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Abstract— In this paper, we propose a robust edge-direct
visual odometry (VO) based on CNN edge detection and
Shi-Tomasi corner optimization. Four layers of pyramids
were extracted from the image in the proposed method to
reduce the motion error between frames. This solution used
CNN edge detection and Shi-Tomasi corner optimization
to extract information from the image. Then, the pose
estimation is performed using the Levenberg-Marquardt
(LM) algorithm and updating the keyframes. Our method
was compared with the dense direct method, the improved
direct method of Canny edge detection, and ORB-SLAM2
system on the RGB-D TUM benchmark. The experimental
results indicate that our method achieves better robustness
and accuracy.

I. INTRODUCTION

The visual odometry [1] (VO), which can estimate
the camera motion between the adjacent images and the
planning of local maps, and plays a vital role in the
synchronous positioning and map construction technology
[2], [3], [4]. It has many practical applications in robotics,
such as autonomous driving, navigation, augmented real-
ity, and three-dimensional reconstruction.

In the past few decades, there has been a lot of work
on VO [5], [6]. The idea of VO was first proposed by
Moravec et al. [7] Follow-up related work can be divided
into feature methods and direct methods. Feature-based
(indirect) methods are to extract some salient features
from dense image data for calculation. The VO system
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Fig. 1. Flowchart of the our method. Pyramid denote extracts
four-layer pyramid, CNN+Corner denote CNN edge detection and
Shi-Tomasi corner optimization. L-M iteration denote Levenberg-
Marquardt to calculate the pose of two frames iteratively.

using the feature method runs stably with a low compu-
tational cost, and it is robust to factors such as illumina-
tion, image noise, etc. The famous ORB-SLAM[8] and
ORB-SLAM2[9] are based on the feature point method.
However, the VO system using the feature method is not
suitable for scenes that lack features[10], such as gradual
images. Compared with the indirect method, the direct
method uses the gray information of all pixels in the
image or a specific sub-region to calculate the camera’s
motion. The VO system using the direct method uses pixel
gradients and does not need to use feature points in the
image[11]. It makes full use of image information, which
is conducive to the realization of visual applications such
as building dense maps[12]. However, the direct method
has a large amount of calculation and is unsuitable for
large motions. Meanwhile, the direct method requires that
the image must meet the assumption that the gray pixel
value is constant, and this assumption will be destroyed
due to illumination and other reasons. According to the
number of pixels used, the direct method can be divided
into three types: sparse, semi-dense[13], and dense.

In this paper, we propose a robust edge-direct visual
odometry based on CNN edge detection and Shi-Tomasi
corner optimization. In the evaluation results of the stan-
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dard TUM RGB-D benchmark data set, we compared this
method with the ORB-SLAM2 system. RPE and ATE
data results show that this method has good accuracy in
multiple data set sequences.

The contributions of the work:
• Our method uses advanced CNN edge detection algo-

rithms. Combining CNN edge detection and Direct-
VO into Edge-Direct VO achieves excellent perfor-
mance compared to other algorithms in evaluating
the TUM RGB-D benchmark.

• In our Edge-Direct VO, we propose an improved
Shi-Tomasi angle optimization for edge maps, which
optimizes the pose estimation of VO to make the
whole method more accurate and robust.

• Keyframes can effectively reduce accumulated errors.
Our method uses a dual mechanism combining pe-
riodicity and motion amplitude to update keyframes,
which significantly improves the accuracy of exper-
imental results.

II. RELATED WORK

In this section, we will briefly introduce edge detection
and outline some of the vital work in the field of VO.

A. Edge Detection

Edge detection is a focused area in computers, and it
is a challenging subject. The traditional Sobel operator
and Canny operator edge detectors have a wide range
of applications [15], [16], [17]. However, these detectors
only take into account sharp local changes and look
for edges from these features, especially sharp changes
in color, brightness etc. In 2013, people began to use
machine learning-based methods to learn how to combine
the features of color, brightness, and gradient for edge
detection, such as gPb[14] and StructuredEdge[18]. The
Berkeley research group has established an internationally
recognized evaluation set called Berkeley Segmentation
Benchmark to evaluate the edge detection algorithm bet-
ter. The BSDS500 data set[19] consists of 500 natural
images with hand-labeled edges, which are used to train
learning-based edge detection techniques[14], [18]. With
the rapid development of deep learning, neural network-
based edges detection has become important. This method
essentially regards the edge detection process as an edge
pattern recognition process. Due to its excellent perfor-
mance in various edge test data sets, more and more edge
algorithms based on deep learning have been considered.
In this article, we choose a new CNN edge detection
algorithm DexiNed[20], which consists of a bunch of
learning filters, receives the image as input, and then
predicts the edge map with the same resolution. It shows
a better performance.

