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Abstract— Detecting vehicles with strong robustness and high
efficiency has become one of the key capabilities of fully
autonomous driving cars. This topic has already been widely
studied by GPU-accelerated deep learning approaches using
image sensors and 3D LiDAR, however, few studies seek to
address it with a horizontally mounted 2D laser scanner. 2D
laser scanner is equipped on almost every autonomous vehicle
for its superiorities in the field of view, lighting invariance, high
accuracy and relatively low price. In this paper, we propose
a highly efficient search-based L-Shape fitting algorithm for
detecting positions and orientations of vehicles with a 2D
laser scanner. Differing from the approach to formulating L-
Shape fitting as a complex optimization problem, our method
decomposes the L-Shape fitting into two steps: L-Shape vertexes
searching and L-Shape corner localization. Our approach is
computationally efficient due to its minimized complexity. In
on-road experiments, our approach is capable of adapting to
various circumstances with high efficiency and robustness.

I. INTRODUCTION

Nowadays, autonomous driving has become one of the
most attractive and cutting edge topics. Although there is still
a lot of work to do before the arrival of fully autonomous
driving, semi-autonomous driving is already accomplished
and will be widely introduced in the near future. For semi-
autonomous driving vehicles, it is necessary to have the
ability of avoiding obstacles to ensure the driving safety. The
surrounding vehicles’ locations and orientations detection is
very important in collision avoidance.

Light Detection And Ranging (LiDAR) has been widely
used for detecting surrounding objects such as bicycles,
vehicles and pedestrians, due to its large field of view,
lighting invariance, high data accuracy and relatively low
price. A common approach to processing LiDAR data is
to segment the data into different clusters of points, from
which meaningful features like line segments, rectangles,
and circles can be extracted [1]. These features are then
associated with a static map or tracked targets and used
to update the target state through tracking methods such as
Multiple Hypotheses Tracking (MHT) [2], [3] or its advanced
version which integrates a Rao-Blackwellized Particle Filter
(MHT-RBPF) [4], [5].

Another solution is similar to the approach widely used
in computer vision by extracting hand-crafted features and
training classifiers. Image-based object detection is very
popular in current autonomous driving research, such as
road obstacles detection [6], mobility aids [7] and vehicle
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Fig. 1: Tongji autonomous vehicle research platform “TIEV”

detection [8]. However, the sparse point data from a 2D Li-
DAR are usually insufficient for reliable object identification
using this kind of method within a single scan. Although
several solutions are proposed, such as relying on sensor
fusion [9], multilayered sensor combinations [10], [11], or
temporal integration from tracking, they often come with
higher computational cost and complexity.

In this paper, we propose a highly efficient search-based
L-Shape fitting algorithm for detecting the vehicle’s position
and orientation. L-Shape fitting is often treated as a complex
optimization problem. However, our approach addresses this
problem by decomposing it into two steps: L-Shape vertexes
searching and L-Shape corner localization. It is extremely
important to ensure the real time performance of vehicle de-
tection and to save time for highly computational tasks such
as high-level path planning and decision making tasks. Our
method is demonstrated to be effective and efficient through
experiments with a production-grade 2D laser scanner.

The remainder of this paper is organized as follows. In
section II an overview of related research work is described.
The searched based L-Shaped fitting method is presented in
section III. In section IV, we provide the experimental results
to evaluate the L-Shape fitting approach. Section V presents
our conclusion from the experimental results.

II. RELATED WORK

In the past decade, the well-known DARPA grand chal-
lenge has proved the realizability and demonstrated the
technical frameworks for autonomous driving. Supported by
NSFC (the National Natural Science Foundation of China),
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China’s event named the Intelligent Vehicle Future Challenge
(IVFC), which is similar to DARPA urban challenge, started
from 2009. During the last eight years, over thirty universities
and many companies have participated in this annual chal-
lenge, which is now recognized as the most influential event
of autonomous driving in China. As a latecomer in IVFC,
Tongji Intelligent Electric Vehicle (TiEV) project funded
by the Tongji University started in 2015 (see the Fig 1).
Soon afterwards, TiEV took part in IVFC 2016, 2017 and
managed to complete most of the tasks such as simulated
traffic driving, going through tunnels and blockage avoiding
without any human intervene.

