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Skill-based Multi-objective Reinforcement Learning of Industrial Robot
Tasks with Planning and Knowledge Integration
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Abstract—In modern industrial settings with small batch
sizes it should be easy to set up a robot system for a new
task. Strategies exist, e.g. the use of skills, but when it comes
to handling forces and torques, these systems often fall short.
We introduce an approach that provides a combination of
task-level planning with targeted learning of scenario-specific
parameters for skill-based systems. We propose the following
pipeline: the user provides a task goal in the planning language
PDDL, then a plan (i.e., a sequence of skills) is generated
and the learnable parameters of the skills are automatically
identified, and, finally, an operator chooses reward functions
and hyperparameters for the learning process. Two aspects of
our methodology are critical: (a) learning is tightly integrated
with a knowledge framework to support symbolic planning and
to provide priors for learning, (b) using multi-objective opti-
mization. This can help to balance key performance indicators
(KPIs) such as safety and task performance since they can
often affect each other. We adopt a multi-objective Bayesian
optimization approach and learn entirely in simulation. We
demonstrate the efficacy and versatility of our approach by
learning skill parameters for two different contact-rich tasks.
We show their successful execution on a real 7-DOF KUKA-iiwa
manipulator and outperform the manual parameterization by
human robot operators.

I. INTRODUCTION

Industrial environments with expensive and fragile equip-
ment, safety regulations and frequently changing tasks often
have special requirements for the behaviour policies that
control a robot: First, the trend in industrial manufacturing is
to move to smaller batch sizes and higher flexibility of work
stations. Reconfiguration needs to be fast, easy and should
minimize downtime. Second, it is important to be able to
guarantee the performance as well as safety for material and
workers. Therefore, it is crucial to be able to understand
what action is performed when and why. Finally, in industrial
environments digital twins provide a lot of task-relevant
information such as material properties and approximate part
locations that the robot behavior policies have to consider.

One way to fulfill these criteria is to use systems based
on parameterized skills [1], [2], [3]. These encapsulated
abilities realize semantically defined actions such as moving
the robot arm, opening a gripper or localizing an object with
vision. State-of-the-art skill-based software architectures can
not only utilize knowledge, but also automatically generate
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Fig. 1. The robot setup used for the experiments. Wooden boards indicate
the start location for the push task. The goal is the corner between the
fixture and the box with the hole for the peg task.

plans (skill-sequences) for a given task [4], [5]. The skill-
based approach is powerful when knowledge can be modeled
and formalized explicitly [1], [2]. But it is often limited when
it comes to skill parameters of contact-rich tasks that are
difficult to reason about. One example are the parameters
of a peg insertion search strategy where material properties
(e.g. friction) and the robot behavior need to be considered.
While it is possible to create a reasoner that follows a set of
rules to determine such skill parameters, it is challenging to
implement and to maintain.

Another way to handle this is to have operators manually
specify and try values for these skill parameters. However,
this is a manual process and can be cumbersome.

Finally, it is possible to allow the system to learn by
interacting with the environment. However, many policy
formulations that allow learning (e.g. artificial neural net-
works) have deficiencies which make their application in
an industrial domain with the abovementioned requirements
challenging. Primarily during the learning phase, dangerous
behaviors can be produced and even state-of-the-art RL
methods need hundreds of hours of interaction time [6].
Learning in simulation can help to reduce downtime and
dangers for the real system. But many policy formulations
are black boxes for operators and it can be hard to predict
their behavior, which could hinder the trust to the system [7]
Moreover, the simulation-to-reality gap [8], [9] is bigger in
lower-level control states (i.e. torques), and policies working
directly on raw control states struggle to transfer learned
behaviors to the real systems [6]. Our policy formulation
consisting of behavior trees (BT) with a motion genera-
tor [10] has shown to be able to learn interpretable and robust
behaviors [11].



