
  

  

Abstract—Humans can balance very well during walking, 

even when perturbed. But it seems difficult to achieve robust 

walking for bipedal robots. Here we describe the simplest 

balance controller that leads to robust walking for a linear 

inverted pendulum (LIP) model. The main idea is to use a linear 

function of the body velocity to determine the next foot 

placement, which we call linear foot placement control (LFPC). 

By using the Poincaré map, a balance criterion is derived, which 

shows that LFPC is stable when the velocity-feedback 

coefficient is located in a certain range. And that range is much 

bigger when stepping faster, which indicates “faster stepping, 

easier to balance”. We show that various gaits can be generated 

by adjusting the controller parameters in LFPC. Particularly, a 

dead-beat controller is discovered that can lead to steady-state 

walking in just one step. The effectiveness of LFPC is verified 

through Matlab simulation as well as V-REP simulation for 

both 2D and 3D walking. The main feature of LFPC is its 

simplicity and inherent robustness, which may help us 

understand the essence of how to maintain balance in dynamic 

walking. 

I. INTRODUCTION 

Robust balance is one of the most important goals in the 
study of bipedal robots. Perhaps we can learn how to achieve 
that goal from human beings since human can recover balance 
very well when perturbed. Generally, there are three ways that 
human takes to recover balance [1]:  1) Taking a step to move 
the zero moment point within the base of support; 2) Using 
ankle torques to move the center of pressure of the feet; 3) 
Distorting the upper body to change angular momentum. 
Among them, the last two strategies seem less efficient and 
can only reject small disturbances. We can imagine the case of 
standing still and being pushed. When pushing slightly, we 
can recover balance using strategy 2 or 3 without stepping. But 
for a strong push,  the only way to avoid a fall is to take one or 
more steps in the pushing direction. This indicates that 
stepping is central for achieving robust balance. Therefore, 
how to select the foot placement then becomes the key issue. 
Intuitively, it is natural to think that we should take  steps in 
the direction of falling to prevent a fall. However, it seems not 
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clear yet how we exactly selects the step location. According 
to our experience, the step length we take is possibily related 
to the falling speed, that is, when falling faster, we tend to take 
bigger steps.  

In the robotics field, foot placement control also has been 
widely studied. Some high-dynamic robots have had balance 
control based almost entirely on foot placement. The best 
known is from Marc Raibert’s MIT lab and his company 
Boston Dynamics. During Raibert’s early research of a 
hopping robot [2], an interesting observation was found, that is, 
when the robot places its foot on a special location called 
“neutral point”, it will move on a symmetric trajectory and 
keeps its forward velocity unchanged. Moreover, the robot 
speeds up when placing its foot ahead of the neutral point and 
slows down when placing its foot behind the neutral point. 
Using this property, Raibert designed a simple foot placement 
controller [2] which is known as “Raibert heuristic” and has 
been applied to various legged systems range from monopod, 
biped to quadruped robots [2-4]. The stability analysis and 
attraction of domain for “Raibert heuristic” can be found in [5]. 
Another approach to control using foot placement is the 
capture point [6-8] method developed by Jerry Pratt. Capture 
point refers to the point on the ground where a robot must step 
to in order to come to a complete stop. For a LIP model, the 
position of the capture point is determined by the body 
velocity multiplied by a constant coefficient. From “Raibert 
heuristic” to capture point, we find a common feature, that is, 
both of them have applied linear functions of the body velocity 
for foot placement. Besides, another famous biped control 
method named “SIMBICON” [9] has also adopted a similar 
balance strategy together with a finite state machine to 
generate a large variety of gaits, including walking, running, 
skipping, and hopping. And the authors have demonstrated 
that those gaits are very robust to disturbances through 
physics-based simulations.   Recently, a discrete PD controller 
for foot placement was proposed in [10] and applied to the 
ATRIAS robot. The stability has been analyzed based on the 
spring-loaded inverted pendulum (SLIP) model. 

