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Abstract—This paper demonstrates a fully sensor-based
reactive homing behavior on a physical quadrupedal robot,
using onboard sensors, in simple (convex obstacle-cluttered)
unknown, GPS-denied environments. Its implementation is en-
abled by our empirical success in controlling the legged machine
to approximate the (abstract) unicycle mechanics assumed by
the navigation algorithm, and our proposed method of range-
only target localization using particle filters.

I. INTRODUCTION

Sensor-based homing is a generically useful mobile robot
capability for which formal performance guarantees relative
to prior knowledge about the environment are essential for
reliable autonomous docking (e.g to sleep and recharge)
and rendezvous (e.g to transfer data and accept mission
updates) behavior. Although this problem has been studied
in some detail in the past in the context of underwater
vehicles [1]-[3], related literature has been far more sparse
in the domain of legged robotics where both complicated
body dynamics and the presence of unanticipated obstacles
becomes a compelling concern. To the best of our knowl-
edge, this work represents the first time a purely sensor-
based homing algorithm (using online target range data)
that is provably correct relative to a (sufficiently simple)
unknown, obstructed, GPS-denied environment (sensed by
online LIDAR) has been implemented on a legged robot.

A. Motivation, Background and Prior Literature

The hallmark of feedback-based motion planners [4]-[7] is
that robot trajectories are generated in real time in reaction to
instantaneous state measurements by a vector field typically
constructed offline, algorithmically, from prior information
about the loci of obstacles and goal. Their dynamical nature
makes them particularly applicable to robots governed by
second order [8], [9] or nonholonomic [10]-[12] mechanics.
With the further aim of reducing the need for prior infor-
mation, we have introduced the term “doubly reactive” [13]
to refer to schemes, e.g. [4]-[6], whose algorithmically con-
structed vector fields are themselves generated in real time
from locally perceived structure. In addition to their virtue
in mitigating perturbations arising from complex mechanics
of the mobile platform, such sensor-driven reactive motion
planners invite application to unknown, noisy, dynamic en-
vironments as well.
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Fig. 1.

Minitaur navigating through an artificial forest towards a target.

While the problem of exact navigation for nonholonomi-
cally constrained plants, such as the unicycle model, has been
addressed in the past literature [11]-[14], the few applica-
tions to legged machines have been almost entirely restricted
to quasi-static [15], [16] or small-scale legged platforms [17]
whose dynamics is negligible. With the exception of very
recent work focused on the problems of legged navigation
for rugged, forested, hilly terrain [18]', application of vector-
field motion planners to highly dynamic legged platforms has
heretofore been restricted to exteroceptive servoing applica-
tions in contractible (no obstacles puncturing the interior of
the) workspaces [10], [20], [21].

Most prior legged locomotion literature has focused on the
template-anchor paradigm [22]-[24] and related ideas [25]—
[27] as a means of abstracting away the details of gait and
other high DoF regulation problems so as to simplify the
control of complex legged machines in the sagittal plane. Our
goal in this paper is to further advance the abstraction away
from the complicated kinematics and dynamics associated
with sagittal plane legged locomotion to expose only the
effective horizontal plane mechanics required for mobility
of the mass center. We seek to establish the unicycle model
as a navigation template [28] for the application to legged
platforms of high-level planners originally designed for non-
holonomically constrained wheeled or tracked vehicles.

B. Contributions and Organization of the Paper

The contributions of this paper are largely empirical.
Our main advance is to use the emerging understanding of

To distinguish the present contribution relative to [18] where a body
frame IMU reported online terrain gradients to a RHex machine [19]
(guaranteeing only convergence to a local ridge), here, a designated target’s
online beacon signals are used to guarantee homing using range-only
information in the robot’s body frame.



