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Abstract— In this paper we focus on analyzing the thermal
modality of tactile sensing for material recognition using a large
materials database. Many factors affect thermal recognition
performance, including sensor noise, the initial temperatures
of the sensor and the object, the thermal effusivities of the
materials, and the duration of contact. To analyze the influence
of these factors on thermal recognition, we used a semi-infinite
solid based thermal model to simulate heat-transfer data from
all the materials in the CES Edupack Level-1 database. We used
support-vector machines (SVMs) to predict F1 scores for binary
material recognition for 2346 material pairs. We also collected
data using a real robot equipped with a thermal sensor and
analyzed its material recognition performance on 66 real-world
material pairs. Additionally, we analyzed the performance when
the models were trained on the simulated data and tested on the
real-robot data. Our models predicted the material recognition
performance with a 0.980 F1 score for the simulated data, a
0.994 F1 score for real-world data with constant initial sensor
temperatures, a 0.966 F1 score for real-world data with varied
initial sensor temperatures, and a 0.815 F1 score for sim-to-real
transfer. Finally, we present some guidelines on sensor design
and parameter choice for thermal recognition based on the
insights gained from these results that would hopefully enable
robotics researchers to use this less-explored tactile sensing
modality more effectively during physical human-robot and
robot-object interactions. We release our simulated and real-
robot datasets for further use by the robotics community.

I. INTRODUCTION

Material recognition using thermal sensing is relatively
unexplored in robotics when compared with other haptic
sensing modalities such as force sensing. Under some con-
ditions, robots can use this sensing modality to recognize
contact with materials and objects that have distinct thermal
properties useful for manipulation [1]–[6]. For example, a
robot might come in contact with a bed frame or a mattress
while assisting a person with a disability who is lying down.
Recognizing that the object in contact is wood might help a
robot infer that it is in contact with the bed frame instead
of the human body or the mattress and thus, the robot might
alter its actions. This is particularly relevant in physical
human-robot and robot-object interaction scenarios where the
environments are cluttered such as during robotic caregiving
in unstructured homes. These environments may not always
have clear line-of-sight and complementary touch sensing
modalities such as thermal sensing can be useful. However,
the performance of material recognition with thermal tactile
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Fig. 1: A 1-DoF Robot with an active thermal sensing
module reaching to touch a cardboard material sample and
the resulting active thermal sensor data.

sensing varies considerably with different sensor, object, and
environment properties.

To gain insight on this variability, we analyzed the material
recognition performance on a wide range of materials from
a large materials database with different properties of the
object, the sensor, the environment, and the contact made
between the object and the sensor. We used a physics-based
model with a semi-infinite solid assumption for modeling
heat-transfer from the heated sensor to the object and added
Gaussian i.i.d noise to model the effect of noise. This model
can account for the variability in the initial conditions of
the sensor and the object, the sensor and object thermal
properties, as well as noise. Using this model, we can
generate simulated time-series heat-transfer data given sensor
and object parameters as well as their initial temperature
conditions for a large set of physically-meaningful param-
eters. We simulated the data for 69 materials from the
publicly-available CES Edupack Level-1 Database [8]. We
used this simulated time-series data to train and evaluate our
machine learning model for a total of 2346 material pairs.
We also performed real-world experiments using a real robot
equipped with a thermal sensor collecting data from material
blocks and comparing the material recognition performance
of 66 material pairs. Additionally, we analyzed how our data-
driven model, trained on the simulated data, performed on
data collected using the real robot.

The use of thermal sensing in robotics, though relatively
unexplored compared to other modalities of tactile sensing
such as force and vibration sensing, is not new. Many
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Fig. 2: Going from left to right: a representation of heat transfer from body to object [7], a diagram representing our model
of the sensor in contact with a material, the sensing module with fabric-based force sensor and an active thermal sensor,
the 12 materials for which data was collected with the 1-DoF robot.

