
Multi-agent Collaboration for Feasible Collaborative Behavior
Construction and Evaluation

First A. Yunkai Wang, Second B. Shenhan Jia, Third C. Zexi Chen, Fourth D. Zheyuan Huang and Fifth E. Rong Xiong
College of Control Science and Engineering

Zhejiang University
Hangzhou, Zhejiang Province, China

{wangyunkai, 3160104926, chenzexi, 21732054, rxiong}@zju.edu.cn

Abstract— In the case of the two-person zero-sum stochastic
game with a central controller, this paper proposes a best
collaborative behavior search and selection algorithm based on
reinforcement learning, in response to how to choose the best
collaborative object and action for the central controller. In
view of the existing multi-agent collaboration and confrontation
reinforcement learning methods, the methods of traversing all
actions in a certain state leads to the problem of long calculation
time and unsafe policy exploration. This paper proposes to
construct a feasible collaborative behavior set by using action
space discretization, establishing models of both sides, model-
based prediction and parallel search. Then, we use the deep q-
learning method in reinforcement learning to train the scoring
function to select the optimal collaboration behavior from
the feasible collaborative behavior set. This method enables
efficient and accurate calculation in an environment with strong
confrontation, high dynamics and a large number of agents,
which is verified by the RoboCup Small Size League robots
passing collaboration.

Index Terms— Multi-agent, Reinforcement learning,
RoboCup SSL, Dynamic passing ball

I. INTRODUCTION

The research on cooperation and confrontation of multi-
agent system (MAS) originated in the 1980s and it is one of
the research hotspots in robotics and artificial intelligence.
The core problem is to establish a mechanism that enables
multiple agents to cooperate with each other to accomplish
target tasks and achieve complex intelligence. The research
of multi-agent cooperation and confrontation is of great
significance, which has been widely used in many fields such
as recommendation system, traffic control, unmanned aerial
vehicle (UAV) control and game confrontation.

Due to the interaction between multiple agents, the com-
plexity of multi-agent system increases rapidly with the
increase of number of agents, behavioral complexity and
system dynamics. This presents a great challenge to the
approach of pre-programming to realize the behavior of
multiple agents, which leads to the research of reinforcement
learning (RL)[2], evolutionary computation, game theory,
complex system theory and other methods. Among them,
reinforcement learning is a hot topic in recent years.

In a multi-agent collaboration and confrontation system,
there is usually an agent that is most important to achieve the
current goal, which is called the central controller or leader.
A leader usually needs to select an optimal cooperative object
and complete the cooperative behavior by executing certain
action. For example, in ball games, the leader is a player
who holds the ball and needs to select an optimal receiver
to complete a passing cooperation by executing the passing
action. How to choose the best cooperative object and the
appropriate cooperative action is a key problem in multi-agent
collaboration and confrontation system. In this paper, the
combination of a cooperative object and a cooperative action
is defined as cooperative behavior, called COCAP (Cooper-
ative Object-Cooperative Action Pair), and an algorithm for
searching and selecting optimal cooperative behavior based
on RL is proposed. Our method, firstly, according to the
action space sampled with a certain precision and models
of both sides, predicts the behaviors and final results of all
the agents after each cooperative behavior executed, then
constructs a set of all feasible collaborative behaviors, finally
the best one will be selected by a scoring function which is
trained by RL method.

In this paper, the RoboCup Small Size League (SSL)
platform[1] is used for verification. It is a centralized and
distributed hybrid system, where two teams play against each
other and players collaborate to score goals. In essence,
it is a two-person zero-sum stochastic game process. The
two-person zero-sum stochastic game process refers to that
the two parties involved in the game are in a strict com-
petitive relationship, and each time the two parties choose
an action, they will gain benefits according to the current
state and the selected action. Then a new round of games
is carried out in the next random state. The distribution of
the new random state depends on the previous state and
the actions chosen by both parties. The characteristics of
the RoboCup SSL platform are high dynamics and high
antagonism, which has certain universality for the research
of multi-agent collaboration and confrontation. In this paper,
an example of RoboCup SSL robots dynamic passing is
presented to solve the problem of multi-robot cooperative

ar
X

iv
:1

90
9.

