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Abstract— Visual simultaneous localization and mapping
(SLAM) is the core of intelligent robot navigation system.
Many traditional SLAM algorithms assume that the scene is
static. When a dynamic object appears in the environment, the
accuracy of visual SLAM can degrade due to the interference
of dynamic features of moving objects. This strong hypothesis
limits the SLAM applications for service robot or driverless car
in the real dynamic environment. In this paper, a dynamic object
removal algorithm that combines object recognition and optical
flow techniques is proposed in the visual SLAM framework for
dynamic scenes. The experimental results show that our new
method can detect moving object effectively and improve the
SLAM performance compared to the state of the art methods.

Index Terms— Visual SLAM; dynamic scenes; optical flow
method; object detection.

I. INTRODUCTION

Visual simultaneous localization and mapping (SLAM)
refers to the synchronization construction of structural map
and self-localization of the robot by using the visual sensor to
sense the surrounding environment. In recent years, with the
wide application of robots in social service, public security,
disaster relief, etc., the traditional geometric visual SLAM
algorithm can no longer meet the high-level task requirements
of robots, which need to perform interactive and cooperative
tasks from the semantic level. Especially when there are
dynamic objects in the environment, the traditional SLAM
algorithm based on geometric vision has large error in
estimating robot pose.

Dynamic objects can provide dynamic visual feature
points, while the current mainstream SLAM algorithm uses
static feature point to estimate pose and map reconstruction,
so dynamic targets need to be removed to reduce its impact on
SLAM algorithm. Li [1] et al. proposed to use a static weight
of visual feature point to depict whether the feature belongs to
the dynamic objects, which can be updated according to the
estimated relative pose transformation between consequence
images. Wang et al. [2] proposed a motion segmentation
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based SLAM algorithm, which uses optical flow to classify
the matching features in adjacent frames. Sun et al. [3]
proposed an image difference method based on self-motion
compensation to detect and eliminate moving objects. Lee
[4] et al. proposed a node grouping method to prune the
false connected nodes in the pose graph according to the
grouping rules with noise covariances, which can reduce the
chance of false loop closing. Wang [5] et al. use mathematical
models and geometric constraints to detect moving objects
which is then incorporated into SLAM process as a data
filtering process. Zou et al. [6] introduced inter-camera pose
estimation and inter-camera mapping to deal with dynamic
objects in the localization and mapping process. The dynamic
points are recognized according to reprojection error. Fang et
al. [7] used the improved optical flow method and Kalman
filter for dynamic object tracking. Wang et al. [8] proposed a
dense moving object segmentation method for robust dense
SLAM.

To solve the problem of disturbance caused by dynamic
object to visual SLAM, this paper designs a front-end visual
odometer method for dynamic object removal. Our method
integrates dynamic object detection and identification module
into the visual SLAM system [9], which can reduce the
impact of dynamic objects. The motion characteristic of
the object is first recognized by the state of the art deep
learning based object detection and recognition method, and
then the optical flow is employed to valid the moving state
of the object. Experimental results show that the proposed
method in this paper has better pose estimation performance
compared with the state of the art visual SLAM algorithms
in case of dynamic scenarios.

II. THE PROPOSED METHOD

Normally, visual SLAM consists of the following four
modules: visual odometer, back-end optimization, loop de-
tection and mapping. Visual odometer is mainly responsible
for motion prediction between images. Back-end optimiza-
tion optimizes the prediction of visual odometer to obtain
relatively accurate transformation between image frames. The
closed-loop detection detects whether the camera has ever
been to the current position before. If it has been to the
current position, it can optimize the posture again through
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the back-end optimization to reduce the motion error. Map
construction is to generate a specific environment map based
on the estimated camera positions. The above four modules
constitute the basic framework of visual SLAM.