In the competition, the detection of curbs and tracking
of vehicles were made possible using the equipped sensors,
such as cameras and laser scanners. However, from laser-
based range sensing, we can only detect the parts of the
object’s contour that faces towards the sensor. Since the
contour of an object may not be fully observed by range
sensors, these occlusions make the perception task of the
autonomous vehicle even harder.

To address these difficulties, the vehicular shape model is
widely used for detecting the position and orientation of the
vehicle, which is often assumed to be a box, an L shape,
or two perpendicular lines [12], [13], [14]. Based on the
vehicular L-Shape model, several fitting methods have been
proposed. In [13], a weighted least-squares method is used to
get rid of outliers and fit an incomplete contour to a rectangle
model. Because of the occlusion problem, both a right angle
corner fitting and a line fitting are represented in [13]. In [12],
the information of the scanning sequence is exploited to
segment the points efficiently into two disjoint sets, then two
perpendicular lines corresponding to the two edges of the
vehicle are fitted by each of the two segmentations of points
respectively. More specifically, a pivot is detected based on
the scanning sequence of all these 2-D range points, and then
point of this pivot yield those two disjoint sets, i.e., the set of
points scanned before the pivot and the set of points scanned
after it. In [15], the laser scanning sequential information is
not utilized for L-Shape fitting. This method is based on the
optimal fitting angle searching for the L-Shape, and in [15]
three criteria were proposed to detect the best L-Shape fitting.

Also some other approaches were developed using volu-
metric data with 3D LiDARs, among which some choose
sequential projections of point clouds [16], [17], others
choose to train up neural networks that can cope with
unordered point cloud data with abstract feature learning,
like in VoxelNet and PointNet. However, these approaches
consume considerable computational resources and need a
large-scale labeled data set for training, not to mention the
sensors themselves are much more expensive than those for
2D ranging.

Compared with the methods above for vehicular shape
fitting, we proposed a different approach to address the
problem. There are four main contributions in this paper.
• We proposed an approach that innovatively decomposes

the L-Shape fitting problem into two steps: L-Shape
vertexes searching and L-Shape corner point locating.

• The proposed approach is highly computationally ef-
ficient due to its minimized complexity, outperforms
other methods and obtains state-of-the-art results.

• The proposed approach is robust enough and able to
accommodate various situations.

• Our method does not depend on the laser scanning
sequential information, which means data fusion can be
easily achieved from multiple laser scanners.

III. L-SHAPE FITTING FOR LASER SCANNING DATA

Since the correspondence of the scanning data of the
objects in the real world is usually complex, we first segment
the data points into different clusters after getting the scan-
ning data of the environmental objects using 2D LiDARs.
These clusters typically correspond to bicycles, pedestrians,
buildings, or vehicles and can be classified into separated
categories. In this paper, we are only interested in L-Shape
fitting for vehicles. Based on the assumption of an L-Shape
vehicle model, for each segmented range data cluster, we
first find the 2 vertexes (not including the corner point)
of L-Shape and then localize the corner points based on a
pre-specified criterion. After that, we obtain the optimized
fitted rectangle following the 3 vertexes and contain all the
points in this segmentation. Fig. 2 shows the flowchart of
our approach.

A. Segmentation

The laser scan data needs to be segmented into different
clusters before performing L-Shape fitting. There are several
classical clustering algorithms for this segmentation work.
For this work, we evaluate two classical clustering methods:
mean-shift clustering (Mean-Shift) [18] and density based
spatial clustering of applications with noise (DBSCAN). The
mean-shift algorithm considers the input as a probability
density function and the objective of the algorithm is to
find the modes of this function [18]. These modes represent
the centers of the discovered clusters. The input points are
fed to the kernel density estimation and then the gradient
ascent method is applied for the density estimate. The density
estimation kernel uses two inputs: the total amount of points
and the bandwidth or the size of the window [19]. The
DBSCAN algorithm uses density based spatial clustering for
applications with noise. For each point, the associated density
is calculated by counting the number of points in a search
area of specified radius, ε, around the point. The points with
density higher than the specified threshold value, MinPts,
are classified as core points while the rest are classified as
non-core points.

