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Normalized Neural Network for Energy Efficient Bipedal Walking

Using Nonlinear Inverted Pendulum Model

Ruobing Wang12, Samuel J. Hudson2, Yao Li1, Hongtao Wu1 and Chengxu Zhou2*

Abstract— In this paper, we present a novel approach for
bipedal walking pattern generation. The proposed method is
designed based on 2D inverted pendulum model. All control
variables are optimized for an energy efficient gait. To obviate
the need of solving non-linear dynamics on-line, a deep neural
network is adopted for fast non-linear mapping from desired
states to control variables. Normalized dimensionless data is
generated to train the neural network, therefore, the trained
neural network can be applied to bipedal robots of any size,
without any specific modification. The proposed method is
later verified through numerical simulations. Simulation results
demonstrated that the proposed approach can generate feasible
walking motions, and regulate robot’s walking velocity success-
fully. Its disturbance rejection capability was also validated.

I. INTRODUCTION

Legged robots have strong ground mobility; they can ma-

neuver in unstructured, natural environments, where wheeled

robots cannot. The locomotion mechanism of legged robots,

especially under bipedal actuation, is hard to control due

to the nature of discrete terrain contact and non-linear

dynamics. The governing equations are periodically changing

during motion, followed by large instability regions, thus

warranting classical methods forfeiting desired performance.

There have been many methodologies proposed for bipedal

locomotion, of which can be divided into two groups [1].

The first group bases bipedal locomotive design on precise

knowledge of robots’ dynamic parameters, therefore perfor-

mance of these methods primarily depend on the accuracy

of the robotic model [2] [3]. While for the second group,

bipedal locomotion is based on a simplified model, and

feedback control must be employed to stabilize this approach

[4], [5]. The most popular simplified model from various

literature, is the linear inverted pendulum model (LIPM)

[6], in which the center of mass (CoM) is constrained at

a constant height. The LIPM’s equations of motion can be

solved analytically due to its linear form. Kajita et al. [1]

adopted preview control of a Zero Moment Point (ZMP) to

generate a walking pattern, where the ZMP calculation is

derived from a LIPM. Morisawa et al. [7] used a LIPM to si-

multaneously plan trajectories of CoM and ZMP, and modify

foot trajectory according to the detection of disturbance. Pratt

et al. [8] proposed the Capture Point (CP) concept, based

on the LIPM to solve foothold positions to avoid falling.

Although LIPM’s are widely employed due to its simple

1College of Mechanical and Electrical Engineering, Nanjing University
of Aeronautics and Astronautics, Nanjing, China.

2School of Mechanical Engineering, University of Leeds, Leeds, UK.
*Corresponding author. C.X.Zhou@leeds.ac.uk

mathematical representation, there are still some limitations,

such as foot landing impact and the corresponding loss

of mechanical energy is not considered within the model.

Walking patterns designed from a LIPM is not the most

energy efficient. Robots have to bend their knees to maintain

constant CoM height during walking, therefore, unnecessary

energy is inevitably consumed. Meanwhile, it is also likely

to meet actuator saturation through a LIPM [9].

Another simplified model, is the inverted pendulum model

(IPM). IPM’s are usually constrain the leg length to be

constant to simplify the robot’s dynamics. Numerical inte-

gration is usually necessary for solving the IPM equations of

motion due to the presence of non-linearity. IPM’s are widely

applied in passive dynamic walking [10] [11] and balancing

[12], where the loss of kinetic energy is compensated by an

increase in potential energy. Wight et al. [13] proposed the

Foot Placement Estimator, which is based on the IPM as a

dynamic measure of balance for bipedal robots. Non-linear

equations introduced by the IPM were solved numerically.

Srinivasan and Ruina’s research [14] shows that the most

energy efficient walking gait for a point-mass walker is

the inverted pendulum walking with constant leg lengths,

proving that the IPM is more energy efficient than the LIPM.

However, IPM’s are also coupled with limitations. In the

IPM, large impact occurs at the foot-to-ground contact due

to the constrained constant leg length, which makes the

IPM approach more suitable for robots with soft robot-

environment interaction capabilities [9]. Concurrently, the

non-linear dynamics of IPM provides no analytical solution.

Although it can be solved through numerical methods, the

heavily required computational time and resources make the

IPM not suitable for real-time applications.

In the past decades, the majority of robotic bipedal ap-

plications are designed based on LIPM’s, leading to knee-

bent walking in humanoid robots for kinematic singularity

avoidance. However, anthropological walking is much more

similar to the IPM as the support leg is always straight

[15]. To improve the bipedal walking performance anthropo-

morphically and give a better understanding of human and

animal locomotion, an IPM is chosen in this paper instead

of the conventional LIPM. However, there still remains the

one significant challenge of solving the IPM’s non-linear

dynamics in real time.