13
79

4v
1 

 [
cs

.R
O

] 
 3

0 
Se

p 
20

19



passing in high dynamic environment.
The remainder of the paper is organized as follow: section

II introduces the research of solving the cooperative and con-
frontative problems of multiple agents by learning method.
Section III introduces the best cooperative strategy learning
algorithm based on RL. In section IV, the proposed algorithm
is verified with the RoboCup SSL platform. Section V draws
a conclusion, which completes the paper.

II. RELATED WORK

In using RL method to solve the problem of multi-
intelligence cooperation and confrontation, problems can be
classified according to the types of game tasks, namely,
fully cooperative, fully competitive and mixed tasks. Fully
cooperative task means that all agents can benefit from
cooperation without competition. Fully competitive task is
a kind of zero-sum game, that is, the gain of one party
necessarily means the loss of the other party, and there is
no possibility of cooperation. Mixed task means that there is
both collaboration and competition between agents. Although
they are different problems, the solutions of these three
problems have strong similarity and interoperability when
using RL method to solve them.

In the unique case of optimal joint action, it can be
solved by greedy algorithm, that is, each agent chooses the
optimal action in the current state, such as Team Q-learning
method[3] proposed by Littman. When the optimal joint
action is not unique, it can be solved by the coordination
mechanism between multiple agents, including direct and
indirect coordination mechanism. In terms of direct coordina-
tion mechanism, Foerster et al.[4] proposed that Reinforced
Inter-Agent Learning (RIAL) and Differentiable Inter-Agent
Learning (DIAL) can be used to learn and communicate
end-to-end in a complex environment by means of deep q-
learning and back-propagation error derivative of commu-
nication channel. Sukhbaatar et al.[5] proposed CommNet,
which enables multiple agents to complete the task of fully
cooperation through continuous communication, and enables
them to learn communication while learning strategies. Peng
et al.[6] proposed a Multiagent Bidirectionally-Coordinated
Network (BiCNet) for communication, which builds a actor-
critic framework to learn actions and achieve multi-agent
cooperation and mastery of various battles in StarCraft
games. Indirect coordination mechanism can use the method
of agent modeling. For example, Claus et al.[7] proposed
the joint action learners (JALs) which are agents that learn
Q-values for joint actions as opposed to individual actions
and each agent will model for other agents and combine the
model to improve the returns of state action pairs. In the
case of confrontation can also use the minimax principle to
evaluate the optimization, such as Littman proposed minmax-
Q algorithm[8], assuming that the opponent will take actions
to minimize our benefits and maximize their own.

When solving cooperative and confrontative problems of
multiple agents by RL, convergence and rationality of learn-
ing are very important. Convergence refers to whether the
process of agent strategy training is stable and convergent,
while rationality refers to the fact that agent’s strategy can
always converge to an optimal response strategy relative to
other players’ strategies. In order to achieve convergence and
rationality, single-agent algorithm is useful to solve multi-
agent problems, such as WoLF-PHC[9] algorithm proposed
by Bowling et al. It contains the average strategy of each
agent with the current strategy and the current strategy will
refer to the average strategy and update the average strategy.
The method of centralized learning plus decentralized execu-
tion is also used to improve the robustness of the algorithm,
such as the MADDPG[10] algorithm proposed by Lowe et al.,
which enables multiple agents to find complex coordination
strategies in physical and information in the cooperative
and confrontative environment. And the Deep-MAHHQN[11]
algorithm proposed by Fu et al. can not only adapt to the
discrete-continuous mixed action space, but also show better
effect than the independent parameter learning method.

Many researchers carry out agent decision-making or
multi-intelligent cooperative and confrontative research based
on RoboCup SSL platform. In the aspect of agent decision-
making, Yoon et al.[13] realized the different shooting skills
of robots by means of temporal-difference learning and multi-
layer perceptron (MLP). Schwab et al.[14] used DDPG
algorithm to realize skills learning such as ball finding and
shooting, and transferred from simulation to actual robots.
In the aspect of cooperation and confrontation between
multiple agents, Nakanishi et al.[15] studied and analyzed
the cooperative passing and shooting task of three robots,
and achieved a high success rate in the test of actual robots.
Trevizan et al.[16] used the method of machine learning to
propose a similarity function, which compares two teams by
imitating the behavior of another team, so as to formulate
their strategies. This function can classify opponents and
decompose an unknown opponent into a combination of
known opponents. Mendoza et al.[17] proposed a Selectively
Reactive Coordination (SRC) algorithm to achieve offensive
coordination of multiple robots. Behzad et al.[18] used neural
network to train opponent model to predict opponent’s move-
ment through match recording, so as to get the weakness of
opponent’s strategy.