Minitaur’s bounding [29] and walking trot gaits to improve
its horizontal plane behavior to the point of exhibiting the
dynamics of a horizontal plane unicycle, which we can then
adopt as the navigation template assumed by the reactive
navigation algorithms [13], [14] it must execute. A second
contribution is to realize this algorithm in a GPS-denied
environment by recourse to a body-frame, range-only target
localization scheme. More specifically, the robot is assumed
to possess only an RF sensor providing range measurements
from the desired goal. In addition to the LIDAR signals
used to avoid the unknown obstacles, our algorithm uses
only this one-dimensional information to extract the (two-
dimensional) position of the goal, and the reformulation of
the navigation algorithm in [13] in the robot’s body frame
allows for successful homing while guaranteeing obstacle
avoidance along the way.

The paper is organized as follows. Section II gives a
description of the control strategy that empirically anchors
a kinematic unicycle on Minitaur while it is executing a
bounding or a walking trot gait. Section III summarizes the
ideas behind both the locally sensed and the sensor-based
motion planning strategy. Section IV describes the proposed
body-frame, range-only target localization algorithm that
allows for successful homing. Section V continues with a
description of our experimental setup. Section VI begins
by demonstrating the effectiveness and robustness of the
doubly reactive motion planning scheme in a small-sized
and densely cluttered developed experimental environment
(Section VI-A) using the bounding gait and only offboard
sensing, and continues with more experiments using the
full sensor-based version of the algorithm and the target
localization scheme (Section VI-B). Finally, in Section VII,
we conclude with a summary of the results reported here.

II. EMPIRICAL UNICYCLE ANCHORING

This section describes our experimental platform, the
Minitaur quadruped [30], focusing on the empirical anchor-
ing [28] of a first order unicycle in its bounding and walking
gait.

A. Minitaur Hardware

Minitaur (Fig. 1 [30], [31]) is a 6kg direct drive quadruped
that has already demonstrated a variety of interesting behav-
iors, including a 48 cm vertical leap [30], bounding at a
continuum of speeds up to 2 m/s, pronking, trotting, etc.
[29]. In this paper, we only make use of the “bounding”
and “walking trot” (for moving with a desired fore-aft
and angular velocity), and “standing” (employed before the
beginning and after the end of any motion for safely starting
and terminating experiments) behaviors.

The bounding gait can achieve higher speeds, but it
induces a strong body pitching motion which makes the
application of onboard, sensor-based navigation techniques
quite hard. For this reason, we use the bounding gait in
the context of a navigation algorithm using only local but
“bird’s eye” information about the surrounding obstacles
from the motion capture arena, and the walking trot gait for

fully sensor-based navigation with a LIDAR (for obstacle
avoidance) and a range RF sensor (for target localization in
the body frame), as described in Section III. We use a Ghost
Minitaur [31] for the experiments in this paper.

B. Bounding Gait as a Kinematic Unicycle

Bounding is a virtual bipedal gait, wherein the front pair
and rear pair of legs are phase-locked to each other, and the
steady state stepping pattern is an alternation of front and
rear stance periods, typically with substantial aerial phases
in between. Minitaur’s bounding is implemented using com-
positional principles [24] yielding a controller which requires
few parameters, and exerts no feedback phase coordination
between the front and rear hips [29].

The bounding controller exposes two commands: horizon-
tal plane translational speed v. and yaw rate w.. Heretofore,
these parameters have been set by a human operator, but
in this paper, for the first time, we supply these parameters
from a higher-level controller. It is worth noting here that
BigDog was able to generate such control commands au-
tonomously for following a leader [32], but here we focus
on the autonomous navigation problem. Though we don’t
make any formal claims of anchoring [28] in this paper, we
present an empirical characterization of bounding Minitaur
as a kinematic unicycle as assumed in Section III and use
this working model as a trial navigation template for our
legged platform. Our ultimate goal is to abstract away the
complicated bounding dynamics of Minitaur and allow the
robot to be controlled by a high-level motion planner as a
differential drive robot.

However, bounding Minitaur is very much a dynamic
system, and requires a non-trivial amount of time to ac-
celerate between different speeds and yaw rates. In fact,
the stride rate (3Hz) limits the control authority available,
since the body cannot be actuated in flight. We hypothesize
that a dynamic unicycle model [33], [34] with limits on
acceleration [18] would be the most appropriate horizontal
template for Minitaur, but here, we instead smooth the inputs
with an auto-regressive filter to reduce the magnitude of the
acceleration.