Recently, researchers have introduced artificial neural net-

works in legged robots to explore the possibility of real-

time implementation using non-linear models. Xin et al.

[16] adopted a neural network to generate referential foot

placements for a bipedal robot hopping and running based
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Fig. 1: 2D inverted pendulum walking model. (a) The

employed IPM. (b) A mandate of the walking sequence

with a regulatory speed target at the mid-stance by properly

choosing control variables.

on a spring-loaded inverted pendulum model. The neural

network eliminates the need for solving non-linear equations

on-line. Raj et al. [17] employed a neural network and

Open Dynamics Engine to build a hybrid model for the

locomotion control of a bipedal robot. Li et al. [18] adopted

central pattern generators and neural networks to generate

bipedal locomotion. However, the neural networks used in

the following research investigations lack generality and

work exclusively on specific robots.

In this paper, a novel approach for the locomotion control

of bipedal robot walking is presented. The proposed method

is designed based on a two dimensional IPM. All control

variables are optimized to ensure an energy efficient walking

gait. To eliminate the need for solving the non-linear equa-

tions on-line, a deep neural network is employed to realize

fast non-linear mapping of the desired states to the control

variables. The neural network is trained with normalized

data. Therefore, the proposed approach can be applied to

bipedal robots of any size without any specific modification.

The proposed method is verified through various simulations,

in which the results prove feasibility and robustness of the

approach.

The paper is arranged as follows. Section II describes the

dynamics of the IPM and feasible constraints. Section III

gives details about how the control variables are optimized

and how the neural network is trained. Finally, simulation

results are presented in Section IV and conclusions are given

in Section V.

II. 2D INVERTED PENDULUM MODEL

The walking bipedal robot model is considered to be a 2D

IPM and only forward walking on a flat ground is discussed.

The IPM consists of a single point-mass hip and two mass-

less inextensible legs, as shown in Fig. 1. There are two

control variables in this model: push-off impulse p along

the stance leg that occurs just before foot-to-ground contact,

and angle φ between the swing leg and vertical axis before

impact. Push-off impulse determines the energy injected, and

angle of the swing leg determines the time and location of

the foot-to-ground contact.

For the sake of generality, normalization of the robots

states and control variables are applied to make the proposed

approach compliant for robots of differentiating illimitable

sizes. If we don’t do this, the trained neural network in the

subsequent section will only work exclusively on specific

robots. The robot mass m, leg length l and gravitational

acceleration g are used as quantities for normalization. CoM

velocity v can be normalized by
√
gl, push-off impulse p by

m
√
gl, and time t by

√

l/g. Note that such normalization is

effectively the equivalent of equating the values of m, l, and

g equal to 1 [19].

The 2D inverted pendulum model’s equation of motion is

θ̈ = sin θ, (1)

where θ is angle between the stance leg and vertical axis.

The foot-to-ground contact occurs and stance leg changes

when θ = φ. Assume the initial velocity at a mid-stance

is v0, where mid-stance is the state when the stance leg is

perpendicular to ground. According to the conservation of

energy equations, velocity just before push-off is

v
−
=
√

v2

0
+ 2(1− cosφ), (2)

and velocity just after heel-strike can be expressed according

to the conservation of angular momentum as [20]

v+ = v
−
cos 2φ+ p sin 2φ. (3)

Then the final velocity at the next mid-stance is

vf =
√

v2

+
− 2(1− cosφ). (4)

Note that the final velocity vf can be written as the function

of v0, p and φ as

vf =
√

(
√

v2

0
+ 2(1− cosφ) cos 2φ+ p sin 2φ)2 − 2(1− cosφ). (5)

According to the above equation, the final velocity vf can be

regulated by properly choosing the push-off impulse p and

swing leg angle φ.

To make the walking step feasible, there are several

constraints which must be held. Firstly, to make sure no

fight phase occurs during walking, the following inequality

constraints are to be satisfied,

v2

−

< cosφ, (6)

v2

+
< cosφ, (7)

0 < p cos 2φ < sin 2φv
−
. (8)

Equation (6) and (7) ensures the normal force on the foot

is positive just before push-off and after the heel-strike.

Equation (8) ensures radial speeds after push-off is zero.

