexity, each of which results in
a term in F (p).

F (p) = wstrFstr(p) + wspaFspa(p) + wasmFasm(p) (1)

where wstr, wspa and wasm are non-negative weights. Ac-
cording to our experimental tests, wstr = 10.0, wspa = 1.0
and wasm = 1.5 are used to balance the trade-off between
different terms.

Structural Soundness Any collision-free configuration p ∈ Γ
is corresponding to a feasible design of interior structures
including the shape of box containers, the sockets and the
on-board components. We then take a Finite Element Analysis
(FEA) on this feasible interior structure by using the publicly
available library2: SfePy. Gravity and torques from servomo-
tors are set as external loadings in this analysis. With σmax

denoting the maximal stress, the score of this structure can be
evaluated by

Fstr(p) =
σmax

σref
(2)

where σref is a reference stress. The reference stress is com-
puted as an average of maximal stresses from five manually
designed feasible interior structures. The smaller Fstr(p), the
better structural soundness a design is.

Space Utilization A good design needs to be compact –
i.e., fully using the space provided by the boxes in a module.
The efficiency of space utilization is measured by the ratio of
volume used by on-board components.

Fspa(p) =
V (ΩM) + V (ΩF)∑8

i=1 V (ci)
, (3)

where V (ci) is the volume of component ci, V (ΩM) and
V (ΩF) are volumes of male and female boxes respectively.
In the literature of robotics (e.g., [4]), the power-to-weight
ratio is an important metric for actuators. Given that the
power of servomotors is fixed, the power-to-weight is inversely
proportional to Fspa(·) – i.e., the smaller Fspa(·), the better
space utilization is achieved by a design.

Assembly Complexity A collision-free placement of all on-
board components does not mean that they can be validly
assembled. Even if it is able to assemble, different assembly
sequences produce different assembly complexities. A good
structural design should give a low assembly complexity,
i.e., easy to assemble and disassemble. Given a collision-
free placement p ∈ Γ, we use the generic algorithm [15] to
compute an optimal assembly sequence Υ for all components
(c1, c2, · · · , cn). Also, the complexity of a valid assembly
sequence is usually measured by the number of re-orientations
needed during the assembly. Details about how to evaluate
the validity of an assembly sequence and its complex can be
found in Appendix. Here, the objective function of assembly
complexity for Υ is defined as

Fasm(p) =

{
106 when Υ is invalid
nort(Υ) otherwise (4)

where nort is the number of re-orientations in a valid assembly
sequence Υ.

B. Simulated Annealing

Finding an optimal solution to minimize the objective
function (1) in the search space Γ =

⋂
i Γi is a mixed

combinatorial and continuous optimization problem because

2http://sfepy.org/doc-devel/index.html

(a) Rendered 3D CAD model (b) Physical model

(c) Two intermediate steps during the fabrication process

Fig. 8. The optimized design generated by our approach and its physical
realization.

that the subspaces Γi (i = SG1, SG2, SG3) are discrete
and other subspaces are continuous. We adopt the Simulated
Annealing (SA) method [16], [17] to solve it.

Simulated annealing is probabilistic technique that can
efficiently approximate the global optimum. To apply the SA
technique, we first generate a random solution q in Γ and
evaluate its cost F (q) using the objective function (Eq.(1)). A
point p ∈ Γ is called a feasible solution q if p corresponds to a
collision-free placement of all the on-board components. Then
we generate a random neighboring solution q′ and compute
the cost F (q′). After that, the Metropolis acceptance criterion
is adopted to determine whether the system status can move
from the current solution q to the candidate solution q′ with
the acceptance probability P (q,q′):

P (q,q′) =

{
exp(−F (q′)−F (q)

T) if F (q′) > F (q)
1 otherwise

(5)

Specifically, if the value of P (q,q′) is greater than a randomly
selected threshold in [0, 1], we will move from q to q′. Here,
T is the temperature parameter to control the speed of SA
computation. Starting from T = 100, the temperature T is
reduced by 5% after each iteration. During the Monte Carlo
procedure of system status movement, we always keep a best
solution – the configuration q that gives the minimal value of
F (q). It was shown [16] that if the temperature was cooled
slowly, a global minimum can be found. The system iteratively
updates the solution until a specified iteration number is
reached or the cost does not decrease anymore.