researchers used integrated thermal and tactile sensing sys-
tems [9]–[14] for material recognition. Most of these studies,
including our own previous work [1]–[6], use thermal sens-
ing for material recognition under specific conditions such as
fixed sensor noise, fixed initial conditions, or fixed sensor-
object contact duration with a small number of materials.
While these provide great insights, they still do not capture
real-world variability due to a variety of object, sensor, and
environment conditions that thermal sensing is susceptible to.
Therefore, it is still unclear as to what benefit this sensing
modality provides for the robotics community, when com-
pared to modalities with a extensive body of work such as
audition, vision, and force sensing. Specifically in the study
of thermal tactile material recognition, some researchers used
the SynTouch BioTAC sensor [15]. Xu et al. [16] used the
BioTAC sensor to measure the temperature derivative and
other multimodal sensor data, and used Bayesian exploration
and reinforcement learning techniques to identify ten objects
with 99% accuracy. Chu et al. [17] used the BioTAC sensor
on PR2 robots to get haptic data. They used HMMs for
modeling and used SVMs to assign adjectives to the collected
haptic signals automatically. Kerr et al. [18] used the BioTAC
sensor on six material groups and used the derivative of
the temperature (TAC) and the dynamic thermal conductivity
(TDC) data to get 73% accuracy with ANNs.

This paper takes a deep dive into thermal tactile sensing
by leveraging a large material database and analyzes the
effect of material thermal effusivities, initial temperatures,
and noise on the material recognition performance for a
wide range of simulated and real-world materials. Our work
demonstrates the usefulness of material databases and sim-
ulated thermal sensor data in material recognition as well
as explores the feasibility of using data-driven methods for
sim-to-real transfer. To advance the use of thermal sensing in
the robotics community, we release our simulated and real-
robot datasets to stimulate further research across the robotics
community [19]–[22]. Finally, we provide some guidelines
for thermal sensor design and parameter choice for a desired
material recognition performance, given material and sensor
properties, as well as environmental conditions.

II. PHYSICS-BASED MODELS

In this paper, we focus on heat-transfer based thermal
sensing, which involves a tactile sensor with a heating ele-
ment and a temperature sensor touching an object. We refer
to this as ‘active’ thermal sensing in contrast to ‘passive’

thermal sensing, which we use to refer to a temperature
sensor alone making contact with an object. During active
thermal sensing, when the tactile sensor, which is heated
above room temperature, comes in contact with an object at
room temperature, heat transfers away from the sensor into
the object. This heat-transfer is dependent on the sensor and
object thermal properties, the initial temperature conditions
of the sensor and the object, as well as the noise due
to various sensor and environmental conditions. A robot
can sometimes use the difference in this heat transfer for
different materials to distinguish them. Here we present a
physics-based model of the heat transfer process between
a heated sensor and a material that will output time-series
heat-transfer data later used to train and validate our models.

A. Semi-infinite Solid Model
We modeled the heat transfer process between a heated

thermal sensor and a block of material as heat conduction
between two semi-infinite solids [23], [24]. Figure 2 shows
the diagram that represents this model.

In the model, the initial temperature of the object, To =
To(t = 0), is equal to the ambient temperature, Ta and we set
the initial sensor temperature, Ts = Ts(t = 0), higher than
Ta. The contact surface at x = 0, where x is the distance
from the thermistor to the surface, has a temperature Tc that
remains constant and is given by

Tc =
(Tses + Toeo)

(es + eo)
with es =

ks√
αs
, eo =

ko√
αo

(1)

where αo and ko are the coefficients of thermal diffusivity
and thermal conductivity of the object respectively, and αs

and ks are the coefficients of thermal diffusivity and thermal
conductivity of the sensor respectively. Given Ts and Tc, we
can find the temperature of the sensor at any time, t ≥ 0.

Ts (x, t) = Ts + (Tc − Ts) ∗ erfc
(

x

2
√
αst

)
(2)

where erfc is the complimentary error function given by

erfc(z) =
2√
π

∫ ∞
z

e−r
2

dr (3)

B. Noise Model
Note that during each temperature measurement, the mea-

surement of the sensor also includes noise and other sources
of uncertainty. To account for this, we introduce an additive
Gaussian noise, Zi, with zero mean and variance σ2 to
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Fig. 3: F1 score matrices for our SVM model with tcontact
= 4.00s (left) and tcontact = 1.00s (right) (Ts = 35◦C, σ =
0.05, Ta = 25◦C). This demonstrates that increased contact
duration results in increased performance and that rising δ(e)
makes it more difficult to distinguish large effusivities.

each temperature measurement. The underlying assumption
is that the deviation of each sensor reading from the actual
sensor temperature caused by the uncertainty due to various
conditions can be modeled as an independent normal random
variable.