All of the aforementioned work have shown the feasibility 
of LFPC from both theoretical analysis and practical 
applications. In this paper, we do theoretic analysis on LFPC 
using the LIP model [11], which has not yet been done in the 
existing literature as far as we know. Due to the simplicity of 
the LIP model, the stability condition and periodic solutions 
can be explicitly derived, which is very helpful for us to 
further understand LFPC. We also found that the capture point 
can be viewed as a particular case of LFPC and discovered a 
dead-beat controller that can lead to faster convergence than 
the capture-point controller.  

The contribution of this paper is that we present and 
comprehensively analyze the simplest balance controller 
based on LFPC for both 2D and 3D LIP models. There are 
numerous papers published on walking dynamics and balance 
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control, such as the work on capture steps [12], divergent 
component of motion [13], model predictive control [14], 
self-stabilization walking [15], robust control [16], and so on. 
However, it is difficult to obtain an intuitive understanding on 
how to maintain balance during walking from existing work. 
Therefore, the results in this paper can be a useful complement 
to the field of legged locomotion. 

The rest of this paper is organized as follows. In Section II, 
we introduce the LFPC strategy in 2D and perform theoretical 
analysis. In section III, LFPC is extended to 3D. Then 
simulation results are given in Section IV and conclusions are 
given in Section V. 

II. LINEAR FOOT PLACEMENT CONTROL IN 2D 

A. LFPC Description 

The LIP walking model is depicted in Fig. 1. The model 
has a point mass on the hip and two massless legs with point 
feet. During walking, the center of mass (CoM) maintains a 
constant height. Leg transition happens in a smooth way 
where the body velocity maintains the same. We assume an 
instantaneous double stance and no slipping of the feet. 
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Figure 1.  Linear foot placement control for LIP walking. The next step 

location is determined by a linear function of the body velocity.  

During the continuous phase of a step, the system follows 
the dynamics of a linear inverted pendulum, which is [11] 

 /x gx h=           (1) 

where x  is the horizontal position of the CoM relative to the 

stance foot, g  is the acceleration of gravity, and h  is the 

body height.  

The solution of (1) can be calculated as follows (an easy 
way to do this is to use symbolic computations by Matlab, and 
in the subsequent calculations, we have highly relied on that) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 cosh / 0 sinh /

0 sinh / / 0 cosh /

c c c

c c c

x t x t T T x t T

x t x t T T x t T

= +

= +
    (2)  

where /cT h g= . 

As shown in Fig. 1, the main idea of LFPC is to select the 
next step location as a linear function of the body velocity, that 
is 

fx a bv= +           (3) 

where 
fx  is the position of the next step location relative to 

the CoM, v  is the body velocity at the moment of touch 

down, and ,a b  are controller parameters.  

Equation (3) tells us where to take the next step, which 
uses only two parameters. Meanwhile, we also need to specify 
when to take the next step. Here we simply use a time duration 
T  to trigger the swing foot touch down.  

B. The Balance Criterion 

Suppose the initial state is 0 0( , )x v  in the beginning of the 

first step. According to (2), the state just before swing foot 
touch down can be calculated as 

1 0 0

1 0 0

s

s / c

T c T

T c T

x x c T v

v x T v

−

−

= +

= +
        (4)  

where  

( ) ( )sinh / , cosh /T c T cs T T c T T= =       (5)  

with T  being the step period. 
When touch down finishes, the swing leg becomes the new 

stance leg and the next step begins. Denote the initial state of 

the next step as 1 1( , )x v . Since the body velocity keeps 

unchanged during transition and 1x  is the body position 

relative to the stance foot, we have 

1 1 1, fv v x x−= = −          (6)  

Combining (3), (4), and (6), it follows that 

( )1 0 0

1 0 0

/

/

T c T

T c T

x a b x s T v c

v x s T v c

= − − +

= +
     (7)  

which is the Poincaré map [17] of the system. 