The formulation of a learning problem for a given task is
often not easy and becomes more challenging if factors such
as safety or impact on the workstation environment need
to be considered. Multi-objective optimization techniques
allow to specify multiple objectives and optimize for them
concurrently. This allows operators to select from solutions
that are optimal for a certain trade-off between the objectives
(usually represented as a set of Pareto-optimal solutions).
In order to learn sample-efficient and to support the large
variety of skill implementations as well as scenarios, we
use gradient-free Bayesian optimization as an optimization
method.

In this paper we make the following contributions:

1) We introduce a new method which seamlessly inte-
grates symbolic planning and reinforcement learning
for skill-based systems to learn interpretable policies
for a given task.

2) A Bayesian multi-objective treatment of the task learn-
ing problem, which includes the operator through easy
specification of problem constraints and task objectives
(KPIs); the set of Pareto-optimal solutions is presented
to the operator and their behavior can be inspected in
simulation and executed on the real system.

3) We demonstrate our approach on two contact-rich
tasks, a pushing task and a peg-in-hole task. We
compare it to the outcome of the planner without
reasoning, randomly sampled parameter sets from the
search space and the manual real-world parameteri-
zation process of robot operators. In both tasks our
approach delivered solutions that even outperform the
ones found by the manual search of human robot
operators.

II. RELATED WORK
A. Skill-based Systems

Skill-based systems are one way to support a quick setup
of a robot system for a new task and to allow re-use of
capabilities. There are multiple definitions of the term skills
in the literature. Some define it as a pure motion skills [12] or
"hybrid motions or tool operations" [13]. Other work has a
broader skill definition [1], [2], [3], [4], [5], [14], [15]. In this
formulation, skills can be arbitrary capabilities that change
the state of the world and have pre- and postconditions.
Their implementation can include motion skills, but also
proficiencies such as vision-based localization of objects.
In [16] skills are "high-level reusable robot capabilities, with
the goal to reduce the complexity and time consumption of
robot programming". However, compared to [3] and [14] they
do not use pre- and postconditions. In [17], an integrated
system for manual creation of fask plans is presented. It
shares the usage of BTs with our approach.

Task planners are used in [1], [2], [4], [S], [14], [18], [16],
[13] while [17] lacks such a capability.

In [16] it is suggested that "Machine learning can be
performed on the motion level, in terms of adaptation, or
can take the form of structured learning on a task/error

specification level". However, none of the reviewed work
offers a combination task-level planning with learning.

B. Policy Representation and Learning

An important decision to make when working with ma-
nipulators is the type of policy representation and on which
level it interfaces with the robot. The latter can strongly
influence the learning speed and the quality of the obtained
solutions [19], [20]. These choices also influence the form
of priors that can be defined and how they are defined [6].
Not many policies combine the aforementioned properties of
being a) interpretable, b) paramterizable for the task at hand
and c) allow learning or improvement.

The commonly used policy representations for learning
systems include radial basis function networks [21], dynam-
ical movement primitives [22], [23] and feed-forward neural
networks [21], [24]. In recent years deep artificial neural
networks (ANN) seem to become a popular policy. All of
them have in common that their final representation can be
difficult to interpret. Even if a policy only sets a target pose
for the robot to reach, it can be problematic to know how it
reacts in all parts of the state space. In contrast to that, [11]
suggests to learn interpretable policies based on behavior
trees [10] that work explicitly in end-effector space.

C. Planning and Learning

Symbolic planning is combined with learning in [25],
[26], [27], [28]. In [25], the PLANQ-Learning algorithm
uses a symbolic planner to shape the reward function based
on the conditions defined which are then used by the Q-
learner to get an optimal policy with good results on the
grid domain. [26] uses the combined symbolic planner with
reinforcement learning (RL) in a hierarchical framework to
solve complex visual interactive question answering tasks.
PEORL [27] integrates symbolic planning and hierarchical
reinforcement learning (HRL) to improve performance by
achieving rapid policy search and robust symbolic planning
in the taxi domain and grid world. SPOTTER [28] uses RL
to allow the planning agent to discover the new operators
required to complete tasks in Grid World. In contrast to
all these approaches, our approach aims towards real-life
robotic tasks in an Industry 4.0 setting where a digital twin
is available.