IV. EXPERIMENTAL RESULTS

The proposed design method has been implemented on
a physical self-reconfigurable robot – our EasySSRobot as
shown in Fig.8 and 9. We implement the proposed design

Max von Mises stress 1.670e+007
Max von Mises stress 2.758e+007

Max von Mises stress 2.494e+007

2.8e+007

3.9e-006

 (a) Optimal design (b) Feasible design I (c) Feasible design II(a) Optimal design

Max von Mises stress 1.670e+007
Max von Mises stress 2.758e+007

Max von Mises stress 2.494e+007

2.8e+007

3.9e-006

 (a) Optimal design (b) Feasible design I (c) Feasible design II
(b) Feasible design I

Max von Mises stress 1.670e+007
Max von Mises stress 2.758e+007

Max von Mises stress 2.494e+007

2.8e+007

3.9e-006

 (a) Optimal design (b) Feasible design I (c) Feasible design II
(c) Feasible design II

Fig. 9. The comparison of the optimized design from our approach (a)
with two other manually designed feasible solution (b) and (c). The top row
shows the stress distribution on the supporting structure of the HX1218D
servomotor in the female box, in which the maximum stress appears. The
middle row shows interior details – to better illustrate the positions of
HX1218D servomotors (black), the front link component is hidden here. The
bottom row shows the overall appearance of the three designs.

optimization algorithm in C++ and test it on a PC with
an Intel E5-2650 CPU@2.60GHz and 64GB RAM. Since
structural soundness is more important than space utilization
and assembly complexity, we use wstr = 10.0, wspa = 1.0
and wasm = 1.0 as weights in the objective function (Eq.(1))
for all examples shown in this paper. The algorithm takes 24
minutes to compute an optimized design as shown in Fig.8(a).
Thirty modules were manufactured for EasySRRobot with
the aid of 3D printing (see Fig.8(b) for an outlook of the
physical model). Since all on-board components are off-the-
shelf and the complexity of assembly has been considered in
the algorithm, assembling these components into a module of
EasySRRobot is easy – as shown in Fig.8(c).

We have also compared the optimized design generated by
our algorithm with two manually designed feasible solutions
in Fig.9. In the optimized design (Fig.9(a)), two HX1218D
servomotors (displayed in black color) are perpendicular to
each other. Differently, in feasible design I (Figure 9(b)), these
motors (black) are parallel to each other. Although having the
same box size, the maximum stress (σmax = 2.758 × 107)
of the feasible design I is much larger than the optimized
design with σmax = 1.670× 107 in the unit of N/m2. In the
feasible design II (Fig.9(c)), the orientations of motors (black)
are also perpendicular but in an inverse way of ours. Due to the
potential collision between the HX1218D servomotor (black)
and a SG90 servomotor (blue) in the male box, both the box
size (S = 76mm) and the maximum stress (σmax = 2.494×
107) of the feasible design II are larger than our optimized
design (S = 68mm and σmax = 1.670× 107).

In our physical experimental tests, the functionality of

(a) The motion of snake configuration in two scenarios

(b) Self-reconfiguration from snake to wheel

(c) The motion of wheel configuration in two scenarios

Fig. 10. The screenshots of snake and wheel configurations, and a self-
reconfiguration – see also the accompanying demo video for more details.

self-reconfiguration has been examined on a fabrication ac-
cording to our optimized design – EasySRRobot. Figure 10
shows the screenshots of two configurations (i.e., snake and
wheel modes) and a self-reconfiguration transforming from a
snake to a wheel robot, which is autonomously functioned
by EasySRRobot without human intervention. The motion
details of these two and more configurations are presented
in the accompanying demo video: http://47.89.51.189/liuyj/
EasySRRobot-demo.zip.