For the Poincaré map (7), denote it as ( )f q , where 

0 0[ , ]Tx v=q . Then the Jacobian of ( )f q , i.e., /f q  , can 

be obtained as follows 

/

/

T c T

T c T

bs T bc
J

s T c

− − 
=  

 
           (8)  

The eigenvalues of J  is 

1 20, /T T cc bs T = = −        (9)  

To maintain stability, it requires that all the eigenvalues 
stay in a unit circle, that is 

/ 1T T cc bs T−           (10)  

which can be rewritten as 

1 1T T
c c

T T

c c
T b T

s s

− +
          (11)  

Equation (11) is the stability condition of LFPC. Therefore, 
we call it the balance criterion. 

A direct interpretation of  (11) is that the velocity feedback 
coefficient should be located in a certain range which is 



  

determined by the system parameter cT  and the step period T . 

It also indicates that the stability has nothing to do with the 
parameter a . Another important observation is that the 

Jacobian (8) is independent of the system state, which 
indicates that the system is globally stable once the stability 
condition  (11) is satisfied. This is an important feature of 
LFPC, which reflects its inherent robustness.  

Equation (11) can also be written as 

1 1T T

T c T

c cb

s T s

− +
          (12)  

With (12), the stability condition is represented by the 
colored area in Fig. 2.  

 

Figure 2.  Balance criterion of LFPC. The colored area represents the 

parameter space that leads to stable walking. The red line is the “dead-beat” 

controller that converges in one step. The green area is the underdamped area 
(converge with oscillation) and the yellow area is the overdamped area (no 

oscillation). The capture-point parameter 
cb T=  (the blue line) is a special 

case in the overdamped area. 

From Fig. 2, we find the balance criterion can be 

summarized as “smaller T , wider range of b ”. Particularly, 

there is a constant parameter cb T=  that maintains stability for 

all values of T . This is exactly the feedback parameter that 
corresponds to the capture point [6]. 

For convenience of further analysis, let 0a =  and assume 

the initial value satisfies 0 0fx x bv= − = −  , then we have 

( )1 0/T c Tv bs T c v= − +      (13)  

Based on this, the stability region in Fig. 2 is further 
analyzed as follows. 

(1) The upper bound max ( 1) /c T Tb T c s= +  

In this case, we have 2 1 = −  and 1 0v v= − . If the robot 

steps to this point, it will recover to its initial position with 
reversed velocity. This is the farthest point that the robot can 
step to where its velocity will not increase in the end of the 
step. 

(2) The lower bound min ( 1) /c T Tb T c s= −  

In this case, we have 2 1 =  and 1 0v v= . If the robot steps 

to this point, it will go over this point and reach the mirror 
position with the same velocity. This is the closest point that 
the robot can step to where its velocity will not increase in the 
end of the step. 

(3) The dead-beat parameter /db c T Tb T c s=  

In this case, we have 2 0 =  and 1 0v = . If the robot steps 

to this point, it will stop above this point in the end of this step. 
This is the point that the robot can immediately stop (in one 
step), which we call the dead-beat point (see [18] for meaning 
of “dead-beat”). 

(4) The capture-point parameter 
cp cb T=  

This is an ordinary as well as a special value in the 
overdamped area. It is ordinary since the robot stops gradually 
just like the other points in the overdamped area. It is special 
since this is the only constant value independent of T  that 
leads to stable walking.  In addition, the robot will stop over 
this point when T  is infinity, which is the reason that [6] 
defines it as the capture point. 

For the readers’ convenience, Fig. 3 has given an example 
showing the trajectories of the CoM position and velocity. 

fx

v

minfx b v= dbfx b v= maxfx b v=

 

Figure 3.  Example trajectories of the CoM position and velocity when 

stepping to different location. The time starts at touch down and ends at 0.3 s.  