With noise taken into consideration, the final sensor model
is given by

Tsens (x, t) = Ts + (Tc − Ts) ∗ erfc
(

x

2
√
αst

)
+Z ∼ N

(
0, σ2

) (4)

This modified model can help us analyze the effect of
noise on the performance of material recognition.

III. EXPERIMENT METHODS

To gain insight into material recognition performance with
thermal sensing data under varying conditions, we used the
physics-based model to simulate data as well as collected real
robot data. We selected support-vector machines (SVMs)1,
as our data-driven method because it is a simple method
that is widely used [25]–[27] and does not require a lot
of data, which was crucial for us given the constraints
of collecting real-world physical interaction data. Also, we
have previously achieved success with SVMs for material
recognition tasks using active thermal sensing [2], [3], [6].
We used the implementation of binary SVM provided by
the scikit-learn package [28] in Python with a linear kernel.
To produce feature vectors for training, we used both raw
temperature and estimated local slope from each trial of
experiment, and concatenated them into a single feature
vector. Using SVMs, we performed a four-part evaluation
in which we investigate what factors influence performance,
how they influence performance, and whether simulated data
is a viable option for training.
• First, we focus on classifying simulated sensor time-

series data for any two different arbitrary thermal effu-
sivities. We use the entire range of physically feasible

1We also experimented with other models such as Gaussian Naive Bayes
(GNB) and linear discriminant analysis (LDA) but found SVMs to be the
most robust across conditions and data sources while providing consistent
results

thermal effusivities to compare the performance and
analyze the effect of noise and sensor initial condition
on the performance.

• Second, we focus on the prediction of the models in
binary material recognition for all materials in the CES-
Edupack Level 1 Database [8] using simulated time-
series heat-transfer data resulting in 2346 material pair
comparisons. We simulate data using consistent sensor
initial conditions.

• Third, we focus on binary material recognition of 12
real-world materials. We analyze the prediction of the
model in binary material recognition tasks for real-
world time-series heat-transfer data collected using a
1-DoF robot from 12 different materials under both
consistent and varied sensor initial conditions, resulting
in 66 real-world material pair comparisons for each
condition type.

• Finally, we focus on material recognition performance
on the real-world data from the 1-DoF robot when
models were trained on only simulated data for the same
12 materials.

We used F1 scores as a metric of performance for all the
four cases and also calculated the number of indistinguish-
able material pairs for each case to provide more insight into
the material recognition performance.

IV. EVALUATION: DIFFERENT THERMAL EFFUSIVITIES

In this first set of experiments, we obtain the F1 scores
of the model, trained on simulated time-series data, for
classifying any two different arbitrary thermal effusivities.
Given a reference thermal effusivity value, we are interested
in the minimum effusivity difference δ(e) required to obtain
a binary classification F1 score greater than or equal to a
desired performance (Φ). In this paper, we set a threshold of
Φ = 0.9. This means we consider any effusivity pair with
F1 ≥ 0.9 classification score as distinguishable. We require
a high performance metric as we want to be confident that
the two materials are distinct.

When a thermal sensor comes in contact with a material,
the heat-transfer data is affected by sensor noise, initial
sensor temperature as well as the contact duration. Therefore,
we analyze the effect of these parameters on F1 score by
varying the quantities as given below:
• Noise Z ∼ N

(
0, σ2

)
: σ = 0.01 , σ = 0.05 and σ =

0.1
• Initial Sensor Temperature Ts : 30◦C and 35◦C
• Contact Duration tcontact: 1.00s, 2.00s, 3.00s, and 4.00s
We estimated the minimum distinguishable difference δ(e)

for every effusivity value e for the above conditions. We
generated noisy data using the physics-based model and per-
formed a 3-fold cross-validation over each unique effusivity
value pair and reported the F1 score.

A. Data Collection

In order to account for a sufficiently large thermal effusiv-
ity range, we referred to the CES EduPack 2016 [29] Level
1 material database. Of all the included materials, Rigid
Polymer Foam (LD) has the minimum effusivity value of
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Fig. 4: Effect of Initial Condition on δ(e) with fixed noise
σ = 0.05: Ts = 30◦C (Top), Ts = 35◦C (Bottom) (Ta
= 25◦C). We see that δ(e) is lower with longer contact
duration and larger temperature difference between sensor
and material.