In [29], the authors combine symbolic planning with
behavior trees (BT) to solve blocks world tasks with a
robot manipulator. They use modified Genetic Programming
(GP) [30] to learn the structure of the BT. In our approach,
we focus on learning the parameters of the skills in the BT
and utilize a symbolic planner to obtain the structure of the
BT.

III. APPROACH

Our approach consists of two main components that
interact in different stages of the learning pipeline: First,
SkiROS [14], a skill-based framework for ROS, which repre-
sents the implemented skills with BTs, hosts the world model
(digital twin), and interacts with the planner. SkiROS is also
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Fig. 2. The architecture of the system that depicts the pipeline: (1) The

operator enters the goal state; (2) a learning scenario for the plan is created;
(3) rewards and hyperparameters are specified; (4) learning is conducted
using the skills and the information in the world model; (5) after policy
learning, the operator can choose which policies to execute on the real
system (6).

used to execute BTs while learning and to perform tasks on
the real system. Second, the learning framework that provides
the simulation, the integration with the policy optimizer as
well as the reward function definition and calculation. The
architecture of the system and the workflow is shown in
Figure 2: (1) an operator enters the task goal into a GUI;
(2) a plan with the respective learning scenario configuration
is generated; (3) an operator complements the scenario with
objectives and reward functions; (4) learning is conducted in
simulation using the skills and information from the world
model; (5) in the multi-objective optimization case, a set of
Pareto-optimal solutions is generated and presented to the
operator; finally, (6) the operator can select a good solution
from this set given the desired trade-off between KPIs and
execute it on the real system.

A. Behavior Trees

A Behavior Tree (BT) [31] is a formalism for plan
representation and execution. Like [32], [33], we define it as
a directed acyclic graph G(V, W) with |V| nodes and |W]|
edges. It consists of control flow nodes (processors), and ex-
ecution nodes. The four basic types of control flow nodes are
1) sequence, 2) selector, 3) parallel and 4) decorator [33].
A BT always has one initial node with no parents, defined
as Root, and one or more nodes with no children, called
leaves. When executing a BT, the Root node periodically
injects a tick signal into the tree. The signal is routed through
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Fig. 3. The BT of the generated plan for the peg insertion task in eBT
format [32]. Each node has conditions or pre-conditions shown in the upper
half and effects or post-conditions shown in the lower half. The serial
start control flow node (—*) executes in a sequence and remembers the
successes. The skills have a parallel-first-success processor (<||F.S>).

the branches according to the implementation of the control
flow nodes and the return statements of their children. By
convention, the signal propagation goes from left to right.
The sequence node corresponds to a logical AND: it
succeeds if all children succeed and fails if one child fails.
The selector, also called fallback node, represents a logical
OR: If one child succeeds, the remaining ones will not
be ticked. It fails only if all children fail. The parallel
control flow node forwards ticks to all children and fails if
one fails. A decorator allows to define custom functions.
Implementations like extended Behavior Trees (eBT) in
SkiROS [32] add custom processors such as parallel-first-
success that succeeds if one of the parallel running children
succeeds. Leaves of the BT are the execution nodes that,
when ticked, execute one cycle and output one of the three
signals: success, failure or running. In particular, execution
nodes subdivide into 1) action and 2) condition nodes.
An action performs its operation iteratively at every tick,
returning running while it is not done, and success or failure
otherwise. A condition performs an instantaneous operation
and returns always success or failure and never running. An
example of the BT for the peg insertion task is in Fig. 3.

B. Planning and Knowledge Integration

The Planning Domain Definition Language (PDDL) [34],
[4] is used to formulate the planning problem. We use
the SkiROS [18] framework that automatically translates a
task into a PDDL planning problem by generating domain
description and problem instance using the world model. We
then use the semantic world model (WM) from SkiROS [14]
as the knowledge integration framework.