By comparing the segmentation results in Fig. 3, we can
see that both the DBSCAN algorithm and the mean-shift
algorithm are able to find the clusters of arbitrary shapes.
However, the mean-shift algorithm is not capable of ignoring
the influences of outliers. Furthermore, its iterative nature
and density make the mean-shift algorithm slower than some
alternative clustering algorithms. For these reasons, we used
the DBSCAN algorithm to perform the segmentation due to
its low-complexity, fast execution time and robust nature. It



Fig. 2: The flow chart of this proposed fitting method.

(a) DBSCAN (ε = 0.85,MinPts = 6)

(b) Mean-Shift(Bandwidth = 6)

Fig. 3: Comparison of two classical clustering algorithms.

is worth mentioning that a graph-based index structure can
be used to speed up the segmentation operation with the
DBSCAN algorithm.

B. L-Shape Fitting

Since the two perpendicular lines of L-Shape can be
defined as xcosθ + ysinθ = c1 and −xsinθ + ycosθ = c2,
a typical way to evaluate the fitting performance is least

squares, which covers the following optimization problem:

min ‖ψ‖+ ‖φ‖

subject to:
φ = A · u1

ψ = B · u2

A =


xP1 yP1 1
xP2 yP2 1

...
...

...
xPp yPp 1

u1 =

cosθsinθ
−c1



B =


xQ1 yQ1 1
xQ2 yQ2 1

...
...

...
xQq yQq 1

u2 =

−sinθcosθ
−c2



c1, c2 ∈ R 0 6 θ 6 π
2

P ∪Q = S, P ∩Q = Ø

(1)

in which the optimization task is to find out two best
partitions (P,Q) for the clustered preprocessed data S and
the optimal parameters for two orthogonal lines (θ, c1, c2).
The ‖‖ means the l2 norm, and p, q are the scanning points’
quantity for the partitions (P,Q).

Nevertheless, the above optimization problem turns out to
be very difficult to solve due to the combinatorial complex-
ities in partition since the order/sequence of points of the
segmented cluster of is not accessible.

To address this computational problem, a basic idea is
to implement RANSAC algorithm, since an L-Shape can be
described with 3 key points. However, this original RANSAC
algorithm also consumes plenty of time due to the consid-
erable possibilities. To improve the algorithm’s performance
based on the 3 points theory mentioned above, we decompose
the L-Shape fitting problem into two steps. L-Shape vertexes
searching and L-Shape corner point localizing.

1) Detecting Two Vertexes: As the first procedure, we
proposed an algorithm to obtain two vertexes of L-Shape
from clustered scanning data. The algorithm is presented in
the Alg. 1. The input of this algorithm is a specific cluster
scanning points S and the output are two target vertexes
VA, VB of L-Shape. It’s worth mentioning that for improving
the robustness of vertexes searching algorithm, the results are
not actual several scanning points but the geometric center
of specific points.



Fig. 4: special circumstance in vertex detecting

Algorithm 1 searching two vertexes of L-Shape

Input: n points in this cluster S ∈ Rn×2
Output: VA, VB , two vertexes of L-Shape

1: sort points S by abscissa as X
2: sort points S by ordinate as Y
3: get the four vertexes named VL, VR, VU , VD of this

points cluster using X,Y
4: from VL, VR, VU , VD select two almost superposed

points Vs1, Vs2, and mark the remaining vertexes as
Vr1, Vr2

5: set the geometric center of Vs1, Vs2 as VA
6: if ∠VAVr1Vr2 > ∠VAVr2Vr1 then
7: VB = Vr2
8: else
9: VB = Vr1

10: end if
11: return VA, VB

Firstly, we sort the points by their X and Y coordinates,
and subsequently, we select several points from the front
end and rear end of the sorted sequence and calculate the
geometric center as candidate vertexes of L-Shape. After
that, we based on a predefined standard to obtain two target
vertexes. In some scenes, the first or last several points may
have a large variance in the horizontal or vertical direction (as
in Fig. 4). Under these circumstances, we can directly select
the two calculated candidate vertexes of orthogonal direction
as the L-Shape’s two vertexes to reduce the computational
cost.