In order to reduce the impact of the dynamic objects for
visual SLAM, a robust moving object detection method is
required. Here we propose to use a deep learning method to
recognize the motion characteristics of the objects first and
then use an optical flow method to check whether the object
is moving. The overall work flow of the proposed method is
shown in Fig.1.

A. Object detection and recognition based on YOLO

Object detection and recognition is to recognize object
category in the image and determine their positions. If the
category of the object has movable characteristics, e.g.,
bicycle, car, human, etc., we can have an initial guess
about the moving objects in the current frame. Recently,
deep learning has made rapid progress in the direction of
object detection and recognition. Compared with traditional
methods, object detection methods based on deep learning
have stronger robustness to complex environment conditions,
such as illumination changes and occlusion. Currently, the
object detection methods related to deep learning mainly
have two directions: two-stage method and one-stage method.
For the two-stage method, the first step is to generate
candidate proposals, and the second step is to adjust and
classify the proposals, such as the R-CNN[18], Fast R-

The main modules of proposed visual SLAM for dynamic environment using object detection/recognition and optical flow method.

CNN[19], Faster R-CNN [20]. The one-stage method omits
the selection of candidate proposals and directly predicts the
category and location of the target, such as YOLOv3 and
SSD [21]. Compared with the two-stage methods, the one-
stage methods are more efficient. Therefore, we here use
YOLOV3 for object detection and recognition. YOLOV3 is
an end-to-end target detection algorithm based on the darknet
network architecture. By modeling the detection situation into
regression, the position and attribution of the rectangular box
of the object can be easily predicted as shown in Fig.2.
The detection process for YOLOv3 consists of the fol-
lowing steps. First, to meet the requirements of the network
architecture, the input image is adjusted to the specified
scale, which is then divided into n x n grids. Each grid is
responsible for detecting the object that falls on the central
point of this grid. Finally, in order to prevent multiple grids
responding to the same object, YOLOV3 uses nonmaximal
suppression to eliminate unwanted results. Non-maximum
suppression first obtains the object bounding box with the
highest confidence, and then calculates the IOU between
other object boxes and this object box. When the IOU is
larger than a certain threshold, the object box has lower
confidence is eliminated. Finally, the object box has the
highest confidence and no overlap with others is obtained.

B. Optical flow based moving object detection

Optical flow describes the motion relationship between
two adjacent frames by the correlation of pixels. Optical



Fig. 2. YOLOV3 for object detection and recognition.

flow method does not need feature descriptor calculation and
feature matching for pixel tracking, which has high real-time
performance. In this paper, a motion consistency detection
algorithm based on Lucas-Kanade optical flow is proposed to
further classify dynamic feature points. Lucas-Kanade optical
flow algorithm [22] first assumes that the image obtained by
the camera changes with time, and then the image can be
regarded as a function of time I(t). For a pixel with (z,y)
coordinates, its grayscale value is I(x,y,t). Assume that the
horizontal and vertical coordinates of a fixed point in the
2D space are x and y respectively at time on the image,
and their coordinates also change with time. The purpose of
optical flow method is to predict the position of the 2D fixed
point in the image at different time.

Feature point tracking based on optical flow method first
assumes that the gray of the pixel does not change for
adjacent frames, which means the gray value of the same
spatial point always remains consistent on the image plane
during a short time period. If a pixel is at the position of
(z,y) at t and (z + dz,y + dy) at ¢ + dt, then the motion of
the pixel satisfies:

I(z,y,t) = I(z + dz,y + dy, t + dt) (1)

Assuming that the motion between two image frames is
relatively small, we can get
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where 0I/0x is the gradient of the gray value of this point
along the z axis, 01/0y is the gradient of the gray value of
this point along the y axis, dz/dt is the velocity of this point
along the = axis, and dy/dt is the velocity of this point along
the y axis. If dx/dt is u, dy/dt is v, dI/0x is I, OI/0y is
1, and 01/0t is I, then (3) and (4) can be written as:

(L. 1] m =1 5)

To calculate v and v, the lucas-kanade optical flow algo-
rithm assumes the same pixel motion within the image block.
Finally, through multiple iterations, the motion of pixels in
the image can be obtained, so as to realize the tracking of
pixel points.