The colored area in Fig. 2 ( min maxb b b  ) is the 

converging region, where the robot will decelerate. Out of this 
area, the robot will accelerate in the end of the step. When a 
robot is perturbed, it is likely to fall due to a large velocity. 

Therefore, the range of min max( , )b b  reflects the feasible region 

that the robot can step to to maintain balance, which can be 

used as a metric of robustness. Since the range min max( , )b b  is 

much bigger for a smaller step period, it indicates that the 
robot is more robust when stepping faster. We summarize this 
property as “Faster stepping, easier to balance”. 

In the overdamped area, where db maxb b b  ( 2 (0,1)  ), 

the robot will decelerate with the velocity direction unchanged 
at each step and stop gradually. In the underdamped area, 



  

where min dbb b b   ( 2 ( 1,0)  − ), the robot will decelerate 

with the velocity direction reversed at each step and stop 
gradually. 

Comment 1: The balance criterion  (11) is derived for 

constant values of the parameters , ,T a b . It is a sufficient but 

not necessary condition to maintain stability when the 
parameters are varying in each step. For example, the robot 
can accelerate first and then decelerate before it stops. 

Comment 2: For 0a  , the steady-state velocity is not 

zero. In this case, the properties above still hold for the 

velocity deviation *e v v= −  ( *v  is the steady-state velocity).  

C. Periodic Solutions 

After obtaining the balance criterion, another question is 
where the state will converge to during stable walking. 
Answering this question relies on finding the fixed points of 
the Poincaré map. 

 (1) Period-1 gait  

When both legs use the same control parameters ,a b , the 

period-1 gait emerges. In a period-1 gait, the initial state of 
each step is the same, so we have 

1 0 1 0,x x v v= =          (14)  

Combing (7) and (14) leads to the following equation set 

( )0 0 0

0 0 0

/

/

T c T

T c T

a b x s T v c x

x s T v c v

− − + =

+ =
       (15)  

By solving (15) we obtain  

0

0

( 1)

s

s

s

c T

c c T T

T

c c T T

aT c
x

T T c b

a
v

T T c b

−
=

− +

−
=

− +

         (16)  

Equation (16) is the solution of the period-1 gait. The step 
length (defined as the next step position minus the stance foot 
position, it can be negative which indicates walking in the –x 
direction) can be obtained as follows  

0

2 (1 )
2

s

c T

c c T T

aT c
d x

T T c b

−
= − =

− +
        (17) 

 It can be seen from (17) that the step length is proportional 

to a . For a fixed b  and T , bigger a  indicates a bigger step 

length as well as a higher walking speed (the average walking 

speed is /d T ). Particularly, when 0a = , the robot will stop 

and step in-place.   

(2) Period-2 Gait 

When the two legs use different control parameters, we 
can obtain a period-2 gait, that is, the initial state recovers to 

0 0( , )x v   after taking two steps.  

Denote the controller parameters of leg 1 and leg 2 as  

1 1,a b  and 2 2,a b , respectively (it means that when leg 1 

swings, it uses the parameter 1 1,a b  and when leg 2 swings, it 

uses the parameter 2 2,a b ). Assume leg 1 swings first and then 

leg 2 swings. Denote the initial state of the first step (leg 1 

swings) as 0 0( , )x v , the initial state of the second step (leg 2 

swings) as 1 1( , )x v , and the initial state of the third step (leg 1 

swings) as 2 2( , )x v . Following (7), we can easily obtain the 

following relationship  

( )1 1 1 0 0

1 0 0

/

/

T c T

T c T

x a b x s T v c

v x s T v c

= − − +

= +
     (18)  

( )2 2 2 1 1

2 1 1

/

/

T c T

T c T

x a b x s T v c

v x s T v c

= − − +

= +
      (19)  

Substituting (18) into (19) and combining 2 0 2 0,x x v v= =  

it follows that 

( )

( )

( )

( )