2) Localizing Corner Point: When the “Vertexes Search-
ing” procedure is completed, the second step for L-Shape
fitting is to localize the corner points. Once this optimal
corner point is obtained, the L-Shape feature for vehicle
tracking is almost determined. A classical standard to eval-
uate fitting result has been presented at the beginning of
“L-Shape Fitting” section, minimizing the squared error.

As the two vertexes have been determined, a basic idea
is to traverse all the scanning points to localize the optimal
corner point. Note that the optimal corner point can usually
form an angle of approximately 90◦ with the two given
vertexes obtained from the Alg. 1. Therefore, a prejudgment
procedure can be implemented for the scanning points to
filter out some candidate corner points, before the localizing

Algorithm 2 localizing optimal corner point of L-Shape

Input: n points in this cluster S = {P1, P2, · · · , Pn} and
two vertexes VA, VB of the L-Shape

Output: the optimal corner point Pbest and the points’
amount NE1 , NE2 of the two disjunctions for cluster S.

1: init Errmin = inf
2: init NE1

, NE2
= 0

3: for i = 1, 2, 3, · · · , n do
4: if π/2 + ∆θ0 ≥ ∠VAPiVB ≥ π/2−∆θ0 then
5: init Ntemp1, Ntemp2 = 0
6: init Err = 0
7: for j = 1, 2, 3, · · · , n do
8: if j 6= i then
9: dis1 = Dis(Pj , VAPi)

10: dis2 = Dis(Pj , PiVB)
11: if dis1 < dis2 then
12: Ntemp1 + = 1
13: Err + = dis1
14: else
15: Ntemp2 + = 1
16: Err + = dis2
17: end if
18: if Err ≤ Errmin then
19: Errmin = Err, Pbest = Pj
20: NE1

= Ntemp1, NE2
= Ntemp2

21: end if
22: end if
23: end for
24: end if
25: end for
26: return Pbest, NE1

, NE2

algorithm implemented to the candidate points.
The detailed algorithm is showed in Alg. 2. The input of

this algorithm are two vertexes and the corresponding points
cluster, Sn×2 ∈ R. The output is the optimal corner point
Pbest and the points’ amount NE1

, NE2
of two disjunctions

which were partitioned by the two vertexes and the optimal
corner point.

C. Shape Fitting

Since there is no ideal range data point, most angles
formed by two vertexes obtained from Alg. 1 and the optimal
corner point acquired from Alg. 2 is actually not a real
right angle. A logical idea is to select an edge which has
more scanning points to determine the L-Shape’s direction.
As the Alg. 2 can return the two edge’s points amount and
the optimal corner point, with this information and the two
vertexes obtained from Alg. 1 the L-Shape’s direction can
be easily determined.

We use a rectangle oriented in that direction which con-
tains all the scanning points to represent the L-Shape. Once
this rectangle is obtained, the vehicle’s pose can also be
handily extracted. Since a rectangle is formed by four edges
and every edge can be presented in the form of ax+by+c =



Algorithm 3 Shape Fitting

Input: two vertexes V erA, V erB , corner point P , two par-
tition points’ amount NE1

, NE2
and the n points in this

cluster S ∈ Rn×2
Output: rectangle edges {aix+ biy = ci|i = 1, 2, 3, 4}

1: if NE1 > NE2 then
2: θ1 = atan2(VAy

− Py, VAx − Px)
3: θ2 = θ1 + π/2
4: else
5: θ2 = atan2(Py − VBy , Px − VBx)
6: θ1 = θ2 + π/2
7: end if
8: ~p1 = (cosθ1, sinθ1)
9: ~p2 = (cosθ2, sinθ2)

10: C1 = S · ~p1′
11: C2 = S · ~p2′
12: a1 = cosθ1, b1 = sinθ1, c1 = min{C1}
13: a2 = cosθ2, b2 = sinθ2, c2 = min{C2}
14: a3 = cosθ1, b3 = sinθ1, c3 = max{C1}
15: a4 = cosθ2, b4 = sinθ2, c4 = max{C2}

0, if these parameters are determined the Shape is acquired.
The Alg. 3 shows steps about rectangle fitting in detail. The
input of this algorithm are two vertexes VA, VB obtained
from Alg. 1, corner point P and two partition points’ amount
NE1

, NE2
acquired from Alg. 2. The output of this algorithm

are the parameters for four edges of the target rectangle.