Currently, to realize multi-agent cooperation and con-
frontation, RL methods usually traverse all actions in a
certain state to obtain the action that maximizes the value
function, which is generally approximated by deep neural
network with stronger representational ability. However, in
most cases, a large number of actions need to be traversed,
and the deep neural network takes a long time to operate.
The method of traversing all actions will make the calculation
time longer, and unsafe actions will be selected in the policy



exploration. In this paper, combined with the agent’s model,
only the behaviors in the feasible cooperative behavior set
are traversed and explored, which can not only ensure the
feasibility of the selected behaviors in policy exploration, but
also reduce the time complexity of the algorithm.

III. BEST COLLABORATIVE STRATEGY LEARNING

In response to how to choose the best collaborative object
and the best collaborative action for the central controller
in the case of the two-person zero-sum stochastic game,
this paper proposes a best collaborative behavior search and
selection method based on RL. Firstly, we discretize the
action space, then establish models of both sides and parallel
search a feasible collaborative behavior set including actions
and collaborative objects. Finally, we degenerate the problem
into a Markov decision process, and use the deep q-learning
method in RL to train the scoring function for selecting the
optimal collaboration behavior from the feasible collaborative
behavior set.

A. Feasible Collaborative Behavior Set Search

For searching a feasible collaborative behavior set, we pre-
dict the behavior of the remaining agents and final outcome
after the leader performs each collaborative behavior. We
use min-max principle[8] to predict the result, i.e., assuming
that all agents act according to the optimal strategy model
after the leader performs a collaborative behavior. Using
the optimal strategy model to directly solve or deduct, we
can get the prediction results in the future. And actually, in
many multi-agent collaboration and confrontation systems,
both sides of the confrontation typically use a substantially
similar optimal strategy model.

Based on the optimal strategy model, we samples the
collaborative action space of the leader according to a certain
precision, and obtains the collected collaborative action set
A = {ai}, where ai represents different collaborative actions.
Assuming that all the agents use the optimal strategy to
cooperate or confront, and rely on the centralized parallel
computing to predict the final result and actions executed
by each agent after the leader executes each cooperative
action ai. Then we select all of the feasible (or beneficial
to us) collaborative behaviors. In this paper, we defined a
collaborative behavior consists of collaborative actions and a
collaborative object as “Collaborative Actions-Collaborative
Object Pair”(CACOP), and collaborative behaviors forms a
feasible collaborative behavior set B = {〈aj , rp〉}, where
rp represents different collaboration objects. After that, we
calculate the feature vector xk of each CACOP which may
be selected by the leader from the feasible collaborative
behavior set. The feature vector xk is extracted manually
that is beneficial to the goal of MAS. Finally, the scoring
function was used to calculate scores with respect to the
feature vectors. The CACOP with the highest score was
selected, and its action was selected as the best cooperative

action, and its cooperative object was selected as the best
cooperative object.

For the passing problem, the optimal strategy of a single
robot can be defined as intercepting the moving ball with the
maximum movement ability and the shortest time, i.e.

min t

s.t. v 6 vmax

a 6 amax

(1)

where t is the time when the robot intercepts the ball, v and a
are respectively the velocity and acceleration of the robot at
any time, and vmax and amax are respectively the maximum
velocity and acceleration of the robot. We adopt the bang-
bang control method proposed by kalmar-nagy et al.[19] in
2002 for motion planning. That is, at any moment, the robot
will accelerate or decelerate at its maximum acceleration, or
it will move at its maximum speed.

According to this optimal strategy, the interception time
of robot can be predicted. In this paper, the time interval
sampling search method is adopted, and the fixed minimum
time interval is ∆t (for example, 1/60 seconds). After the
position and velocity of the robots and the ball are obtained
through observation at a certain moment, we can calculate the
position Pi that the ball can reach after any time i∆t(i =
0, 1, 2, 3, ...) when it does uniform deceleration linear motion
under the action of field friction. Then, we start from i = 0 to
search all points, and predict the time Ti required for some
robot to reach the Pi point. If the condition Tk 6 k∆t is
satisfied after the kth time interval, it is considered that Pk

is the best interception point Pbest of the robot, and k∆t is the
shortest interception time Tbest of the robot. In the practical
application of RoboCup SSL, in addition to the prediction of
the ball rolling on the field, it is also necessary to predict the
position of flip shot ball. That is, before preparing to flip shot
the ball, we predict the first and second drop locations and
arrival times of the ball after flip shot at a certain speed, as
well as the subsequent approximate rolling speed. Therefore,
when calculating the interception prediction of the flip shot
ball, we just need to add the time of the first two jumps in
addition.