Actions and fluents are obtained by utilizing the predicates
that have pre- or post-conditions in the world model. For
the problem instance, the objects (robots, arms, grippers,
boxes, poses, etc.) in the scene and their initial states (as
far as they are known) are used. After getting the necessary



domain description and the problem instance SkiROS calls
the planner. The goal of the planner is to return a sequence
of skills that can achieve the goal conditions of the task. The
individual skills are partially parameterized with explicit data
from the WM. The WM is aware of the skill parameters
that need to be learned for the task at hand and they are
automatically identified in the skill sequence.

C. Policy Optimization

In order to optimize for policy parameters, we adopt the
policy search formulation [21], [6], [24]. We formulate a
dynamical system in the form:

X1 = X + M (x4, 0, @), (1)

with continuous-valued states x € R¥ and actions u € RY.
The transition dynamics are modeled by a simulation of
the robot and the environment M (x;,wu;, ¢p). They are
influenced by the domain randomization parameters ¢ p.

The goal is to find a policy m,u = 7(x|@) with policy
parameters 6 such that we maximize the expected long-term
reward when executing the policy for T' time steps:

T
Zr(xt,ut)lel : )
t=1

where 7(x;, u;) is the immediate reward for being in state x
and executing action u at time step ¢. The discrete switching
of branches in the BT and most skills are not differentiable.
Therefore, we frame the optimization in Eq. (2) as a black-
box optimization and pursue the maximization of the reward
function J(#) only by using measurements of the function.
The optimal reward function to solve the task is generally
unknown, and a combination of reward functions is usually
used. In the RL literature, this is usually done with a
weighted average, that is, r(x;,us) = >, wiri(Xs, ue). In
this paper, we chose not to use a weighted average of reward
functions that represent different objectives (as the optimal
combination of weights cannot always be found [35]), but
optimize for all objectives concurrently (Sec. III-E) using
Bayesian Optimization.

J(0) =E

D. Bayesian Optimization

We consider the problem of finding a global minimizer (or
maximizer) of an unknown (black-box) objective function
f: 8" € argmingg f(s), where S is some input design
space of interest in D dimensions. The problem addressed in
this paper is the optimization of a (possibly noisy) function
f S — R with lower and upper bounds on the problem
variables. The variables defining S can be real (continuous),
integer, ordinal, and categorical as in [36]. We assume that
the function f is in general expensive to evaluate and that the
derivatives of f are in general not available. The function f is
called black box because we cannot access other information
than the output y given an input value s.

This problem can be tackled using Bayesian Optimization
(BO) [37]. BO approximates s* with a sequence of evalua-
tions, y1,%2,-..,Y: at S1,892,...,8; € S, which maximizes
an utility metric, with each new s;y; depending on the

previous function values. BO achieves this by building a
probabilistic surrogate model on f based on the set of
evaluated points {(s;,y;)}!_,. At each iteration, a new point
is selected and evaluated based on the surrogate model which
is then updated to include the new point (S;+1, y¢+1). BO de-
fines an utility metric called the acquisition function, which
gives a score to each s € S by balancing the predicted value
and the uncertainty of the prediction for s. The maximization
of the acquisition function guides the sequential decision
making process and the exploration versus exploitation trade-
off: the highest score identifies the next point s;y; to
evaluate. BO is a statistically efficient black-box optimization
approach when considering the number of necessary function
evaluations [38]. It is, thus, especially well-suited to solve
problems where we can only perform a limited number of
function evaluations, such as the ones found in robotics.

We use the implementation of BO found in HyperMap-
per [36], [39], [40], [41]. Our implementation selects the
Expected Improvement (EI) acquisition function [42] and we
use uniform random samples as a warm-up strategy before
starting the optimization.

E. Multi-objective Optimization

Let us consider a multiple objectives minimization (or
maximization) over S in D dimensions. We define f : S —
RP as our vector of objective functions f = (f1,..., fp),
taking s as input, and evaluating y = f(s) + ¢, where € is
a Gaussian noise term. Our goal is to identify the Pareto
frontier of f, that is, the set I' C S of points which are not
dominated by any other point, i.e., the maximally desirable
s which cannot be optimized further for any single objective
without making a trade-off. Formally, we consider the partial
order in RP: y < o' iff Vi € [p|,y; < y; and 35, y; <yj,
and define the induced order on S: s < s’ iff f(s) < f(s').
The set of minimal points in this order is the Pareto-optimal
set ' = {s € S : Ps’ such that s’ < s}. We aim
to identify I' with the fewest possible function evaluations
using BO. For this purpose we use the HyperMapper multi-
objective Bayesian optimization which is based on random
scalarizations [43].