3.05×101 Js−
1
2 K−1m−2 and Copper Alloy has the maximum

effusivity value of 3.68 × 104 Js−
1
2 K−1m−2. Therefore,

we sampled effusivity values in the range (0, 4.00 × 104]
Js−

1
2 K−1m−2. We discretized the range to 500 equal inter-

vals resulting in 124, 750 effusivity pairs. We can think of
each interval as a material category, and an instance of the
material category can take on any effusivity value within the
interval.

Given an effusivity value e, we constructed the time series
heat-transfer data based on the semi-infinite solid model
defined in II-A. We use es = 892 (Js−

1
2 K−1m−2), and

αs = 1.19× 10−9 (m2s−1) similar to our real-world sensor
parameters. We set Ta to 25◦C and set the sampling rate to
be 200 Hz, similar to our real-world sensor sampling rate.

We generated 100 trials for each effusivity interval by uni-
formly sampling from the effusivity interval and generating
simulated data with the sampled effusivity.

B. Results and Discussion

In this section, we present the results of the above evalua-
tion. Figure 3 shows two F1 score matricies with pairwise F1

scores for all effusivity values using our SVMs. We obtained
each matrix using Ts = 35◦C and σ = 0.05 and varying
tcontact from 4.00s to 1.00s. Table I shows the F1 scores and
the percentage of indistinguishable effusivity combinations
calculated based on the F1 score matrices with Φ = 0.9 for
a single contact duration of tcontact = 2.00s.

1) Effect of Contact Duration:
To analyze the effect of contact duration on classification

performance, we truncated the time series data at different
time lengths. Figure 4 shows the minimum distinguishable
difference δ(e) curves calculated based on the SVM results.
As expected, in each plot, with increased length of contact

TABLE I: Material recognition performance on simulated
data using SVMs with tcontact = 2.00s

Simulated Effusivities Simulated Materials
Temperature Difference Temperature Difference

Indistin Noise 5°C 10°C 5°C 10°C
guishable 0.1 20.25% 16.54% 47.76% 31.56%

Pairs 0.5 16.41% 14.96% 30.87% 18.28%
0.01 13.51% 13.04% 20.19% 11.28%

Temperature Difference Temperature Difference
Noise 5°C 10°C 5°C 10°C

F1 0.1 0.815 0.882 0.931 0.943
Scores 0.5 0.885 0.934 0.945 0.952

0.01 0.900 0.945 0.958 0.960

duration, the expected material recognition performance im-
proves. (See Section VIII).

2) Effect of Initial Condition: Figure 4 shows the results
from our SVMs for both Ts = 30◦C and Ts = 35◦C initial
conditions. By comparing the Ts = 30◦C graphs with the
Ts = 35◦C graphs in Fig.4, we observe that larger initial
temperature difference (Ts = 35◦C) between sensor and
ambient environment produces a lower δ(e) curve. In other
words, our SVMs predict that a larger initial temperature
difference between sensor and measured object can help in
material recognition, as it generates more distinguishable
heat transfer data for materials (See Section VIII).

3) Effect of Noise: Figure 5 shows the results of our
SVMs for different levels of noise. By comparing the three
plots (σ = 0.01, σ = 0.05, σ = 0.1 left to right),
in Fig. 5, we observe that simulations with a noise level
σ = 0.1 produce the highest δ(e) values. Again, our models
predict that thermal sensors with lower noise help in material
recognition (See Section VIII).

V. EVALUATION: MATERIALS DATABASE

In this set of experiments, we mapped the previous results
obtained using different thermal effusivity values to actual
material effusivity values. We obtained thermal effusivity
values of all 69 materials from CES EduPack Level 1
database [8]. Figure 6 shows the effusivity ranges of these
materials. We looked up binary material classification results
for all possible pairs of effusivity values corresponding to 69
materials (2346 pairs) from our previous results in Section
IV-B to find out what materials are distinguishable with F1

score greater than 0.9.