Given as inputs a desired speed vy € R, and yaw rate
wq € R, let v, and w,. be the commands sent to Minitaur.
Then, we set

Ve = 70-1)(7-}() - vd)a We = 7000((“}6 - wd)’ (1

for some o,,0, € R,. Note that smaller o, results in a
smoother output, and vice versa.

For the empirical characterization of our strategy, we send
Minitaur time-varying signals, and plot its response. Fig.
2 shows the time trajectories of the observed speed and
yaw (measured by the motion capture system described in
Section V) for a commanded sinusoidal signal of a fixed
frequency. The 3Hz cutoff filter removes periodicities caused
by Minitaur’s 3Hz stride rate.

Minitaur’s response to smooth commands is very accurate
in yaw, and more lagged in speed. We believe that this is
due to the very small o, that had to be used in (1) in order



Speed (m/s)

Yaw rate (rad/s)

t (sec)

Fig. 2. Frequency domain characterization of Minitaur’s bounding response
to smooth input signals vg,wg (1): raw speed v and yaw response w
(blue), with a 3Hz cutoff filter (red), and the reference signals v4, wq (black
dashed).

to limit acceleration, since lower speeds are necessitated in
the case of vector fields with high curvature. The robot’s
response to speed and yaw commands in typical experiment
runs is shown at the end of the results section in Fig. 9.

C. Walking Trot Gait as a Kinematic Unicycle

The walking trot gait we use in this work is also a
virtual bipedal gait, wherein the diagonal pairs of legs are
phase-locked to each other and the steady state stepping
pattern is an alternation of diagonal stance periods with rapid
flight phases in between. Although the formal analysis of
this gait is still work in progress, we attempt an empirical
characterization of the walking Minitaur as a kinematic
unicycle, in an effort to use this model as the navigation
template for sensor-based navigation and range-only target
localization, since its negligible pitching motion allows for
the straightforward use of a LIDAR for collision avoidance.

Similarly to the bounding gait, the walking trot controller
exposes two commands: horizontal plane translational speed
v. and yaw rate w,, set by a higher-level controller. For the
generation of smooth commands v, and w. from the desired
inputs vy and wy we employ a first-order filter similar to (1)
with lower gains 0, 0,,, since we noticed that rapid changes
in the inputs vy, wy resulted in easier loss of traction and
more falls compared to the bounding gait. We suspect that
this occurs due to the more complicated stance kinematics of
walking that make turning harder, but further investigation
is currently underway.

As in the bounding gait trials, for the empirical characteri-
zation of our strategy, we send Minitaur time-varying signals
and plot its response. Fig 3 shows the time trajectories of
the observed speed and yaw (measured by a Vicon motion
capture system [35]) for a commanded sinusoidal signal of
a fixed frequency. We use a 3Hz cutoff filter to remove
periodicities and numerical noise from the differentiation of
the position signals.
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Fig. 3. Frequency domain characterization of Minitaur’s walking trot
response to smooth input signals v, wg (1): time-domain plots of raw speed
v and yaw response w (blue), with a 3Hz cutoff filter (red), and the reference
signals vg, wq (black dashed).

Fig. 4. Reactive navigation with local but “bird’s eye” information: A
depiction of the “local workspace” LW (yellow polygon) and “local free
space” LJF (green polygon) concepts that illustrates the local nature of the
control strategy [13]. The goal position is shown as a solid red disk, and
the local goal as a dot on one edge of the local free space. The dark disks
correspond to the physical obstacles, while the grey regions delimits the
free space (for the robot’s centroid) boundary. The trajectory corresponds
to an experimental trial also shown in Fig. 8.

Similarly to the bounding gait trials, we observe lagged
response in speed and better frequency tracking in yaw. Small
magnitudes in both speed and yaw can be attributed to the
low gains o0,,0, we used, as well as physical limitations
of the gait, which was developed for easier navigation over
rough, uncluttered terrain rather than high-speed, energeti-
cally efficient motion.