These equations can be converted into constraints of speeds



v0 and vf at the mid-stance, and control variables p and φ,

as

max(v2

0
, v2

f
) < 3 cosφ− 2 (9)

and

0 < p < tan 2φ
√

v2

0
+ 2(1− cosφ). (10)

Secondly, to prevent any slip motion, the inverted pendulum

is constrained in the friction cone by

tanφ < µ, (11)

where µ is coefficient of friction. Meanwhile, to limit the

walking pace, a fixed lower bound on step time tst is

imposed, which is the time from the mid-stance to the heel-

strike, by

tst > tst,min > 0. (12)

Considering the small angle approximation assumption and

integrating (1), tst can be approximated by [9]

tst = ln

(

φ+
√

v2

0
+ φ2

v0

)

. (13)

Thus, (12) can be converted to a constrained φ, as

φ > v0 sinh tst,min. (14)

III. NEURAL NETWORK DESIGN WITH IPM

A. Control variables optimization

The target is to regulate the robot’s velocity vf at a mid-

stance to reach the desired value vdes, by properly choosing

the push-off impulse p and swing leg angle φ. While it can

be seen from (5) that for a given desired velocity vdes, there

are no analytical solutions of the control variables p and φ
due to the non-linear dynamics of the IPM. Concurrently,

there are countless combinations of p and φ which will

all lead to the same vf , but result in different stepping

times, step distances, and energy costs. Current research

indicates that when humans are walking and running, they

tend to choose the most energy efficient gait [14], therefore

it is quintessential to find a combination of p and φ which

consumes the least amount of energy for the bipedal robot

gait.

The energy consumed by a single step push-off can be

calculated by

Epo =
p2

2
. (15)

As can be seen from Fig. 1, the step distance is 2 sinφ,

which then determines the push-off energy consumed per

unit distance as

Epo,pd =
p2

4 sinφ
. (16)

Besides the push-off energy, the swinging leg simultaneously

consumes energy throughout the human walking cycle. Al-

though, this is not reflected in the simplified model em-

ployed, this energy is accounted for to formulate a higher

degree of anthropomorphic walking behavior. Otherwise, the

robot will tend to walk at an impractically fast pace. Here,

the energy consumed by swinging the leg for one step is

assumed as

Esl =
3φ2

16t2
st

, (17)

which is approximated based on the anthropomorphic model

[21] where the legs are considered to be half the total mass.

The swinging-leg energy consumed per unit distance is

Esl,pd =
3φ2

32t2
st
sinφ

. (18)

Therefore, the total energy consumed per unit distance is

Etotal = Epo,pd + Esl,pd =
p2

4 sinφ
+

3φ2

32t2
st
sinφ

. (19)

Thus, the most energy efficient combination of p and φ
for our model is the solution of the non-linear optimization

min Etotal =
p2

4 sinφ
+

3φ2

32t2
st
sinφ

, (20)

subject to

p =
1

sin 2φ
(
√

v2

f
+ 2(1− cosφ)

− cos 2φ
√

v2

0
+ 2(1− cosφ)),

(21)

tst = ln

(

φ+
√

v2

0
+ φ2

v0

)

, (22)

max(v2

0
, v2

f
) < 3 cosφ− 2, (23)

0 < p < tan 2φ
√

v2

0
+ 2(1− cosφ), (24)

tanφ < µ, (25)

v0 sinh tst,min < φ, (26)

where µ = 0.8, tst,min = 0.4 [22], v0 ∈ [0.01, 1] and

vf ∈ [0, 1]. Noting all variables used in this optimization

are normalised.

The above non-linear optimization is solved by the FMIN-

CON function in MATLAB, and results of the optimized

control variables are shown in Fig. 2. The total energy Etotal

consumed per distance and step time tst corresponding to the

optimized results are shown in Fig. 3. The regions where

p = φ = 0 is where the desired velocity cannot be achieved

in a single step. A general trend of bipedal walking can be

found from the optimized results. When the robot speeds up,

it should take big steps and impose large push-off, while the

push-off is saturated due to the no flight constraints if the

speed is too fast. When the robot maintains speed, it should

take small steps and impose moderate push-off, and when

the robot slows down, it should take large steps with little

push-off. These are consistent with what [20] concluded.



(a)

(b)

Fig. 2: Optimized results of control variables. (a) Opti-

mized results of the push-off p. (b) Optimized results of the

swing leg angle φ.