The cooperative actions of the leader robot include kicking
mode c, kicking direction θ and kicking speed v. In this
paper, 128 bisect samples were taken from the direction of
kicking the ball and 16 bisect samples were taken from the
speed of kicking the ball according to the limitation of the
kicking ability of the robot, thus forming the cooperative
action set A = {ai}, where ai = 〈ci, θi, vi〉. Then, each
kick mode, direction and speed were traversed, and up to 24
robots’ interception information were predicted, so that all
feasible CACOP could form a feasible cooperative behavior
set B = {〈aj , rp〉}, where rp represents our different coop-
erative robots. In order to realize real-time high-performance
computing, we use 128 × 16 × 24 threads on the GPU for



parallel computing.
On the passing problem, the eigenvector xk can be com-

posed of the following quantities: the interception time of the
robot, the shooting angle of the passing point, the distance
from the passing point to the opponent’s goal, the angle of
shooting after passing, and the interception time of our robot
before any other enemy robot. Distance features and angle
features are all normalized in order to balance the numerical
values of different dimensional features.

Through the above work, the feasible cooperative behavior
set and the eigenvector representing each feasible cooperative
behavior are calculated.

B. Optimal Collaborative Behavior Scoring Function Learn-
ing

Based on the construction of feasible cooperative behavior
set, the selection of best cooperative behavior is further
considered.

A simple and effective method is linear weighted sum,
but there are the following problems. First of all, it is
difficult to adjust the weight parameters with this method,
and it is also difficult to quantify the effects of different
parameters. Secondly, the linear weighting of features has
its own problems, and the weight of many features should be
non-linear. Therefore, the linear weighted sum method has
some limitations.

A universal and feasible method to solve the above prob-
lems is to use MLP to fit the best pass point scoring function.
MLP can use its nonlinear activation function to fit the
nonlinear function, and use its large number of nodes and
depth to fit the higher-order function.

The common training method of MLP is supervised learn-
ing, that is, providing MLP input vector and target output
vector for supervision, and training network weight by com-
paring the difference between the output and target output.
However, using supervised learning is relatively difficult for
the following reasons: First, manual annotation is needed
to select an best CACOP. This job sometimes is highly
professional. Secondly, manually annotated data need to
be stored offline in some format for training and use. In
general, supervised learning needs a large amount of data as
support, which means that a large amount of data needs to
be annotated manually. Therefore, using supervised learning
to train the MLP as a scoring function is not ideal.

Another way to train MLP is reinforcement learning. The
method of RL only needs to provide a relatively obvious
reward function without manual labeling, and the method of
RL can fully consider the cumulative return, that is, learning
the causal relationship in Markov decision process. RL can
not only learn offline data, including expert presentation data
and opponent generated data, but also learn online to interact
with the environment to generate new data. Therefore, this
paper uses RL method to train the MLP to obtain the scoring
function of cooperative behavior.

To use RL for training, first define a Markov decision
process. In this paper, each collaboration process is regarded
as a state s of Markov decision process, and the quantity
describing this state is the eigenvector xk mentioned above.
The action a in Markov decision process is to select different
CACOP. In this paper, it is considered that the jump from
one collaboration state to another is only related to the
previous collaboration state and the selected CACOP, and
not related to the previous one. Such a process conforms to
the conditions of Markov decision process. For example, for
the robot passing problem, in a certain cooperation process,
the robot 1 passes the ball to the robot 2, and the state
of the cooperation process describing the state of s is: the
interception time of the robot 2, the shooting angle of the
passing point, the distance from the passing point to the
opponent’s goal, the angle at which the shooting ball is
refracted after passing the ball, and the time when the robot 2
preferentially intercepts the ball than the enemy robot. After
completing this collaborative process, we make decisions
with robot 2 as leader, select the best cooperative action of the
robot 2 and the best collaborative object, and then performs
the next collaborative process to obtain the next cooperative
state s′.