A. Node Graphs of Material Pairs

To visualize whether any two materials from the CES
EduPack Level 1 database [8] are distinguishable, we gen-
erated a node-graph based on their F1 scores where each
node represents a material. The node-graph has the following
characteristics:
• An edge between two material nodes represent that they

are indistinguishable. Note Φ = 0.9.
• The radius of a material node is proportional to its

thermal effusivity.
• CES Edupack divides all materials into four large

categories such as metals / alloys, ceramics / glasses,
polymers / elastomers, and composites / foams / natural.
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Fig. 5: Effect of Noise on δ(e) with fixed initial condition Ts = 35◦C and Ta = 25◦C: σ = 0.01 (Left), σ = 0.05 (Middle),
σ = 0.1 (Right). This demonstrates that lower noise produces lower δ(e) values.

A material node’s color signifies which category the
material belongs to.

• The thickness of the edge connecting two materials is
inversely proportional to their F1 score. This means that
the thicker the edge, the more difficult it is to distinguish
the material nodes.

• The relative position of the nodes has no relation with
any physical property.

Note, each material in the CES Edupack database [8] has
a range of thermal effusivity values that it can have. To find
the average F1 score for gold and silver for example, we
find the average of F1 scores for the binary classification
between all possible combinations of gold effusivities and
silver effusivities. In our case, the average F1 score can be
calculated based on the F1 score matrix, as shown in Fig. 3.

Figure 7 shows the results of Ts = 30◦C and Ts = 35◦C
with tcontact = 2.00s and σ = 0.05 noise. From the
figures, we can again see how initial temperature difference
between surface and sensor affects distinguishibility as the
graph with a higher Ts has fewer connected nodes and
thus fewer indistinguishable pairs. Additionally, we note
that there are three to four connected components in the
node-graph and these connected components tend to have
a majority of the material nodes in a particular category.This
further means that a material belonging to one of these
categories has a higher probability of being distinguished
from a material in another category than in its own category.
We can also see some densely connected components in the
graph. For example, metals are densely connected together,
which agrees with our observation in Fig. 3, as rising δ(e)
makes it harder to distinguish two materials with larger
effusivities.

The observed connected components also agree well when
compared with the effusivity ranges provided in Fig.6.
Metals, with large effusivity values, are generally difficult
to distinguish amongst themselves because their effusivity
values are so large that they dominate Tc (Eq.1) to a value
very close to the ambient temperature, rendering the Ts
curves indistinguishable.

Polymers / elastomers are more densely connected than the
metals. Looking at Fig. 6, we see that the effusivity ranges
of this group are very similar, thus making them harder to
distinguish.

As shown in Table. I, the number of edges present in
the graph is consistent with the observation we made in
Section IV-B, that a larger initial temperature difference
between sensor and material and less noise leads to more

Fig. 6: Effusivity Distribution of the 69 Materials in CES
Edupack Level 1 [8] in Logarithmic Scale

distinguishable material pairs.

VI. EVALUATION: REAL ROBOT DATA

A. Experimental Setup
The 1-DoF robot consists of a linear actuator, two Teensy

3.2 microcontrollers, a passive sensing thermistor, and an
active sensing module. The active sensing module consists
of the Thorlabs HT10K Flexible Polyimide Foil Heater with
10 kOhm Thermistor [30] (heating element and a temperature
sensor) on a fabric based force sensor [31] which is backed
by thermal insulation foam. The passive sensing thermis-
tor uses the fast-response 10kΩ NTC thermistor (EPCOS
B57541G1103F) [32].

The materials used for this set of experiments are shown in
Fig. 2. We selected these materials in order to have uniform
representation of materials from all four categories (metals,
ceramics, polymers, and composites) from the CES Edupack
database [8]. We selected the 12 materials such that there
are distinguishable and indistinguishable material pairs. We
estimated this by using the mid-point of the effusivity range
of these materials.

B. Experimental Procedure
We used a Python script on a separate Dell Optiplex 9010

Computer equipped with Intel(R) Core(TM) i7-3770 CPU at
3.40 GHz running 32-bit Ubuntu 12.04.2 LTS system with
Linux Ubuntu 3.5.0-54-generic kernel to control the device
through a serial link with the Teensy 3.2 microcontrollers.
Before reaching down and contacting the sample, the device
waits at 15 mm above the sample, to allow a voltage supply
to generate heat based on an integral controller such that the
active sensing thermistor maintains a desired temperature.
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Fig. 7: Node Graphs of Material Pairs with Ts = 30◦C
(left) and Ts = 35◦C (right) (σ = 0.05 and Ta = 25◦C.
This further shows that it is easier to distinguish between
materials with a larger temperature difference between sensor
and material.