C. Motion consistency detection algorithm

In order to detect dynamic feature points in images, a
motion detection method based on optical flow method is
proposed. The algorithm first obtains the matching feature
point pairs by optical flow method and calculates the funda-
mental matrix with the matching feature point pairs. Then,
the corresponding polar line of the feature point is calculated
using the fundamental matrix and the position of feature
point. When the distance between the feature point and the
polar line is greater than a certain value, it is classified as
a dynamic feature point. The detailed algorithm process is
shown in Fig.3. Supposing p; and ps is a pair of matching
feature point, their homogeneous coordinates are shown as
follows:
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Fig. 4. (a) the tracked original ORB features and (b) tracked features after
dynamic feature point removal.

{pl = [ulavl’l] (6)

P2 = [uz, v, 2]

where u and v are the corresponding horizontal and vertical
coordinates of pixels. Then the epipolar line I; corresponding
to py is:

X
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Z
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where F' represents the corresponding fundamental matrix,
so the distance d from point po to the epipolar line I is:

VX + 1Y

If the distance d is greater than a certain threshold, p, is
classified to be a dynamic feature point.

According to the proposed method, dynamic feature points
in the images can be removed effectively, and one example
is shown in Fig.4, where the feature points on the moving
person have been removed.

III. RESULTS

To verify the visual SLAM effect based on dynamic object
removal proposed in this paper, TUM rgb-d data set [23]
was used to test. TUM rgb-d data set contains rgb-d image
sequences of some dynamic scenes, and has the accurate
position and posture reference information corresponding to
each image, which is very suitable for verifying the effect of
the algorithm in this paper.

There are two main evaluation criteria for visual SLAM
front-end odometer: relative pose error (RPE) and absolute

trajectory error (ATE), where the relative posture error rep-
resents the local accuracy of the measured trajectory within
a certain time interval, and the absolute trajectory error
directly calculates the difference between the real coordinates
and the estimated coordinates. Here we define the predicted
trajectory and the real trajectory are P and () respectively.
The transformation matrix 7" is obtained through singular
value decomposition to align the predicted trajectory and the
real trajectory, and then the pose error is calculated. Let
E; = Q; 'TP;, where Q; represents the real trajectory of
the 44, key frame, P; represents the predicted trajectory of
the iy, key frame, and then the ATE is defined as:

RMSE(Eln) — \/Zz ”tra:S(Ez)HQ o

The accuracy performance of the algorithm can be given
by the ATE. However, ATE can only evaluate the translation
error of the algorithm. In order to find the rotation error of
the algorithm and to evaluate the drift error of the visual
odometer in a period of time, the measurement criterion of
RPE can be adopted. Assuming that the relative pose between
real postulates @); and Q;1a+ is AQ; A+ = Q;lQHAt, and
the relative pose between predicted poses P; and Py is
AP ar = P Py let Fy = AQ; A, X AP; o, then the
RPE is defined as
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This paper selected dynamic scenarios in TUM RGB-d
to evaluate the proposed algorithm. The comparison to the
original ORB-SLAM?2 is shown in Table.I to Table.IIl. It can
be seen that the performance of our algorithm in this paper
outperforms ORB-SLAM2 in the dynamic environments,
which indicates that our visual odometer based on dynamic
object removal is effective. In low motion scenarios, such as
fr3_sitting_static sequence, because there is no obvious object
motion, ORB-SLAM?2 has similar performance to ours.

In order to visualize the comparison results between the
proposed algorithm and ORB-SLAM?2, the fr3_walking_half
sequence is taken as an example to draw absolute trajectory
error curve and relative posture error curve, as shown in Fig.5
and 6. It can be seen that the absolute trajectory error and
relative pose error of our method are much smaller than ORB-
SLAM?2, which verifies that the visual odometer based on
dynamic object removal in this paper has better performance
compared with ORB-SLAM?2 in dynamic environments.