On the basis of defining the Markov decision process, it is
assumed that the scoring function is Q(s, a), and this value
function is updated according to the formula of temporal
difference (TD) learning:

Q(s, a)← Q(s, a) + α(Rt+1 + γmaxa′Q(s′, a′)−Q(s, a))
(2)

Among them, α stands for the learning rate of RL, γ is the
discount factor, s stands for the collaboration status, a stands
for the selected CACOP, s′ stands for the next collaboration
state, a′ represents the next selected CACOP, Rt+1 represents
the next immediate reward, and maxa′Q(s′, a′) means to
select a collaboration behavior a′ in the state s′ to make
Q(s′, a′)max.

IV. EXPERIMENT

This paper uses the RoboCup SSL platform to conduct ex-
periments and verify the effectiveness of the method through
ball passing collaboration. Fig.1 is a schematic diagram of
the robot system architecture. On the actual playing field,
each side has 8 robots and an orange golf ball as a football.
The visual system above the field is processed according to
the color of the ball and color code on the top of robots.
The number, position and orientation of the robot and the
position of the ball are processed by an official dedicated
software and sent to each team’s host. Then each team’s
host makes decisions and sends commands to the robots on
the field by radio. The size of the field is 12m long and
9m wide. The diameter of the robot is 180mm, and the
maximum speed allowed for robot kicking is 6.5m/s. The
motion performance of the robot used in this experiment is



Fig. 1
SMALL SIZE ROBOT SOCCER SYSTEM ARCHITECTURE

TABLE I
ROBOT PERFORMANCE TABLE

Performance names parameters
Max speed 3m/s

Max acceleration 4.5m/s2

Max rotational speed 15rad/s
Max rotational acceleration 15rad/s2

shown in the Table I. In the actual game, the ball-carrying
robot can kick the ball at a certain speed in a certain direction
by means of a flat shot or a shot, and then the cooperative
robot moves to the ball that is calculated in advance to
intercept the moving ball, and then passes the ball to the
next cooperative robot.

This paper first validates the optimal strategy model for
constructing a feasible collaborative behavior set. In the
experiment, the interception time of the stationary robot at
different positions of the field was tested under the condition
of 1m/s and 4m/s. The performance of the robot in the
experiment was limited according to the parameters in table
I. The results are shown in Fig.2 and Fig.3. The darker areas
of the heat map represent shorter interception times, while the
lighter areas represent longer interception times. In Fig.2, the
ball moves to the right at a slower initial speed of 1m/s. In
this case, the closer the robot is to the ball, the faster it can
intercept the ball. However, when the ball speed is faster,
there will be different conclusions. As shown in the Fig.3,
the ball moves to the right at a faster initial speed of 4m/s,
and the robot cannot intercept the ball at the left position.
There is a clear boundary in the heat map. If the position of
the robot is within this boundary (i.e. dark area), the ball can
be intercepted in a short time, while outside the boundary
(i.e. white area) it cannot be intercepted in the field.

On the basis of obtaining the optimal strategy model,
this paper visualizes the best intercept point for all feasible
CACOPs calculated at two different times in the game and
the best flat shot and flip shot method obtained by linear
weighted sum method, as shown in Fig.4. The entire process

Fig. 2
1m/s BALL SPEED INTERCEPTION

TIME HEAT MAP. THE BALL MOVES

FROM THE (400cm, 450cm) TO THE

RIGHT AT A SLOWER INITIAL SPEED

OF 1m/s.

Fig. 3
4m/s BALL SPEED INTERCEPTION

TIME HEAT MAP. THE BALL MOVES

FROM THE (0cm, 450cm) TO THE

RIGHT AT A FASTER INITIAL SPEED

OF 4m/s.

of the algorithm can achieve an average operation speed of
4.04ms per frame on the GTX 1060 6G GPU, while using
the method for all CACOPs traversal requires an average
of 13.77ms per frame, which is about 3.4 for the former.
Therefore, the efficiency of the method can be verified. Since
the maximum speed of kicking the ball is 6.5m/s, which is
larger than the robot’s ability to move, the feasible pass points
obtained are mostly in the vicinity of the best cooperative
robot. In the case where the enemy robot is still on the field,
the pass success rate of almost 100% can be achieved by this
method. In the case of enemy robot movement on the field,
there may be no feasible flat pass method, but there is always
a feasible flip pass method. Using the linear weighted sum
method to simply adjust the parameters can give relatively
reasonable results, but it is difficult to get a similar effect to
manual programming.