III. REACTIVE NAVIGATION ALGORITHMS

In this section, we give an overview of the reactive
navigation schemes that guarantee almost global navigation
in convex workspaces using only local knowledge of the
environment. We find it important to distinguish between
the reactive navigation algorithm using local but “bird’s
eye” information, implemented on top of the bounding gait,
and the fully sensor-based reactive navigation algorithm,



implemented on top of the walking trot gait along with a
LIDAR and a RF sensor, as described below.

In every case, it is assumed that the robot’s motion is
described by unicycle kinematics
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A. Reactive Navigation Using Local but “Bird’s Eye” Infor-
mation

We use the algorithm in [13] as an example of a high-
level strategy, capable of solving the navigation problem for
a differential drive robot, in order to test the limits of the
kinematic unicycle navigation template for bounding legged
robots (as empirically validated in Section II-B) in a real-
world setting.

In brief, its construction utilizes power diagrams—
generalized Voronoi diagrams with additive weights [36]—
to identify a local workspace LW and a collision-free local
free space LI C LW of a disk-shaped robot in a sphere
world, and continuous motion towards the closest point in
the robot’s local safe neighborhood to a designated goal
location is proven to asymptotically drive almost all robot
configurations to the destination location with no collisions
along the way, as in the example shown in Fig. 4 with
Minitaur bounding towards a goal location. It is also shown
in [13] that this construction can be further adapted to a
nonholonomically constrained “unicycle’ robot model while
maintaining the stability and collision avoidance properties.

B. Sensor-Based Reactive Navigation

The algorithm in [13] was extended in [14], by replacing
the Voronoi power diagrams with separating hyperplanes to
account for a broader than spheres class of convex bodies
and to accommodate a realistic 2D LIDAR sensor model for
obstacle detection. As shown in Fig. 5, the algorithm relies
again on the construction of a local workspace LW and a
collision-free local free space £LF C LW and continuous
motion towards the closest point in the local free space brings
the robot to a designated goal location. However, as shown
in [14] and in Fig. 5, the construction of these cells is now
based on the intersection of the (local) LIDAR footprint
with appropriately defined hyperplanes, one for each local
minimum observed within this footprint.

IV. BODY FRAME TARGET LOCALIZATION

In the sensor-based framework of Section III-B, the prob-
lem of homing on a beacon using range-only measurements
can become quite challenging (see e.g [3]). In the absence
of global information, both the target localization and the
navigation control strategy must be appropriately modified
for the robot’s body frame [20], [37]. Thankfully, as we will
see next, the algorithm in Section III-B can be reformulated
in the robot’s body frame, provided successful target local-
ization. To facilitate our analysis, we refer to Fig. 6.
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Fig. 5. Sensor-Based Reactive Navigation: A depiction of the “local
workspace” LW (yellow polygon) and “local free space” LI (orange
polygon) constructed from a LIDAR footprint (green) [14]. The estimated
goal position (dark green dot) is calculated using range-only information and
a particle filter. Notice how the particles spread on the circle with radius
equal to the current range measurement. The local goal is computed from
the projection of the estimated goal position onto £J.

Fig. 6. Range-only target localization in the robot’s body frame (purple).

A. Localization Model

We assume that the robot is located at x with an orientation
6, which are both unknown. The goal is to navigate to point
G, whose position in the global frame x* := (z*,y*) € R?
is also unknown to the robot. The robot can only measure
(with some accuracy) its distance d := ||x* — x|| from G.
Let X5 := (5, y5r) € R? denote the target position in
the robot’s body frame.
Lemma 1 For the unicycle dynamics described in (2)-(3), if

x* = const., then

Tprp=—v+WwyYpp 4
Upr = —WTphp (5)