Meanwhile, this paper compares our visual SLAM algo-
rithm with the current state of the art methods in dynamic
scenarios as shown in Table IV. The experimental results
show that our method has higher pose estimation accuracy
compared to other methods, which prove our claims that
the combination of object recognition and optical flow can



TABLE I
COMPARISON OF ABSOLUTE TRAJECTORY ERRORS

OURS ORB — SLAM?2
Sequences

RMSE Mean Median RMSE Mean Median

Fr3 walking xyz 0.0163m 0.014m 0.0122m 0.5771lm  0.5162m 0.4602m
Fr3 walking_static ~ 0.0105m  0.0073m 0.0058m 0.0452m 0.027m 0.0136m

Fr3 walking rpy 0.0417m 0.0298m 0.0217m 0.8678m 0.7311m 0.841m
Fr3_ walking_hal f 0.0311lm  0.0261m 0.0224m 0.5166m  0.4555m 0.3904m
Fr3_sitting_static 0.0059m  0.0051m 0.0046m 0.0086m  0.0076m 0.007m

TABLE II

COMPARISON OF RELATIVE ERRORS OF ROTATION

S . OURS ORB — SLAM?2
equences
RMSE Mean Median RMSE Mean Median
Fr3 walking zyz 0.6299°  0.4974°  0.4102°  6.0955°  3.6146°  1.1380°
Fr3 walking_static ~ 0.3106°  0.2512°  0.2169° 1.0154°  0.6195°  0.3143°
Fr3 walking_rpy 1.4067°  1.0363°  0.7286°  7.5397°  5.3755°  3.1801°
Fr3_walking_hal f 0.7872°  0.6872°  0.6027°  6.0396°  3.2201°  1.0818°
Fr3_sitting_static 0.2618°  0.2354° 0.2207° 0.2859°  0.2565° 0.2463°
TABLE III

COMPARISON OF RELATIVE TRANSLATION ERRORS

OURS ORB — SLAM?2
Sequences

RMSE Mean Median RMSE Mean Median
Fr3_ walking zyz 0.0205m 0.0177m 0.016m 0.3189m 0.1883m 0.0585m
Fr3_ walking_static 0.015m 0.0105m 0.0083m 0.0562m 0.0316m 0.0128m
Fr3_walking_rpy 0.0639m 0.0461m 0.0322m 0.3817m 0.2681m 0.1464m
Fr3 walking _hal f 0.033m 0.0277m 0.0241m 0.2908m 0.1482m 0.0417m
Fr3_sitting_static 0.0073m 0.0064m 0.0058m 0.0095m 0.0085m 0.0077m

TABLE IV

REFERENCES

COMPARISON RESULTS OF ABSOLUTE TRAJECTORY ERROR OF VISUAL
SLAM METHODS

Sequences Li[1] Wang[2] Sun([3] Ours
Fr3_ walking zyz 0.0600m  0.0400m  0.0930m  0.0163m
Fr3 walking_static ~ 0.0260m  0.0240m  0.0660m  0.0105m
Fr3_ walking rpy 0.1790m  0.0760m  0.1330m  0.0417m
Fr3_walking_hal f 0.0490m  0.0550m  0.1250m  0.0311m

remove the features that belong to dynamic objects effectively
and hence improve the performance of visual SLAM.

IV. CONCLUSION

To improve the performance of visual SLAM for mapping
a dynamic environment, this paper proposes a dynamic
object removal method combining deep learning based object
detection and recognition with the optical flow based motion
consistence checking. The proposed method can detect the
moving features effectively, and achieve higher pose estima-
tion accuracy compared to the state of the art methods on the
public datasets, e.g., original ORB-SLAM?2.
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