B. Visual Odometry(VO)

1) Feature-based VO: The traditional feature-based
(indirect) method extracts features (such as SIFT,

Fig. 2. Original picture (left), Canny edge detection(middle),CNN
edge detection (right).

SURF, ORB), finds the correspondence between
images, and then tracks them in the sequence to
estimate the camera’s movement. Due to the high
inaccuracy in feature extraction and matching, this
algorithm must calculate the basic or homogra-
phy matrix in the RANSAC loop. In terms of
using indirect methods, better-known systems are
ORB-SLAM, ORB-SLAM2, and Parallel Tracking
and Mapping (PTAM)[21]. In addition, RGBD-
SLAM[22] is also a feature-based (indirect) map-
ping system.

2) Direct VO: The direct method can optimize the
geometry of the image intensity without the need
for feature extraction. Therefore, it can work in
some environments without texture. Direct method
has been widely used in different sensors, such as
DVO[23] of RGB-D camera and LSD SLAM[24]
of monocular camera. The core idea is to maintain
the semi-dense mapping of keyframes and then
minimize the luminosity error. This is a highly
non-convex function, so a good initialization is
required. However, the direct (feature-free) method
estimates camera motion from image data, thus
ignoring feature extraction and robust correspon-
dence matching. That‘s the reason why they are
usually restricted to small inter-frame motion, which
can only be circumvented to a certain extent by
image pyramids. Most of these methods rely on the
optical consistency assumption[25], which makes
them particularly vulnerable to changes in lighting
conditions.

3) Edge based VO: Edge is another vital feature be-
sides points. Compared with points, edges can retain
more information and are more robust to changes in
light. The edge based methods are indirect method
and direct method, but the camera motion estima-
tion does not need correspondence, but the camera
motion estimation does not need to correspond. The
general idea is to minimize the distance between
the edge of one frame and the reprojected edge of
another frame.

Eade and Drummond[7], Klein, and Murray[21] have
mentioned edge-based SLAM. They gathered edge pixels
into edges, parameterized and processed them as features.
However, there was a problem that the edges are difficult
to match. Tarrio and Pedre[26] proposed an edge-based



monocular camera VO, and they searched along the
normal direction to match the edge. It also speeds up the
matching step by pre-calculating the distance transform
(DT) in a frame[27] to speed up this matching step. This
idea was adapted by Kuse and Shen[28] applied in their
RGB-D Direct Edge Alignment (D-EA), They observed
and optimized the camera motion based on gradient
estimation. Fabian Schenk and Friedrich Fraundorfer[29]
proposed REVO, a real-time robust RGB-D VO method
based on the edge. They use the distance transformation
on the edge to reduce the Euclidean geometric error, and
use the edges of Se and hed to move relative to the
camera. Yang and Scherer[30] proposed direct odometry
based on points and lines, where for a textured envi-
ronment, the estimated camera pose is comparable to
ORB SLAM[25]. Yi and Laurent’s Canny-VO’s[31] RGB-
D visual odometer proposed two alternative methods of
distance transformation commonly used in edge registra-
tion: Approximate Nearest Neighbour Fields and Oriented
Nearest Neighbour Fields, enhanced the efficiency and
accuracy of 3D-2D edge alignment. Mingsu[32] proposed
a monocular vision method based on edge feature detec-
tion and deep recurrent convolutional neural networks,
embedding traditional geometric algorithms into virtual
reality based on deep learning to enhance the influence of
image edge feature information.

C. Corner Detection

The corner point is a critical geometric element in
space, which can retain the image characteristics. There
will be corner points around the high rate of change
of its gradient value. The current mainstream corner
detection algorithm is a corner detection algorithm based
on grayscale changes. Moravec et al[8]. proposed to
calculate the grayscale difference and select a minor
grayscale variance as the corner response value for non-
maximum value suppression to determine the angle. Point.
Harris et al[33]. based on the Moravec algorithm pro-
posed to extract the corner points through the differential
operation and autocorrelation function. Shi and Tomasi
et al[34]. improved the corner response function of the
Harris operator, proposed to extract The Shi-Tomasi[34]
operator with a more uniform and reasonable feature point
distribution can significantly improve the corner extraction
effect. Rosten et al[35]. proposed the classic FAST and
FAST-ER image corner detection methods. It assumes the
corner points and performs threshold calculation to verify
whether it is an actual corner point.