V. CONCLUSION

In this paper, we present a low-cost and easy-to-build
self-reconfigurable modular robot called EasySRRobot. To
optimized the design of EasySRRobot by using a set of off-
the-shelf components, we characterize the design principle of
double-cube modules in quantitative constraints and propose
an objective function to evaluate any feasible placement of on-
board components. All the feasible placements are character-
ized in a design space Γ. Our objective function considers three
criteria of an optimal design, including structural soundness,
space utilization and assembly complexity. The simulated an-
nealing technique is applied to minimize the objective function
in the design space Γ. The interior structure generated by our
algorithm has been implemented in an EasySRRobot as carrier
and two configurations (snake and wheel) of EasySRRobot are
presented to demonstrate the effectiveness of our robot and the
proposed algorithm for design optimization.

ACKNOWLEDGMENT

This work was supported by the National Key Research
and Development Plan (2016YFB1001202), Royal Society-
Newton Advanced Fellowship and the Natural Science Foun-

http://47.89.51.189/liuyj/EasySRRobot-demo.zip
http://47.89.51.189/liuyj/EasySRRobot-demo.zip

dation of China (61521002, 61432003, 61661130156). C.C.L.
Wang is also partially supported by the open project fund of
Central South University, Hunan, China.

REFERENCES

[1] K. Stoy, D. Brandt, and D. J. Christensen, Self-Reconfigurable Robots:
An Introduction. The MIT Press, 2010.

[2] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita,
and S. Kokaji, “M-tran: self-reconfigurable modular robotic system,”
IEEE/ASME Transactions on Mechatronics, vol. 7, no. 4, pp. 431–441,
2002.

[3] H. Kurokawa, A. Kamimura, E. Yoshida, K. Tomita, S. Kokaji, and
S. Murata, “M-TRAN II: metamorphosis from a four-legged walker to
a caterpillar,” in 2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2003, 2003, pp. 2454–2459.

[4] H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji, T. Hasuo, and
S. Murata, “Distributed self-reconfiguration of M-TRAN III modular
robotic system,” The International Journal of Robotics Research, vol. 27,
no. 3-4, pp. 373–386, 2008.

[5] B. Salemi, M. Moll, and W. Shen, “SUPERBOT: A deployable, multi-
functional, and modular self-reconfigurable robotic system,” in 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2006, 2006, pp. 3636–3641.

[6] M. Yim, D. Duff, and K. Roufas, “Polybot: A modular reconfigurable
robot,” in Proceedings of the 2000 IEEE International Conference on
Robotics and Automation, ICRA 2000, 2000, pp. 514–520.

[7] iMobot, http://spectrum.ieee.org/automaton/robotics/diy/imobot-brings-
robot-modules-to-modular-robots, 2011.

[8] K. Kotay, D. Rus, M. Vona, and C. D. McGray, “The self-reconfiguring
robotic molecule,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA ’98), 1998, pp. 424–431.

[9] Shady, https://groups.csail.mit.edu/drl/Shady/shady.htm, 2016.
[10] Dtto Modular Robot V2.0, https://hackaday.io/project/9976-dtto-v20-

modular-robot, 2016.
[11] T.-H. Kwok and C. C. Wang, “Shape optimization for human-centric

products with standardized components,” Computer-Aided Design,
vol. 52, pp. 40–50, 2014.

[12] R. Woodbury, Elements of Parametric Design. Routledge, 2010.
[13] OpenSCAD, https://www.openscad.org, 2017.
[14] SOLIDWORKS, https://www.solidworks.com, 2017.
[15] S.-F. Chen and Y.-J. Liu, “An adaptive genetric assembly-sequence

planner,” International Journal of Computer Integrated Manufacturing,
vol. 14, no. 5, pp. 489–500, 2001.