At the end of the paper, the method of RL is used to train
the passing method of scoring function. The reward function
mainly consists of two parts: the first part reward r1 is a
dense reward based on the distance of the ball from the goal,



Fig. 4
VISUAL RENDERINGS OF FEASIBLE COLLABORATIVE BEHAVIOR.THE

LIGHT BLUE POINTS REPRESENT FEASIBLE FLAT PASS POINTS AND THE

ORANGE POINTS REPRESENT FEASIBLE FLIP PASS POINTS. THE GREEN

LINE REPRESENTS THE BEST ONE-SHOT BALL TRAJECTORY WITH A FLAT

SHOT AND THE GREEN LINE REPRESENTS THE BEST ONE-SHOT BALL

TRAJECTORY WITH A FLIP SHOT.

in the form of
r1 = e−

x
a (3)

Where x represents the distance of the ball from the center
of the goal in meters, and a is a constant coefficient. When
the ball is very close to the goal, the first part reward is close
to 1, and when the ball is very far from the goal, the first
part reward is close to 0. According to the size of the field,
when the ball is 3 meters away from the center of the goal,
the first part reward is 0.5, so that the solution a is 4.33.
The second part reward r2 is the sparse reward of whether
the ball enters their penalty area. When the ball enters their
penalty area, r2 is 10, and when the ball enters the goal, r2
is 50. Finally, the total reward function is

r = r1 + r2 (4)

This reward function allows the RL agent to learn how to
pass the ball and score a goal.

Considering that multiple robots can learn to pass well in
the beginning and improve the utilization of data in online
RL training, this paper uses all the official game log of the
2018 RoboCup SSL[20] as the empirical data for offline
training. After the offline training on the game log, the self-
confrontation competition is carried out in the simulation[21]
to generate more data to train, and then repeat this training
process. After a period of training, the trained MLP is
obtained, which is the scoring function of the passing.

Using the trained evaluation function to perform a game in
the simulation environment, and visualizing the scores of the
best intercept points corresponding to all CACOP obtained by
the algorithm, the effect is shown in Fig.5.The redder color
area represents a higher pass score, and the bluer color area
represents a lower pass score. The areas with low scores are
mainly concentrated near our half and enemy (yellow) robots,

while the areas with high scores are mainly concentrated
near the opponent’s penalty area and near our (blue) robot,
indicating that the selected pass area is in line with human
thoughts

Finally, this paper carried out 4v4 attack and defense test1,
that is, 4 robots of the offensive side only pass the ball but
not shoot, 4 robots of the defensive side only defend and not
grab the ball, to test the rationality of the offensive side pass
the ball. The offensive side can pass the ball to the position
with high threat degree under high dynamic condition by
using the algorithm in this paper, which further verifies the
effectiveness of the algorithm.

Fig. 5
THE HEAT MAP OF THE PASS SCORE OBTAINED BY THE ALGORITHM.
THE REDDER COLOR AREA REPRESENTS A HIGHER PASS SCORE, AND

THE BLUER COLOR AREA REPRESENTS A LOWER PASS SCORE. THE

YELLOW CIRCLE REPRESENTS THE ENEMY ROBOT, THE BLUE CIRCLE

REPRESENTS OUR ROBOT, AND THE PURPLE CIRCLE REPRESENTS THE

BALL.

V. CONCLUSIONS

Aiming at the problem of how to choose the best coop-
erative object and the best cooperative action in the multi-
agent collaboration and confrontation system, this paper
proposes a method to search for the best cooperative behavior
based on the feasible collaborative behavior set. According
to the optimal strategy models of both sides, all feasible
cooperative behaviors can be obtained by parallel search on
GPU, and the optimal cooperative behaviors can be selected
by training score function of RL method. The proposed
method is verified by experiments in the RoboCup SSL
robots, which is a multi-agent system, and it can make
the robots cooperate with other robots in a highly dynamic
and confrontational environment, so that the whole system

1https://youtu.be/S40VmSYvlPks



can show high intelligence. It has been applied to actual
competitions and relied on the superiority of the algorithm
to achieve the 2019 RoboCup SSL world championship.