III. METHOD

In this section, we briefly outline the proposed method.
The flow chart of our entire method is shown in Figure
1.

A. CNN edge detection

On the VO based on the sparse method[36], a frame-
work needs to learn geometric feature representation to

Fig. 3. The process of Shi Tomasi corner optimization.

solve the pose estimation. Compared with the classical
edge detection algorithm such as Canny and the machine
learning algorithm SE[22], [23], the extracted images
have the problems of too much noise so that it cannot
obtain a high accuracy pose estimation. Therefore, an
edge detection method based on CNN edge detection[20]
is utilized in this paper, which is shown in Fig 2. The
CNN edge detection has the advantages of extracting high
precision features to solve the process of motion.

The CNN edge detection[20] takes the original monoc-
ular image as input then predicts an edge-map with the
exact resolution. It can be seen as two sub-networks,
including the dense extreme inception network and the
up-sampling block.

In this work, the CNN edge detection[20] is used by
extracting edge features in RGB-D images. We subtract
the mean RGB values of the original RGB-D images and
study various edge detection methods and depicted in
Figure 2. It can be seen that many edges with a significant
distance(outliers) are extracted using the method. Thus,
we decide to choose the CNN edge detection.

B. Shi-Tomasi Corner Optimization

The corner extraction of image is easily affected by
the image environment, so we use the edge image as
a method. A large number of corners will be generated
where the gray value changes drastically. This will signifi-
cantly increase the number of post-processing calculations
and affect the accuracy of the subsequent LM iterative
calculation of pose. Then Shi-Tomasi corner optimization
is performed on areas with too dense corner points to
improve the quality of corner points and the speed of
computation. The specific steps are as follows:

1) Perform Shi-Tomasi[34] corner detection on the
RGB edge images in the TUM dataset. A fixed-
size window W (x,y) is set, and its pixel gray value
is I(x,y). The window is moved to the x and y
directions by a small displacement u, v, and the
pixel corresponding to the new position is gray the
degree value is I(x+u,y+ v). The change value of
the gray value of this movement can be obtained
[I(x+ u,y+ v)− I(x,y)]. Let Gaussian kernel The
window functions whose function ω(x,y) is W (x,y)
represents the weight of each pixel in the window.
The resulting grayscale value change E(u,v) can be



expressed as:

E(u,v)≈ ∑
(x,y)

ω(x,y) [Ixu+ Iyv]2

= ∑
(x,y)

ω(x,y)[u,v]
[

I2
x IxIy

IxIy I2
y

][
u
v

]
= [u,v]M

[
u
v

] (1)

M = ∑
(x,y)

ω(x,y)
[

I2
x IxIy

IxIy I2
y

]
(2)

2) It can be seen from the Eq (2). that the magnitude
of the gray value change depends on the matrix
M. To find the window that causes a large gray
value change, the eigenvalues λ1 and λ2 of the M
matrix can be used to calculate the corner response
function R corresponding to each window. Setting a
threshold τc, and the corner will meet the following
conditions:

R = min(λ1,λ2)> τc (3)

Set a 20x20 pixel window, slide the image from left
to right and from top to bottom, and set the sliding
step to 20. Count the number of corner points in the
sliding window. If the corner point is greater than
the preset threshold, the corner point in the window
is cleared, and the preset Shi-Tomasi corner point
extraction scheme is set.

3) Draw a circle at the optimized corner coordinates
and assign pixel points at the center of the circle to
form a small concentric circle area. The process is
shown in Figure 3.

Through our practice, Through our practice, when we
use LM algorithm to iteratively optimize the front and rear
frames and collect the Shi Tomasi corner improvement
scheme proposed earlier, the accuracy of RPE and ate
has been significantly improved.

C. Keyframe Selection

Our proposed VO method introduced keyframes as
reference frames for some new frames, thereby reducing
accumulated errors. The selection of keyframes generally
depends on the type of VO algorithm. Based on feature
points[25] usually restrict that a significant number of
frames pass, on the order of tens of frames. The method
we adopt is to update the keyframe by combining the dual
mechanism of periodicity[35] and motion amplitude[38].
Among them, the updated keyframe is shown in Figure 4.