IV. EXPERIMENTAL RESULTS

In this section, we provide the experimental results to
evaluate the correctness and efficiency of our algorithms.
The experiments were tested on Tongji’s autonomous vehicle
research and test platform “TIEV” (in Fig. 1), and the 2D
LiDAR is mounted on the front end of the test platform and
about 15 cm above the ground with an elevation angle of
about 1.5◦. Under this circumstance, most of the vehicles in
the measurement range are scanned as L-Shape. It is impor-
tant to note that the scanning order/sequential information is
not used for the experiments here.

A. Rectangle Fitting

Before performing L-Shape fitting, the laser scan data
needs to be partitioned into different clusters. Fig 5 shows the
segmentation result of 1 single scan data with the DBSCAN
algorithm. After the laser scan data been segmented into clus-
ters, we use the fitting algorithms to search for the optimal
L-Shape to fit the data points. Two different clusters which
represent two different vehicles in two separate orientations
are shown in Fig. 6. Through the Alg. 1 and Alg. 2 the
key points are presented in Fig. 6(a) and (b). The blue stars
stand for the possible vertexes for L-Shape, and the red
diamonds are the best corner points for each L-Shape in the
circumstance of blue stars as vertexes of the L-Shape. With
these key points’ information and other results obtained from
Alg. 1 and Alg. 2 the optimal L-Shape for each cluster can be
acquired from Alg. 3. In Fig. 6(c) and (d) the blue rectangle

Fig. 5: The segmentation result for 1 frame laser scan data.(best
viewed in color.)

TABLE I: Computation Time of L-Shape Fitting

Method Average (ms) Standard Deviation (ms)

Our approach 6.20 0.20
CMU’s method [15] 1 6.04 0.23

presents the optimal fitted L-Shape. Fig. 7 shows the L-Shape
fitting results of 1 single laser scan data and vehicle pose
estimation. Each blue box is the best-fitted L-Shape obtained
by fitting algorithms corresponding to each vehicle, and the
directions of these rectangles are the orientation of vehicles.

It should be noted that the small clusters, with less than
four points, are ignored in the implementation. Since these
clusters are impossible to correspond to vehicles.

B. Efficiency Evaluation

The efficiency of the algorithm is evaluated by the com-
putational time. There are approximately 3000 laser scans in
the data set collected by the tested vehicle. Each laser range
scan points is segmented into clusters and fitting algorithms
are carried out on each cluster. The computational time is
presented in Table I. The calculations are implemented in
MATLAB and run on a Windows laptop equipped with an
Intel Core i5 CPU. The computational performance of the
algorithm could be much better if it is implemented with a
more efficient programming language such as C/C++ or on
a more powerful platform.

V. CONCLUSION

In this paper, we proposed a search-based L-Shape fitting
approach. The algorithm can efficiently detect the optimal
L-Shape fitting with 2D LiDAR data by finding the three
key points of an L-Shape, that is two vertexes and one
corner. The proposed approach does not need the scan’s
ordering/sequential information, therefore it allows fusions of
raw laser data from multiple laser scanners. Furthermore, this
approach is capable of accommodating to various criteria,
which means the approach is not only suitable for different

1Due to the difference of testing platform, the computation time is
different from [15].



(a) (b)

(c) (d)

Fig. 6: The key points and optimal L-Shape fitting results for
two typical segmentations points clusters from the laser scanner.
The blue stars in (a) and (b) represent the vertexes for L-Shape
obtained from Alg. 1 and red diamonds in (a) and (b) stand for the
corner points for L-Shape acquired from Alg. 2. Fig. (c) and Fig.
(d) are the best L-Shape fitting results from Alg. 3 with the results
of Fig. (a) and Fig. (b). (best viewed in color.)

Fig. 7: The L-Shape fitting results for laser scan data and vehicle
pose estimation. The blue boxes represent the L-Shape fitting result
and also pose estimation of vehicles.

fitting demands but also extensible for future applications.
The experimental results show the correctness and efficiency
of our algorithm.
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