0 2 2 1 1 0 0

2 0 0

0 1 1 0 0

0 0

/ /

/

/ /

/

T c T T c

T T c T

T c T T c

T T c T

x a b a b x s T v c s T

b c x s T v c

v a b x s T v c s T

c x s T v c

= − − − − +  

− +

= − − + +  

+

  (20)  

The solution of (20) is 

2

2 1 2 2 2 1

0 2 2 2 2

1 2 1 2

2

1 2 2 1

0 2 2 2 2

1 2 1 2

( )c c T c T T T

c c T c T T c T T T

c T c T T T

c c T c T T c T T T

T T a a b s T a c a b c s
x

T T c T b c s T b c s b b s

T a s T a c s a b s
v

T T c T b c s T b c s b b s

− − − +
=

− + + −

+ −
= −

− + + −

  (21)  

Equation (21) is the solution of the period-2 gait. And the 
step lengths of the first and the second step are  

1 1 1 2 2 2,d x x d x x− −= − = −         (22)  

where 

1 0 0

2 1 1

s

s

T c T

T c T

x x c T v

x x c T v

−

−

= +

= +
         (23)  

Substituting (23) into (22) gives 

2

1 1 2 2 1

1 2 2

1 2 1 2

2

2 2 1 1 2

2 2 2

1 2 1 2

2 2 2

/

2 2 2

/

c T T T T

c T T T T T T c

c T T T T

c T T T T T T c

T a s a b c s a b s
d

T s b c s b c s b b s T

T a s a b c s a b s
d

T s b c s b c s b b s T

− + −
=

− + + −

− + −
=

− + + −

    (24)  

When using different parameters, the values of 1 2,d d  

have many possibilities, which represents various walking 

styles. For example, when 1 2,d d  are both positive, the robot 

goes forward; when 1 2,d d  are both negative, the robot goes 

backward; when they are one positive and one negative, the 
robot will take one step forward and one step backward. 
Particularly, there are two special cases of the period-2 gait: 

(1) 1 2a a a= = , 1 2b b b= =  



  

In this case, the period-2 gait turns into the period-1 gait. It 

can be easily verified that 1 2,d d  in (24) both become equal to 

d  defined in (17).  

(2) 1a a= , 2a a= − , 1 2b b b= =  

In this case, we have  

1 2 1

2 ( 1)c T

c c T T

T a c
d d d

T T c bs

+
= = −

+ −
，       (25)  

Since 1 2 0d d+ = , it indicates that the solution is an 

in-place walking gait. With a bigger a , the two legs will be 

apart farther.  

III. LINEAR FOOT PLACEMENT CONTROL IN 3D 

The LIP walking model in 3D is as follows [11] 

 
/

/

x gx h

y gy h

=

=
          (26) 

This model is a combination of the 2D models in x and y 
directions, respectively. And the two directions are decoupled, 
thus they can be controlled independently.  

If we select the following foot placement controller for 
x-axis 

1

2

f w x

f w x

x a bv

x a bv

= +

= − +
         (27) 

and the following controller for y-axis 

1

2

f l y

f l y

y a bv

y a bv

= +

= +
             (28) 

where 
1 2
,f fx x  represent the foot location in x-axis for leg 1 

and leg 2, respectively; 
1 2
,f fy y  represent the foot location in 

y-axis for leg 1 and leg 2, respectively; ,w la a  and b  are 

controller parameters. It results in the 3D normal walking gait 

in y-direction as shown in Fig. 4, which can be characterized 

by the step length dl and step width dw. Moreover, the step 

length and step width are proportional to la  and wa , 

respectively, as can be verified from (17) and (25).  

 

Figure 4.  The 3D normal walking gait in y direction. The black dots are the 
footprints, and the red line is the CoM trajectory. The gait can be described 

by the step length dl and the step width dw. 