[16] P. J. M. Laarhoven and E. H. L. Aarts, Eds., Simulated Annealing:
Theory and Applications. Norwell, MA, USA: Kluwer Academic
Publishers, 1987.

[17] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing, 3rd Edition.
Cambridge University Press, 2007.

APPENDIX: EVALUATION OF ASSEMBLY SEQUENCE

To automatically check the validity of an assembly sequence
and compute the complexity of an assembly sequence, we
use an assembly matrix representation M to describe the
geometric constraints between components in an assembly
(ref. [15]). M for n components is a n × n matrix, where
its (i, j) entry stores directions along which the component
ci can be assembled without colliding with the component
cj . Note that, the components are allowed to translate along
x-, y- and z-axes. An example assembly in 2D and its
corresponding M can be found in Fig.11. For instance, at the
entry (1, 2) = (A,B), the value (±x − y) means that A can
be assembled along (±x) or (−y) directions without colliding
to B.

Validity: Given an assembly sequence Υ = (c1, c2, · · · , cn),

V(ci) =
⋂
j<i

M(i, j) (6)

x

y

A

B

C D

E

G

F

H

A B C D E F G H

Assembly matrix

A

B

C

D

E

F

G

H

Fig. 11. A 2D structure to be assembled (left) and its assembly matrix M
(right). The validity and the complexity of an assembly sequence can be
evaluated with the help of M.

can be used to compute the set of possible assembly directions
of each ci according to this sequence, where

⋂
is the operator

of set intersection. If there is any V(ci) = ∅, the assembly
sequence Υ is invalid. For example the case shown in Fig.11,
when Υ = (G,C,H,D,A,B,E, F) we have

V(D) = M(D,G)
⋂

M(D,C)
⋂

M(D,H)

= (−x,±y)
⋂

(−x,±y)
⋂

(+x) = ∅.

Then, Υ is not a valid assembly sequence.

Complexity: Given Υ = (c1, c2, · · · , cn) as a valid assembly
sequence, it means that we have V(ci) 6= ∅ for every
ci ∈ Υ. Then, the complexity of an assembly sequence can be
defined with the help of number of re-orientation operations.
Specifically,
• if

⋂j
k=i V(k) 6= ∅, no re-orientation is needed during the

assembly of ci, · · · , cj ;
• if

⋂j
k=i V(k) 6= ∅ and

⋂j+1
k=i V(k) = ∅, one re-

orientation applied to the already assembled components
is needed for assembling cj+1.

Note that, after the reorientation and then assembling cj+1,
evaluation for the need of orientation restarts from cj+2 –
i.e., whether

⋂m
k=j+2 V(k) is empty will be computed. For

example, Υ = (G,C,A,E,D,H,B, F) is a valid assembly
sequence for the 2D case shown in Fig.11 that needs two re-
orientations.
• In this case,

V(G)
⋂

V(C)
⋂

V(A) = (−x)

and
V(G)

⋂
V(C)

⋂
V(A)

⋂
V(E) = ∅,

the first re-orientation is needed for assembling E.
• After that,

V(E) = (−y) and V(E)
⋂
V(D) = ∅,

the second re-orientation is needed for assembling D.
This computation is based on the values of V(·) shown below.

Assembly Sequence: Υ = (G,C,A,E,D,H,B, F)

V(G) = (±x,±y) V(C) = (−x) V(A) = (−x,±y)
V(E) = (−y) V(D) = (−x,+y) V(H) = (−x)
V(B) = (−x,+y) V(F) = (+y)

	Introduction
	Hardware and Module Design Principle
	Hardware
	Spatial Relationships and Design Principle

	Interior Structure Optimization
	Objective Function
	Simulated Annealing

	Experimental Results
	Conclusion
	References