B. Neural network structure and training

While intending to apply the optimized results from Sec-

tion III-A to real-time control of bipedal robot walking, it

is nearly impossible to pre-calculate all scenarios, and on-

line calculation is extremely time consuming due to the

non-linear dynamics of the IPM (calculation time for each

scenario is about 0.0945 s in MATLAB). Thus, a neural

network is designed to realize the fast non-linear mapping

from v0, vdes to p, φ, and obviate the need for solving the

non-linear equations on-line. A feed-forward network is built

in MATLAB, which has 3 hidden layers with 20, 50 and 20

units. The activation function for hidden layers is tansig,

and the activation function for output layer is purelin. The

network is trained via the Levenberg-Marquard method with

a data size of 7244, which is taken from the v0 − vf plane

at a pitch of 0.01, and the scenarios where the desired

velocity cannot be achieved in a single step are eliminated.

The training process converges after 525 epochs. The trained

networks are tested using grouped data of size 1389, taken

from the v0 − vf plane at a pitch of 0.023. Therefore, there

is no overlap with the training data.

(a)

(b)

Fig. 3: Optimized results of total energy and step time. (a)

Optimized results of total energy consumed per unit distance

Etotal. (b) Optimized results of step time tst.

Mapping errors of the neural network are shown in Fig.

4. The maximum error is 8.886 × 10−4 for p and 5.608 ×
10−4 for φ, and the minimum error is −4.023 × 10−3 and

−3.027× 10−3 respectively. It can be seen from the results

that the trained neural network is sufficiently precise, so that

it can be applied to real-time the control of bipedal robot

walking.

C. Feasibility check

We can see from the optimized results, there are some

cases where the desired velocity cannot be reached in a single

step due to the satisfied constraints of bipedal walking. The

region where desired velocity can be reached in one step is

the feasible region, and the remaining is unfeasible. In Fig.

5, the feasible and unfeasible regions are coloured white and

red respectively. If any v0 and vdes values from the unfeasible

region are adopted as an input to the neural network, out-

of-range control efforts may be generated, and may cause

unexpected movements such as flight, or slip motions during

walking, resulting in falling of the robot.

In order to prevent falling of the bipedal robot during

walking, a feasibility check is used. Before being inputted



(a) (b)

Fig. 4: Mapping errors of the neural network. (a) Mapping

errors of push-off impulse p. (b) Mapping errors of swing

leg angle φ.

Fig. 5: Feasibility check. The feasible region for biped

walking is coloured white and the unfeasible zone is coloured

red.

into the neural network, all desired states are checked,

whether it belongs to the feasible region or not. If the desired

state belongs to an unfeasible region, it will be replaced by an

intermediate state closest to the desired state in the feasible

region. This process is shown in Fig. 5 by two examples.

The blue lines show the robot speeding up in the unfeasible

region, and the green lines show the robot slowing down in

the unfeasible region. Subsequent to this, the robot’s walking

motion is always feasible and error between the actual and

desired state is minimized.

IV. SIMULATIONS

The proposed normalized neural network based approach’s

performance in bipedal walking were validated by three sim-

ulation studies in an increasing order of complexity. Firstly,

a comparison study with the LIPM in a one-step balancing

scenario is performed. Secondly, continuous walking under

disturbances to show the robustness of the proposed approach

is completed. Then finally, commanding the desired states to

the unfeasible region during continuous walking is carried

out to verify the proposed strategy for feasibility check. Note

that the proposed neural network is trained with normalized

data. Therefore, the proposed approach can be applied to

bipedal robots of any size, without specific adaptations. To

demonstrate this advantage, differentiating sizes of robots

(a) (b)

Fig. 6: One-step balancing using (a) IPM and (b) LIPM.

The step distance using LIPM is 1.1913 times bigger than

using IPM.

are employed. The first two simulations uses a bipedal robot

with a mass and leg length of m = 55 kg and l = 0.85
m respectively. The third simulation uses m = 90 kg and

l = 1.5 m respectively.

A. One-step balancing

One-step balancing of the bipedal robot is simulated with

the initial condition v0 = 0.4 (1.1545 m/s) to achieve

the desired velocity vdes = 0 at the next mid-stance. The

number inside the brackets is the actual value corresponding

to the normalised number outside the brackets. The push-off

impulse p = 0.0289 (4.5905 kg·m/s) and the swing leg angle

φ = 0.4126 rad are provided by the trained neural network.

The time elapsed (0.02 s) of one-step walking using the

proposed method is shown in Fig. 6 (a). In this simulation,

the robot comes to a complete stop at the second mid-

stance. The total energy consumed per distance is Etotal =
0.0492 (26.5211 J), the step time is tst = 0.9042 (0.2663
s) and the step distance is 0.8020 (0.6817 m). From the

simulation results, it can be seen that the proposed method

successfully balances the robot in one step when a proper

initial velocity is applied.