D. Pose estimation based Levenberg-Marquardt

To solve the pose estimation, we employ a coarse-to-
fine approach Levenberg-Marquardt (LM)[37] minimiza-
tion to avoid the pose optimization falling into a locally
optimal solution. Meanwhile, the selection of the image
pyramid plays a vital role in the system performance

Fig. 4. (1) Our method determines the keyframe through a fixed
period. (2) Our method determines the keyframe through the motion
amplitude. (3) The final keyframe is determined by a dual mechanism.
Ft represents the key frame, ξ represents the camera movement, Ω and
represents the preset movement amplitude.

liked [35] and [38]. Thus, we choose a three levels image
pyramid because it performs well in most data sets.

In our method, the edges Et will be detected in each
original frame Ft from the intensity It as:

Et = E (It) (4)

We estimate the relative pose PKC from a current frame
Fc to keyframe Ft by minimizing the sum over all edge
distance errors r :

ξ
∗ = argmax

PKC
∑r2 (5)

Meanwhile, we use an ineratively re-weighted residual
error function with the Huber weights function. The Huber
weights are defined as:

δH(r) =
{

1 r ≤ θH
θH
r r > θH

(6)

The error function becomes:

ξ
∗ = argmax

PKC
∑δH(r)r2 (7)

We use an iteratively re-weighted Levenberg-Marquardt
Method[37] to optimize Eq.(7). The optimization process
from coarse to fine prevents the loss function from falling
into local extremes to a great extent and makes the whole
VO system more robust.

IV. RESUTLS AND DISCUSSION

This section tests our method on the RGB-D TUM
benchmark provided by the Technical University of Mu-
nich. The RGB-D TUM benchmark is widely used by var-
ious visual mileage calculation methods. Each sequence
contains RGB images, depth images, accelerometer data.
There are several challenging data sets in this benchmark.
For example, the duration, trajectory, translation, and
rotation speed of each sequence are different. We use
eight sequences to benchmark their system performance
to achieve a direct comparison with ORB-SLAM2.



A. Results on the TUM RGB-D Benchmark

The methods we tested include CNN edge detec-
tion and Shi-Tomasi corner optimization (CNN+Corner),
Canny edge detection and Shi-Tomasi corner optimization
(Canny+Corner), dense direct method (Origin) to follow
ORB-SLAM2 system comparison. In our practice, Shi-
Tomasi corner optimization can significantly improve the
overall accuracy of the method. When we test the data set
in the Origin group, tracking loss will occur, resulting in
the RPE and ATE data obtained completely deviating from
the ground truth. After we added keyframes, the accuracy
of the data results has also been improved. Similarly,
the Canny+Corner group is also due to the addition of
Shi-Tomasi corner optimization and keyframes, and the
accuracy and robustness of the data results have been
greatly improved. In CNN+Corner, the main method we
recommend is that the test performance of data sets is ex-
cellent. The best results in multiple data sets, the sequence
of estimated trajectories, and the reference trajectories of
the results are shown in Figures 5, 6, and 7. On the other
hand, the two groups Origin and Canny+Corner can only
achieve the best results in a particular data set, and the
data results in the test are not stable enough. For the ORB-
SLAM2 system, because the system cannot be initialized
well in some data sets, we only changed the parameter of
more than 500 feature points required during initialization,
and the other entire systems did not change. This means
that our method just is VO to compare with the complete
SLAM system.

B. Evaluation Metrics

To measure the local accuracy of the VO method, Sturm
et al.[19]. proposed relative pose error (RPE) and absolute
trajectory error (ATE). RPE measures the drift of ∆t in a
fixed time interval between a set of attitude Q from the
ground true trajectory and a set of attitude P from the
estimated trajectory, and the time step i is defined as:

RPEi =
(
Q−1

i Qi+∆t
)−1 (

P−1
i Pi+∆t

)
(8)

where ∆t is the time distance between poses. The ATE
at a time step i is given as:

AT Ei = Q−1
i SPi (9)

where Q and P are aligned by a rigid body transfor-
mation S. As suggested by Sturm et al[39]. we evaluate
the root mean squared error (RMSE) of the translational
component of the RPE and ATE.