FE. Motion Generator and Robot Control

The arm motions are controlled in end-effector space by a
Cartesian impedance controller. The time varying reference
or attractor point of the end effector x; is governed by a
motion generator (MG). Given the joint configuration q, we
can calculate the end-effector pose x.. using forward kine-
matics and obtain an error term X, = X..—Xq4. Together with
the joint velocities ¢, the Jacobian J(q), the configurable
stiffness and damping matrices Ky and Dy, the task control
is formulated as 7. = J7(q) (~Kgx. — DgJ(q)q) . Addi-
tionally, the task control can be overlayed with commanded
generalized forces and torques Fep = (fo fy fo 7o 7y T2):
Tewt = JT(q)Fert. We utilize the integration introduced
in [10] and used in [11], which proposes to parameterize
the MG with movement skills from the BT. The reference
pose is shaped by 1) a linear trajectory to a goal point and 2)



overlay motions that can be added to the reference pose as
discussed in [10], [11]. E.g. an Archimedes spiral for search.

To make it compliant with the dynamical system in Eq. (1),
a new reference configuration of the controller is only
generated at every time step t. It includes the reference pose,
stiffnesses, applied wrench and forms the action u with a
dimension of U = 19. The stiffness and applied force are
changed gradually at every time step ¢ to ensure a smooth
motion. The state space consists of joint positions and joint
velocities and is &£ = 14 dimensional. Direct control of the
torques of a robot arm requires high update rates and we
control the robot arm at 500 Hz based on the current action
u, but continuously updated values for q and . Therefore,
from the perspective of Eq. (1), the controller is to be seen
as part of the model M (x;, uy).

We assume a human-robot collaborative workspace with
fragile objects. Therefore, the stiffnesses and applied forces
are to be kept to a minimum and less accuracy than e.g.
high-gain position-controlled solutions is to be expected.

IV. EXPERIMENTS

In our experiments we use a set of pre-defined skills that
are part of a skill library. In order to solve a task, the planner
determines a sequence that can achieve the goal condition of
the task. This skill sequence is also automatically parameter-
ized to the extend possible, e.g. the goal pose of a movement.
We evaluate our system in two contact-rich scenarios that
are shown in Fig. 1: A) pushing an object with uneven
weight distribution to a goal pose and B) inserting a peg
in a hole with a 1.5 mm larger radius. Pure planning-based
solutions for both these tasks have a poor performance in
reality (Fig. 5).

As a baseline we invited six robot operators to manually
parameterize the skills for the tasks. Their main objective is
to find a parameter set that robustly solves the task. As an
additional objective they were asked to minimize the impact
of the robot arm and its tool on the environment as long as
it does not affect the first objective.

The robot arm used for the physical evaluation is a 7-
degree-of-freedom (DOF) KUKA iiwa arm controlled by a
Cartesian impedance controller (Sec. III-F).

A. Reward Functions

For each task, we utilize a set of reward functions pa-
rameterized for the learning scenario configuration. Each
configured reward has an assigned objective and can be
weighted against other rewards. Each experiment uses a
subset of the following reward functions:

1) Task completion: A fixed reward is assigned when the
BT returns success upon task completion.

2) End-effector distance to a box: We use a localized
reward to attract the end effector towards the goal location
ri(x) = (2 (d(Peex, Pn) + clo))_1 , where d,, is the distance
offset and d(peex,Ppn) is the shortest distance function
between the end effector and the box.

3) Applied wrench: This reward calculates the cumulative
forces applied by the end effector on the environment.