Proof. In the global frame, define r, := z* —x = dcos(¢+



), ry = y* —y = dsin(¢ + 6), with ¢ = arctan2(x}; ).
Since the goal does not move, we see that 7, = —& =
—vcosf and 7y, = —y = —vsinf. On the other hand, we
see from Fig. 6 that

e — r
¢ + 6 = arctan <y*BFy> =tan"! <y>
Tprp — T Tz

. 1 v
S¢o+tw= ﬁ(fyrm — Tyly) = &sinqb
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from the definitions above. Also, since d = /72 + 7“5, we

can easily derive d = % = —v cos ¢. Focusing now

on the robot’s body frame, we can see that x;, = dcos ¢
and ypr = dsing, so that by differentiation %, =
dcosqS — d(ﬁ sing and y5p = dsingﬁ + dq-S cos ¢. Simple
substitution of d and ¢ from above yields % » = —v+w ¥
and Y5 = —wazp and this concludes the proof. u

B. Measurement and Estimation

We use the localization model laid out in (4)-(5) to
perform state estimation for X% using a particle filter [38]
implemented in the ParticleFilter class of the MATLAB
Robotics toolbox [39]. We assume that the only measurement
provided for the propagation of the particle filter is the
distance of the robot to the target d = \/(z5,)% + (Vg r)?
and use a measurement model of the form

y(t) = d(t) +e(t) (6)

with ¢(t) representing the measurement noise. We note here
that various statistical distributions have been considered for
€(t) in the RF literature, but, consistent with other work [40],
a Gaussian distribution with mean zero and a specified stan-
dard deviation according to the range sensor’s characteristics
was determined to be sufficient for our purposes.

By supplying an initial estimate for x%, an initial es-
timate covariance X, suitable process noise estimates for
the proprioceptive linear speed and yaw rate provided by
the robot, a suitable measurement noise standard deviation
and a proper number of particles (please refer to Section V-
B for more details), the particle filter provides an estimate
of the goal location x5, which is constantly updated and
gets better as the robot moves. Some tuning on the number
of particles is required to balance between the needs for
fast filter updates and the achievement of good convergence
properties. It must be noted that the problem of beacon
homing using RF sensors is worthy of independent study
due to issues related to multipath interference etc., which go
beyond the scope of this work.

C. Body Frame Navigation Algorithm

With the localization algorithm supplying an estimate of
Xpr = (Thp,y5p) at every control iteration already in
place, we construct the homing behavior by writing the
control law in [13, Equation 33] in the body frame and setting
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Fig. 7. A schematic demonstrating the system structure of the experimental
setup. Minitaur’s Raspberry Pi, the central element of this configuration,
acts as the ROS Master and forwards any LIDAR and range readings. The
external computer runs the high level controller which gives the desired
linear and angular velocities v4, wg, while Minitaur’s mainboard runs the
low level controller by calculating the actual commands v., w. using (1),
and provides proprioceptive speed and yaw rate feedback v, w, forwarded
to the desktop computer by the Raspberry Pi.

the inputs

v =k Ty pp (7

wq =k arctan(y;, pr /70, pr) ®)

with X} pp = (23 gp, ¥ pr) ad X[, pp = (T, pp, U5 r)
the linear and angular projected goals respectively, calculated
by projecting x5 on the local free space £J as described
in [13] and demonstrated in Fig. 5. In this way, we have
constructed a minimalistic sensory-driven approach to the
homing problem, that uses a LIDAR for obstacle avoidance
and an RF sensor, providing only one-dimensional informa-
tion (range), for the target location.

V. EXPERIMENTAL SETUP

Here, we detail the ROS networked environment, in which
Minitaur operates, that generates its high level (“unicycle-
like”) control inputs by implementing the reactive navigation
algorithm summarized in either Section III-A (bounding) or
Section III-B (walking). As shown in Fig. 7, this environment
consists of a computer implementing the high-level controller
and of Minitaur’s ROS infrastructure, exchanging messages
over a Wi-Fi network.