When considering the walking direction, one more gait 
parameter needs to be introduced. Denote the angle between 
the walking direction and the +y direction as  . Then 3D 

normal walking can be described by a triple ( , , )l wd d  . To 

generate this gait, we need to modify the controller. This can 
be achieved by using the rotation matrix, and the resulted 
controller is as follows 

1

2

1

2

sin cos

sin cos

cos sin

cos sin

f l w x

f l w x

f l w y

f l w y

x a a bv

x a a bv

y a a bv

y a a bv

 

 

 

 

= − − +

= − + +

= − + +

= − − +

     (29) 

In this controller, we can select a desired step period T  

and choose b  as the dead-beat parameter. Then it turns into a 

three-parameter controller with the triple ( , , )l wa a   to be 

selected, where each parameter determines the corresponding 

gait parameter in ( , , )l wd d  , respectively. With the controller 

(29), we can adjust the step length, step width, and walking 
direction in 3D walking conveniently. 

IV. SIMULATION STUDY 

Simulations are performed in Matlab with the model 

parameters 210 / , 1g m s h m= = . The step period 0.3T =  is 

used. For this model, we can calculate that 0.3162cT = , 

max 0.7159b = , 0.4278dbb = , 0.3162cpb = , min 0.1397b = . 

A. 2D Walking Simulation 

(1) Impact of parameter b  

Here we use different values of b  in the controller. The 

initial state is set to 0 00.3, 2x v= − = , and the parameter a  is 

set to zero. The resulted speed curves are shown in Fig. 5. 

 

Figure 5.  Speed curves for different values of b.  

It should be noted that the foot placement control happens 
in the end of each step. So the first step is uncontrolled and the 
velocity changes the same in the beginning. After the first step, 



  

we have the following observations: 1) when minb b= , the 

velocity maintains the same in each step; 2) when 
cpb b= , the 

velocity converges to zero gradually without oscillation; 3) 

when dbb b= , the velocity converges to zero in one step; 4) 

when 0.5b = , the velocity converges to zero gradually with 

oscillation; 5)  when maxb b= , the velocity has a continuous 

oscillation. The results are consistent with the previous 
analysis. 

(2) Impact of parameter a  

Here we fix b  to 0.3 and the initial condition 

0 00, 0x v= = . Four cases are studied using different values of 

a  ( 1a  for leg 1 and 2a  for leg 2). We calculate for 20 steps of 

walking and show the stance leg trajectory in the last 4 steps in 
Figs. 6-9. Case 1 leads to normal walking; Case 2 leads to 
in-place walking; Case 3 leads to asymmetrical walking where 
leg 2 takes smaller step than leg 1; Case 4 leads to 
asymmetrical walking where leg 2 takes smaller step in the 
opposite direction of leg 1.  It demonstrates that a rich walking 
style can be generated by using different values of a .  

 Case 1: Normal walking, 1 2 0.2a a= =  (periodic 

solution: 1 2 0.35d d= = − ) 

 

Figure 6.  Stance leg trajectory of the last 4 steps in Case 1. 

 Case 2: In-place walking, 1 20.2, 0.2a a= = −  (periodic 

solution: 1 20.69, 0.69d d= = − ) 

 

Figure 7.  Stance leg trajectory of the last 4 steps in Case 2. 

 Case 3: Asymmetrical walking, 1 20.2, 0.4a a= =  

(periodic solution: 1 20.87, 0.18d d= − = − ) 

 

Figure 8.  Stance leg trajectory of the last 4 steps in Case 3. 

 Case 4: Asymmetrical walking, 1 20.2, 0.4a a= = −  , 

(periodic solution: 1 21.2, 0.86d d= = − ) 

 

Figure 9.  Stance leg trajectory of the last 4 steps in Case 4. 