Upon contact with the material, the integral controller stops
so as not to interfere with the natural heat-transfer from
the sensor to the material. The micro-controllers record the
active sensing thermistor and the passive sensing thermistor
readings at 200 Hz for 10 seconds. Note, the sensor has an
insulated foam backing which makes the sensor compliant
and thus, to ensure that there is complete contact between
the material and the sensor’s flat surface, we use a force
threshold of 5N to detect the onset of contact. Also, we
do not use the passive thermistor data for any material
recognition purposes. The robot then raises the sensing
module and waits for 20 seconds before starting the next trial.
Using the FLIR Tau 2 324 7.5mm Thermal Imaging Camera
Core (46324007H-FRNLX), we found that 20 seconds was
enough for the materials to come back to their initial state.
This is to ensure that the material is at a consistent initial
condition before the robot touches it at any trial.

We performed two sets of experiments with the real
robot. The first set consisted of 10 trials each with fixed
initial sensor temperature conditions for each material. The
second set consisted of 50 trials each with uniformly varied
initial sensor temperature conditions for each material. We
uniformly varied the initial sensor conditions between Ts =
30◦C to Ts = 35◦C. We identified the sensor and material
parameters as outlined in Appendix I. We performed this
set of experiments to simulate contact situations when a
robot incidentally touches objects in its environment without
the opportunity to adjust its initial sensor conditions. This
is a common scenario in manipulation in cluttered and
unstructured environments or in assistive scenarios working
in close contact with a human body [33].

C. Results

Trained and tested on real robot data with fixed initial
conditions, the SVMs achieved an average F1 score of 0.994
for binary material recognition across all 66 material pair
comparisons. When trained and tested with varied initial
sensor conditions, the models achieved an average F1 score
of 0.966 for across all 66 pairs.

TABLE II: Material recognition performance on real data
using SVMs with tcontact = 4.00s

Train Real-Test Real Train Simulated-Test Real

Initial Conditions
Metric Fixed Varied Fixed Varied

F1 Score 0.994 0.966 – 0.815

VII. EVALUATION: SIM-TO-REAL TRANSFER

To evaluate whether the simulated data can be used to
prepare real models and eliminate the lengthy training data
collection process, we produced data for each of the 12
materials using the physics-based model, trained our material
recognition data-driven model on that data, and tested the
model using the varied initial conditions data collected from
the 1-DoF robot.

For the data simulation, in order to produce varied con-
ditions similar to those of the data collected from the
robot, we pulled initial sensor temperatures Ts and initial
ambient temperatures Ta from truncated normal distributions
created using the means and standard deviations of the initial
conditions of the real robot data for each material such that

Ts = X ∼
(
min(TsR) < N (µTsR , σTsR) < max(TsR)

)
Ta = X ∼

(
min(TaR) < N (µTaR

, σTaR
) < max(TaR)

)
(5)

where TsR and TaR refer to the real-world initial sensor and
ambient temperatures. We used a constant noise of σ = 0.075
after evaluating model test performance with the following
noises [0.01, 0.025, 0.05, 0.075, 0.1] and choosing the σ
that produced the best performance. Additionally, we used
the thermal effusitivity values identified for the experiment
materials in Table III and the values of es and αs described
in Section IV-A.

The SVM models, trained on the simulated data and tested
on the real robot experiment data, achieved an average F1

score of 0.815 and found 48.48% of the real material pairs
indistinguishable.

Upon closer analysis, the SVMs struggled on material
pairs whose thermal effusivities were closer in value or are
from the same material category. For example, one model
tested on cardboard and wood, which have the smallest
thermal effusivities of the 12 materials, struggled with an
average F1 of 0.246 as their difference is smaller than
the minimum distinguishable difference δ(e). Additionally,
metals like stainless steel and aluminum, which have very
large thermal effusivities, also had a lower average F1 score
of 0.233. As shown in Fig. 3, rising δ(e) makes it harder to
distinguish materials with larger effusivities.