C. Discussion

From our experiments, Table I can know that the RPE
results of the CNN+Corner method on all data set almost
entirely exceed the Canny, original image, ORB-SLAM2
system. We attribute this to the use of relatively accurate
and highly robust CNN edge detection, and improve Shi
Tomasi’s unique corner design. At the same time, it has
dual judgment mechanism key frames. From Table I, we

Fig. 5. The result of the sequence fr1xyz estimated trajectory and
reference trajector

Fig. 6. The result of the sequence fr2coke estimated trajectory and
reference trajector.

can see that the RPE data results achieve the best accuracy
in multiple sequences of the data set. Even if the accuracy
does not reach the best accuracy of the data results, it
is only slightly inferior to the highest accuracy. This
shows that our method CNN+Corner is highly accurate
and robust and can work well in a variety of scenarios.
From Table II, we can see that the ORB-SLAM2 entire
system performs very well in ATE, achieving the best
accuracy in multiple data set sequences. Even though we
do not use any Bundle Adjustment or global optimization
as employed by ORB-SLAM2, we once again performed
well in all non-SLAM methods, still showing excellent
robustness and competitiveness.



TABLE I
RELATIVE POSE RMSE (R: DEG/S, T:M/S) OF TUM DATASETS

Seq.
ORB-SLAM2 Origin Canny+Corner CNN+Corner

RMSE(R) RMSE(T) RMSE(R) RMSE(T) RMSE(R) RMSE(T) RMSE(R) RMSE(T)

fr1/xyz 0.978583 0.015260 1.568226 0.027317 1.472533 0.024445 0.724896 0.025371

fr2/360/hemhere 1.145817 0.127742 2.872298 0.390793 - - 1.021171 0.080454

fr2/dishes 2.402205 0.098421 0.700566 0.016443 0.959770 0.023250 0.787372 0.018816

fr2/coke 5.759803 0.104471 1.168573 0.621661 1.783891 0.046894 1.052839 0.025705

fr3/cabinet - - 4.200325 0.129285 4.214291 0.110508 3.462629 0.081417

fr3/large/cabinet 0.805515 0.051905 2.483856 0.271248 1.747718 0.169891 0.718709 0.048065

fr3/str/texture/far 0.540715 0.014733 0.454445 0.013473 0.781303 0.019318 0.455929 0.013280

fr3/str/noture/far 0.723704 0.027528 2.782048 0.216976 1.227557 0.045992 0.607414 0.021371

TABLE II
ABSOLUTE TRAJECTORY RMSE(M) OF TUM DATASETS

Seq.
ORB-SLAM2 Origin Canny+Corner CNN+Corner

RMSE(ATE) RMSE(ATE) RMSE(ATE) RMSE(ATE)

fr1/xyz 0.009436 0.045409 0.042076 0.038506

fr2/360/hemhere 0.229800 0.920911 - 0.328613

fr2/dishes 0.122247 0.094776 0.091492 0.083078

fr2/coke 0.419077 8.952361 0.148833 0.087646

fr3/cabinet - 0.389984 0.447204 0.443365

fr3/large/cabinet 0.090161 0.346849 0.267330 0.117691

fr3/str/texture/far 0.016497 0.027270 0.041634 0.034999

fr3/str/noture/far 0.027106 0.300592 0.115235 0.036792

Fig. 7. The result of the sequence fr2dishes estimated trajectory and
reference trajector.

V. CONCLUSION

We propose robust edge-direct visual odometry that
combines CNN edge detection and Shi-Tomasi corner op-
timization. The LM algorithm minimizes the photometric
error between the two images frames, thereby determining
the relative pose of the two frames of images. Through
our experiment, the method proposed in this paper is
combined with direct method of Canny edge detection and
ORB-SLAM2 system. Among the eight sequences, the
rum rgb-d dataset has the best RPE accuracy, and the other
sequences are only slightly lower. Regarding the accuracy
of ATE, our method also has an excellent performance
in non-slam methods. Although compared with the entire
system of SLAM, our method can still achieve the best
in two sequences without back-end optimization. Our
method can run well in multiple scenarios, demonstrating
the accuracy and robustness of our method. There is still a
gap between the accuracy of our proposed method in ATE
and the entire ORB-SLAM2 system. We will add back-
end optimization to our method in the future to perfect
the whole SLAM system.
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