In order to provide a hardware abstraction commensurate
with the behavioral abstraction of Sec. II-B, Minitaur’s
computational subsystem is enhanced with a Raspberry Pi
Model 3, which is able to both run ROS and connect to a
Wi-Fi access point. A custom ROS node on the Raspberry Pi
receives (vq4,wq) and the desired mode of operation (bound-
ing, walking, standing) as ROS messages (from the desktop
computer) and forwards them to the Minitaur mainboard
(microcontroller implementing the functionalities shown in
(1) to produce the actual commands v.,w.) at 100Hz over
a 115.2 Kbps USART connection. The Raspberry Pi acts as
the ROS Master that resolves networking for the rest of the
ROS nodes: a dedicated ROS node is activated as soon as
the system boots and automatically subscribes to the (vg,wq)



ROS topics, as well as an additional one capable of defining
the desired behavior.

A. Bounding-Specific Infrastructure Components

In the case of bounding and in the absence of any onboard
sensor, the odometry information consisting of the linear
speed v and the yaw rate w is extracted from a Qualisys
Motion Capture System [41] (QMCS) at 100 Hz, using a
set of motion capture cameras positioned around a 20m x
6m arena. The desktop computer receives the online data
from QMCS using the ROS package mocap_qualisys
[42] and outputs specific desired linear and angular velocity
values (vq,wq) for Minitaur as described in Section III-A.
The high level control loop runs at approximately 100Hz,
which is more than enough for the robot to recover if any
obstacle is detected, and the low-level (bounding or walking
trot) controller runs at 1KHz.

B. Walking-Specific Infrastructure Components

For the walking trot experiments, the setup is enhanced
with two Pulson P-440 RF modules [43] (one beacon for the
goal and one receiver for the robot), along with a Hokuyo
UTM-30LX LIDAR [44].

Since the fully sensor-based navigation approach described
in Sections III-B and IV is used, a second ROS node reads
the proprioceptive odometry feedback? from the mainboard
and forwards it to the desktop computer for use in the particle
filter propagation [38]. Also, a third node, adapted from the
ROS library in [47], is responsible of sending the range
measurements from the RF sensor to the desktop computer.
A final ROS node, taken from [48], forwards the LIDAR
measurements to the desktop computer.

The desktop computer is responsible for running the
high-level control algorithm outlined in Section III-B, along
with the particle filter propagation for target localization, as
described in Section IV. For the particle filter, we use a
process noise of 0.2m/s for the linear speed and 0.4rad/s
for the angular speed. Also, a range measurement noise
(standard deviation) of 10cm is used, consistent with the
Pulson P-440 RF module datasheet. We use 2000 particles,
systematic resampling and an effective particle ratio of 0.8.

As we show in Section VI and the accompanying video,
this infrastructure works robustly and without any discernible
network-induced latency. The high level control loop here is
slower and runs at approximately S0Hz, since several sensor
readings have to be sent and processed, but this frequency is
still more than enough for the robot to recover if any obstacle
is detected.

VI. EXPERIMENTAL RESULTS

We illustrate the qualitative features and performance of
the navigation algorithm by presenting empirical results for
both the bounding and the walking trot gait. Section VI-A
reports on experiments run using the bounding gait and local
but “bird’s eye” information as described in Section III-A in a

2Here the forward speed v is estimated with the use of leg kinematics as
shown in [45] and w is provided by a VN-100 IMU [46].
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Fig. 8. Trajectories extracted from simulations and bounding experiments
in a small and dense with obstacles environment. The goal position (shown
as a solid red disk) is fixed but initial robot configurations vary.

small and cluttered rectangular environment with disk-shaped
obstacles, and Section VI-B describes the results in a similar
workspace with the walking gait, the use of the sensor-
based navigation algorithm described in Section III-B and the
range-only target localization scheme presented in Section
IV. In all of our experiments, Minitaur is approximated as a
disk-shaped robot with radius® 0.4 m, and a margin of 0.1 m
is added to the robot’s radius for safety reasons.