To achieve good cooperation among multiple agents, not
only the best cooperation method of the leader should be
considered, but also the cooperation of other agents should be
considered. For example, in the ball passing problem, when
the robot is marked by the opponent, it needs to rely on
its own movement to get cooperation opportunities. When
the robot marks the opponent’s robot in reverse, it needs to
prevent the opponent’s robot from grabbing the ball through
blocking, so that the rest of our robots can pass the ball to
the advantageous position of attack. All the receiving robots
have no good running position, and the passing robot can not
even come up with a great advantage in the way of passing.
Therefore, in the future, we can use models of both sides and
search methods to get the cooperation method of cooperative
agents, so as to achieve higher intelligence in the cooperative
behavior of multiple agents.

REFERENCES

[1] RoboCup Small Size League. https://www.robocup.org/leagues/7.
[2] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An

introduction. MIT press, 2018.
[3] Littman, Michael L. ”Value-function reinforcement learning in Markov

games.” Cognitive Systems Research 2.1 (2001): 55-66.
[4] Foerster, Jakob, et al. ”Learning to communicate with deep multi-agent

reinforcement learning.” Advances in Neural Information Processing
Systems. 2016.

[5] Sukhbaatar, Sainbayar, and Rob Fergus. ”Learning multiagent com-
munication with backpropagation.” Advances in Neural Information
Processing Systems. 2016.

[6] Peng, Peng, et al. ”Multiagent bidirectionally-coordinated nets: Emer-
gence of human-level coordination in learning to play starcraft combat
games.” arXiv preprint arXiv:1703.10069 (2017).

[7] Claus, Caroline, and Craig Boutilier. ”The dynamics of reinforcement
learning in cooperative multiagent systems.” AAAI/IAAI 1998.746-752
(1998): 2.

[8] Littman, Michael L. ”Markov games as a framework for multi-agent
reinforcement learning.” Machine learning proceedings 1994. Morgan
Kaufmann, 1994. 157-163.

[9] Bowling, Michael, and Manuela Veloso. ”Rational and convergent
learning in stochastic games.” International joint conference on arti-
ficial intelligence. Vol. 17. No. 1. Lawrence Erlbaum Associates Ltd,
2001.

[10] Lowe, Ryan, et al. ”Multi-agent actor-critic for mixed cooperative-
competitive environments.” Advances in Neural Information Process-
ing Systems. 2017.

[11] Fu, Haotian, et al. ”Deep Multi-Agent Reinforcement Learning
with Discrete-Continuous Hybrid Action Spaces.” arXiv preprint
arXiv:1903.04959 (2019).

[12] Uther, William, and Manuela Veloso. Adversarial reinforcement learn-
ing. Technical report, Carnegie Mellon University, 1997. Unpublished,
1997.

[13] Yoon, Moonyoung. Developing basic soccer skills using reinforcement
learning for the RoboCup Small Size League. Diss. Stellenbosch:
Stellenbosch University, 2015.

[14] Schwab, Devin, Yifeng Zhu, and Manuela Veloso. ”Learning Skills for
Small Size League RoboCup.”

[15] Nakanishi, Ryota, et al. ”Cooperative 3-robot passing and shooting in
the robocup small size league.” Robot Soccer World Cup. Springer,
Berlin, Heidelberg, 2006.

[16] Trevizan, Felipe W., and Manuela M. Veloso. ”Learning opponents
strategies in the RoboCup small size league.” Proc. AAMAS. Vol. 10.
2010.

[17] Mendoza, Juan Pablo, et al. ”Selectively reactive coordination for
a team of robot soccer champions.” Thirtieth AAAI Conference on
Artificial Intelligence. 2016.

[18] Behzad, Kian, et al. ”PARSIAN 2019 Extended Team Description
Paper.”

[19] Kalmr-Nagy, Tams, Raffaello DAndrea, and Pritam Ganguly. ”Near-
optimal dynamic trajectory generation and control of an omnidirec-
tional vehicle.” Robotics and Autonomous Systems 46.1 (2004): 47-
64.

[20] Gamelogs of RoboCup SSL 2018. https://tigers-
mannheim.de/download/gamelogs/2018/div-a/.

[21] Monajjemi, Valiallah, Ali Koochakzadeh, and Saeed Shiry Ghidary.
”grsimrobocup small size robot soccer simulator.” Robot Soccer World
Cup. Springer, Berlin, Heidelberg, 2011.


	I Introduction
	II Related Work
	III Best Collaborative Strategy Learning
	III-A Feasible Collaborative Behavior Set Search
	III-B Optimal Collaborative Behavior Scoring Function Learning

	IV Experiment
	V Conclusions
	References