VIII. DISCUSSION

A. Model Limitations and Potential Extensions

Note the physics-based model which generated the time-
series data is based on a semi-infinite solid model assump-
tion, which assumes heat transfer from the active ther-
mal sensor to the material is in one direction only. This
assumption is generally valid for a short duration which
is characterized by the Fourier Number of the material
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[34], [35]. Additionally, the thermal properties of a material
change with temperature which we did not account for in
our physics-based model. There also exist some thermally
ambiguous conditions that make it difficult to distinguish
between materials no matter what their effusivities are.
Bhattacharjee et al. [2] found that robots can overcome
this ambiguity using two temperature sensors with different
temperatures prior to contact. Lastly, it remains to be seen
how the performance of machine learning models for binary
classification in this paper extend to multi-class classification
scenarios.

B. Impact of Contact Area

Our semi-infinite solid based physics model does not
explicitly model contact area, but heat-transfer depends on
contact area. In this paper, we used a ‘flat-area’ thermistor
similar to one used in [2]. When performing these evaluations
with a different ‘point’ sensor (a thermistor of small cross-
sectional area) used in [36], the SVM’s ability to distinguish
between materials with varied initial conditions dropped
from an average 96.69% to 33.33%. Depending upon the
sensor, application of a larger force might result in a better
contact area and contact between two flat surfaces may
result in more prominent heat-transfer than contact between
a flat surface and a spherical surface (‘point’ sensor). Also,
the ‘point’ sensor parameters may be more susceptible to
temperature changes i.e. the thermal effusivity and diffusivity
of the ‘point’ sensor may have changed significantly with
temperature changes in the sensor. Accounting for the sensor
parameter dependence on temperature, the effect of contact
area, as well as the force applied during physical contact are
interesting directions of future exploration.

C. Guidelines and Implications on Sensor Design

The combination of machine learning models and the time
series data generated from the physics-based model in this
paper could be used to design thermal sensors to achieve
a desired level of performance and to provide various ex-
perimental design guidelines based on their predictions. For
example, to be able to distinguish between two materials with
thermal effusivities of around 35k (Js−

1
2 K−1m−2) and 20k

(Js−
1
2 K−1m−2) , our results suggest that the robot with the

thermal tactile sensor needs to be in contact with the material
samples for at least 2 seconds. This is for a robot with a
thermal sensor with 0.05◦C noise and initial temperature
10◦C higher than the material’s initial temperature (See Figs.
4 and 5). Additionally, this work exemplifies how a materials
database can be used not only to explore key factors relevant
to material recognition via heat transfer, but also how it can
be utilized to simulate data used to train models that perform
on real robots.

APPENDIX I
FINDING SENSOR AND MATERIAL PARAMETERS

To identify sensor parameter values (sensor effusivity es
and sensor diffusivity αs), we collected 10 trials of data with
fixed initial conditions from each of the 12 materials (not
used for material recognition experiments). We identified
the sensor parameter values based on the sum of squared

error between experiment temperature data and the ideal
temperature data based on the semi-infinite solid model
defined in section II-A. For each material, we used the
Limited-memory BFGS with boundary constraints (L-BFGS-
B) [37] algorithm to find its optimal effusivity value, with
the boundary constraints given by the thermal effusivity
values of materials in the CES EduPack database [8]. In
addition, due to noise, it is possible that the heat-transfer
started slightly before or after the estimated onset of contact.
Thus, we also included a time offset from the onset of
contact as an optimization parameter. We used the L-BFGS-
B algorithm to find the time offset of the experiment data,
and it turned out that the heat transfer started about 0.5s
before the estimated onset of contact. We identified the
sensor effusivity as es = 892 (Js−

1
2 K−1m−2), and sensor

diffusivity as αs = 1.19×10−9 (m2s−1). Table III shows the
identified effusivity values of all materials in this experiment.

TABLE III: Thermal Effusivity Values of Materials in the
Experiment (Js−

1
2 K−1m−2)

Material Thermal effusivity Min. thermal Max. thermal
identified effusivity effusivity

Cardboard 336.90 196.67 452.23
Wood 400.95 331.00 506.46
ABS 514.15 514.15 882.58

Rubber 570.81 407.00 570.81
MDF 544.63 618.47 733.93

Acrylic 635.49 380.35 702.15
Porcelain 1276.59 1162.69 1334.07

Glass 1433.31 1433.31 1560.39
Granite 2749.87 2252.32 2749.87

Stainless Steel 10184.17 6388.35 10184.17
Aluminum 17530.03 12767.69 25972.02

Copper 23049.18 23049.18 36761.16
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