B. 3D Walking Simulation 

For 3D walking, we first investigate straight walking with 

different values of ,l wa a , which results in walking gaits with 

different step length and step width as shown in Fig. 10. Then 
we study walking with direction changes.  Two cases are 
shown in Fig. 11 and Fig. 12, respectively. As can be seen 
from Fig. 11, the foot will be away from the CoM when 
turning happens. And for a sharper turn, the foot needs to step 
farther away. Since the leg length is limited for a practical 
robot, sharp turning should be avoided. Instead, the robot can 
take multiple mild turns continually to achieve a big turn, just 
like is shown in Fig. 12. The walking animation of Fig. 11 and 
Fig. 12 can be found in the video attachment.  

 

Figure 10.  3D gaits for different parameters. Left to right: 

(1) 0.2, 0.1l wa a= =  ; (2)  0.2,  0.2l wa a= = ; (3)  0.4,  0.2l wa a= = ; 

(4)  0.4,  0.1wla a= = . It can be seen that (1) and (2), (3) and (4) have the 

same step length, while (1) and (4), (2) and (3) have the same step width. 

 

Figure 11.  3D walking with turning. The walker starts walking along +y 

from the origin with zero speed and turns four times of 45°, 90°, 45°, and 90°, 

respectively. 



  

 

Figure 12.  3D walking in a circle. The walker starts walking along +y from 

the origin with zero speed and turns for 10° after each two steps. 

C. Discussions 

Though the previous theoretical analysis and simulations 
have shown the feasibility of LFPC on an ideal LIP model, it is 
still of great concern about how to implement LFPC on a real 
biped robot. While LFPC has specified the foot placement 
control of the swing leg, a more complete walking controller 
should also include the stance leg control which involves 
complicated joint torque calculations to maintain foot contact, 
body height, and body attitude. A successful walking can only 
be achieved as all of the control loops work well together.  

As a simple verification, we build simple biped models in 
the V-REP [19] software as shown in Fig. 13. The models 
have a cuboid body, spherical hip joints, and telescopic legs 
ended with small feet. Despite the LFPC applied to the swing 
leg, controllers for the stance leg are also designed, including 
the linear joint controller to maintain a constant body height 
and the hip joint controller to keep the body upright. Those 
controllers are nearly decoupled, just like the three-part 
controller designed by Marc Raibert [2].  

We investigate both 2D (by constraining the robot between 
two frictionless walls) and 3D walking  and test the controller 
in various situations, including using different values for the 

parameter ,a b , adding external forces, and walking on stairs 

and slopes. The simulation results are given in the video 
attachment. Overall, the simulation results have shown high 
consistency with the previous theoretical analysis, which 
verifies the effectiveness of the LFPC strategy in more 
realistic situations. 

  

Figure 13.  V-REP simulation scenes. Left: 2D walking. Right: 3D walking. 

V. CONCLUSIONS 

Foot placement is the most important way to maintain 

balance for humans and biped robots. Despite some scattered 

results, the question of “when and where to take a step” has 

not yet be fully addressed. In this paper, we investigate the 

simplest balance controller for dynamic walking which uses a 

linear foot placement with respect to velocity. LFPC has three 

parameters , ,T a b , where T  tells when to take a step and 

,a b  specifies a  linear function of the body velocity that 

determines where to take a step. Theoretical analysis of LFPC 

on the LIP model gives the balance criterion and also 

discovers the property of “faster stepping, easier to balance”.  

Particularly, there exists a special value of b  that leads to an 

immediate convergence to a steady-state gait in just one step. 

LFPC can also be easily extended to 3D and we have 

proposed a simple three-parameter controller that can control 

the step length, step width as well as walking direction 

intuitively.  

The results in this work can be applied to both biped and 

quadruped robots. However, some practical factors such as 

leg length constraint, joint velocity constraint, and leg mass 

are not considered here for the sake of not adding complexity. 

It is necessary to do further study on their impacts in the 

future. Besides, we are developing a biped robot “Tik-Tok” 

[20] together with Professor Andy Ruina and we hope the 

proposed controller can be applied to our robot when it is 

completed. 
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