A. Bounding Experiments

Fig. 8 depicts our results in the small and obstacle-dense
environment. The workspace is rectangular with length 8 m
and width 6 m; the obstacles have common radius p = 0.1 m
and are randomly placed throughout the environment (also
see Fig. 1). The goal position is near the top right corner of
the workspace behind several obstacles.

As it is evident from Fig. 8, Minitaur manages to converge
to the desired location from a variety of initial configurations.
In a total of over 50 trials, Minitaur reaches the goal and
avoids all the obstacles each time. In Fig. 8, we also overlay
trajectories from a MATLAB simulation of a differential-
drive robot with the same initial conditions and similar
control gains. The simulation and physical platform follow
similar trajectories in 4 out of the 7 cases. Even when the
trajectory is quite different, the robot always safely navigates
to the goal location.

Finally, to illustrate Minitaur’s bounding performance as a
kinematic unicycle (Sec. II-B), we plot in Fig. 9 Minitaur’s
response to the commanded fore-aft and yaw speeds during
an experimental trial. Similarly to Section II, we use a 3Hz
cutoff filter to remove periodicities caused by Minitaur’s
bounding.

B. Sensor-Based Walking Experiments

As mentioned in Section II, the change from bounding to
walking allows for the use of the fully sensor-based algorithm
described in Sections III-B and IV. Fig. 10 depicts our results

3Minitaur’s length (hip-to-hip) is 0.4 m and an extra length of 0.4 m due
to fore and hind leg extensions in the sagittal plane (typically about 0.2 m)
has to be accounted for.
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Fig. 9. Minitaur’s response (blue) to speed and yaw reference signals
(black) during a bounding experimental trial.
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Fig. 10. A suggestive path reconstructed from Minitaur’s proprioceptive
data in the environment shown in Fig. 1. The black dot corresponds to the
(converged) estimated goal location at the end of the trial. The brown points
consist the corresponding pointcloud of observed obstacle points; in the
absence of ground-truth their exact location cannot be precisely determined.

in a workspace cluttered with obstacles of common radius
p = 0.1 m and randomly placed throughout the environment.
Because of the lack of a portable ground-truth mechanism,
the path shown in Fig. 10 was obtained by numerically
integrating all the saved proprioceptive linear speed v and
yaw rate w estimates, and is thus suggestive but not exact.
This also explains the non-convex shape of the observed
“obstacles” in the workspace, reconstructed from the union
of all the LIDAR readings. From this figure, it is evident
that the robot managed to successfully localize the target,
navigate there and stop within a predefined distance from
it. In the absence of ground-truth, we plot in Fig. 11 the
range measurements obtained by the RF sensor for several
trials, showing convergence to the target. Finally, to illustrate
Minitaur’s walking performance as a kinematic unicycle
(Sec. II-C), we plot in Fig. 12 its response to commanded
fore-aft and yaw speeds during an experimental trial.

In the accompanying video, we demonstrate several of the
numerous successful experimental trials for both bounding
and walking, with the robot indefatigably seeking the goal.
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Fig. 11. The distance to the goal position as a function of time for several
initial conditions with the walking trot gait. In every case, the robot was
commanded to stop as soon as it got within a distance of 0.8m from the
target position.
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Fig. 12. Minitaur’s response (blue) to speed and yaw reference signals
(black) during a walking trot experimental trial.

VII. CONCLUSION

This work demonstrates the empirical anchoring of a
kinematic unicycle model on the dynamically complicated
bounding and walking trot gaits of a quadrupedal robot and
the robustness and efficiency of a sensor-based doubly reac-
tive homing scheme, as an example of a high level motion
planning strategy for legged robots. The realization of this
algorithm in a GPS-denied environment is largely enabled
by a proposed body-frame, range-only target localization
algorithm which uses one-dimensional, range information to
estimate the goal position in the body frame. The empirical
results to date are very promising: the robot is driven
to the desired goal location from any initial position and
configuration in the workspace, while avoiding obstacles.

Work currently in progress aims to make formal arguments
about the anchoring of the kinematic unicycle model on
different gaits and implement this navigation strategy with
range-only target localization in an outdoor setting.
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