To further show the advantages of the IPM, one-step

balancing using LIPM [9] is introduced to compare with the

results above. Initial velocity v0 and angle of the stance leg at

heel-strike are kept the same in both the IPM and LIPM. The

time elapsed (0.02 s) of one-step walking using the LIPM

is shown in Fig. 6 (b). The energy consumed per distance is

Etotal = 117.0074 J (consumed energy is calculated based

on the work done by leg force), the step time is tst = 0.2577
s and the step distance is 0.8121 m. It’s seen from the

comparison that the IPM consumes much less energy and

takes a smaller step than the LIPM. The approach using the

IPM is subsequently more energy efficient and more realistic.

B. Continuous walking with disturbance

To verify the robustness of the proposed method, contin-

uous walking with a disturbance is simulated for six steps.

The initial condition for the first step is v0 = 0.1 (0.2886
m/s), and the final velocity of previous step becomes the

initial velocity of the latter step upon conclusion of each



(a)

(b)

Fig. 7: Continuous walking with disturbance. (a) The time

elapsed (0.02 s). (b) The velocity of CoM. A disturbance is

appended to the hip before the fourth step.

step. The desired velocity for the mid-stance is set to be

vdes = 0.5 (1.4431 m/s). A disturbance ∆v = 0.3 (0.5772
m/s) is added before the fourth step. Control variables for

all the steps are provided by the neural network controller.

The push-off impulses p of each step are 0.5053 (80.2138
kg·m/s), 0.2087 (33.1259 kg·m/s), 0.2087 (33.1259 kg·m/s),
0.1156 (18.3467 kg·m/s), 0.2087 (33.1259 kg·m/s) and

0.2087 (33.1259 kg·m/s) respectively, and the swing leg

angles φ for each step are 0.4873 rad, 0.3344 rad, 0.3344
rad, 0.4438 rad, 0.3344 rad and 0.3344 rad respectively. The

time elapsed (0.02 s) of the continuous walking is shown in

Fig. 7 (a), and velocity of the robot’s CoM is shown in Fig.

7 (b). It is seen that the proposed method compensates for

the imposed disturbance successfully and ensures the robot

achieves desired velocity at every mid-stance.

C. Continuous walking in unfeasible region

To verify the feasibility check strategy, a six-step continu-

ous walking simulation in the unfeasible region is performed.

Parameters of the robot in this simulation are m = 90
kg and l = 1.5 m respectively. Initial velocity is v0 =
0.85 (3.2589 m/s) for the first step. Desired velocity is

set to be vdes = 0.2 (0.7668 m/s) for the first three

steps, and vdes = 0.85 (3.2589 m/s) for the last three

steps. It can be seen from Fig. 5 that the desired states of

step one and step four are in the unfeasible region, thus

an intermediate velocity is applied to replace the desired

velocity and inputted into the neural network. The inter-

(a)

(b)

Fig. 8: Continuous walking in unfeasible region. (a) The

time elapsed (0.02 s). (b) The velocity of CoM. The desired

states of step one and step four are in the unfeasible region.

mediate velocity is the closest to the desired velocity in

the feasible region, as shown in Fig. 5. In this simulation,

the push-off impulses p of each steps are 0.0262 (9.0330
kg·m/s), 0.0436 (15.0514 kg·m/s), 0.0696 (24.0057 kg·m/s),
0.7749 (267.4074 kg·m/s), 0.4447 (153.4464 kg·m/s) and

0.3851 (132.8838 kg·m/s) respectively, and the swing leg

angles φ for each steps are 0.4335 rad, 0.4116 rad, 0.2267
rad, 0.4947 rad, 0.4040 rad and 0.3908 rad respectively. The

time elapsed (0.02 s) of the continuously walking model is

shown in Fig. 8 (a), and velocity of robot’s CoM is shown

in Fig. 8 (b). In this simulation, the bipedal robot reaches

desired velocity in two steps, which means that the feasibility

check strategy is efficient and functional, and the proposed

approach has overall good performance. Although, the model

parameters in this simulation are different from the first two,

the proposed method still works effectively, succeeding a

demonstration that the proposed method inherits generality.

V. CONCLUSION

In this paper, a novel approach for locomotion control of

a bipedal robot walking using a neural network is presented.

The proposed method is designed using a 2D IPM, where

the robots are controlled to walk in an energy efficient

gait. The neural network assists with the fast non-linear

mapping realization of desired states to control variables,

and averts the need for solving non-linear equations on-line.

The neural network is trained with normalised data, so it

can be applied to bipedal robots of any size, without any

individual refinement. The feasibility and robustness of the



proposed approach is verified by simulation results. Future

work entails the same approach to be extended into a 3D

inverted pendulum model, and verified on a real robot.
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