Reward functions 4-6 share a common operation of com-
puting an exponential function of the calculated metric
to obtain the reward as used in ([44], [24]) r(d;) =

— i (dp + do)> , where o, is a configurable width,
d, is a distance offset and dy, is the input metric.

4) End-effector distance to a goal: This reward uses
distance between the end effectors current pose and goal
pose to calculate the input metric dee g = ||Pee,x — Pyl

5) End-effector-reference-position distance: This reward
uses the distance between the end effectors reference
pose (Sec. III-F) and its current pose to calculate the input
metric dee,d = Hpee,x - Xd”

6) Object-pose divergence: This reward uses the transla-
tional and angular distance between the object’s goal pose
and its current pose.

exp (

B. Push Task
The push task starts by specifying the goal
in the SkiROS Graphical User Interface (GUI)

as: (skiros:at skiros:0bjectToBePushed-1
skiros:0ObjectGoalPose-1). SkiROS calls the planner
to generate a plan given all the available skills. The plan
consists of two skills: 1) GoToLinear skill and 2) Push
skill. The first skill moves the end effector from its current
location to the approach pose of the object. This approach
pose is defined in the WM and needs to be reached before
interacting with the object.

The push skill then moves the end effector to the object’s
geometric centre with an optional offset in the horizontal
(x) and (y) directions. Once the end effector reaches it, the
motion generator executes a straight line to the (modified)
target location.

The push task is formulated as a multi-objective task. It
also has two objectives, 1) success and 2) applied force.
The first objective has three associated rewards: 1) object
position difference from goal position, 2) object orientation
difference from goal orientation, and 3) end-effector distance
to the goal location. The second objective accumulates the
Cartesian distance between the end-effector reference pose
and the actual end-effector pose as a measure of the force
applied by the controller. The learnable parameters in this
task are offsets in the horizontal (z) and (y) direction of
both the push skill’s start and goal locations. An offset of
the start location allows the robot to push from a particular
point from the side of the object. Together with the offsets
on the goal position, these learnable parameters collectively
define the trajectory of the push.

The object to be pushed has a height of 0.07m and is
an orthogonal triangle in the horizontal dimensions (z) and
(y). It has a length of 0.15m and 0.3m and it weights
2.5 kg. For this task we use a square-shaped peg for pushing
with a side length of 0.07m and a height of 0.05m. Start
and goal locations are ~0.43m apart and are rotated by
26 deg. We define success if the translational and rotational
difference of the object w.r.t the goal is less than 0.01 m and
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Fig. 4. Pareto front of the push task. Each experiment has a different color
and each point represents a Pareto-optimal solution. It shows that higher
rewards for pushing require higher interaction forces with the environment.

5 deg, respectively. We learn for 400 iterations and repeat
the experiment 10 times. In order to obtain solutions that
are robust enough to translate to the real system, we apply
domain randomization. Each parameter set is evaluated in
7 worlds. Each execution uniformly samples one out of the
four start positions for the robot arm. Furthermore, we vary
the location of the object and the goal in the horizontal ()
and (y) directions by sampling from a Gaussian distribution
with a standard deviation of 7 mm.

We compare the learned solutions with (a) the outcome of
a direct planner solution without any offset on the start and
goal pose while pushing, (b) ten sets of random parameters
from the search space and (c) the policies that are parame-
terized by the robot operators. We evaluated on the four start
configurations used for learning as well as on two additional
unknown ones. The results are shown in Fig. 5a.

The results of a multi-objective optimization are param-
eters found along a Pareto front (Sec. III-E, see Fig. 4). It
contained 8.3 points on average, of which some minimize
the impact on the environment to an extent that the push
is not successful. An operator can choose a solution that is
a good compromise between the success of the task on the
real system and the force applied on the environment. The
performance of one of the solutions that existed on the Pareto
front is shown in Fig. 5.

Furthermore, we asked six robot operators to find values
for the learnable parameters of the skill sequences. They
were given the same start positions used for learning and
were given a script to reset the arm to a start position of
their choice. They could experiment with the system until
they decided that their parameter set fulfills the criteria.
Their final parameter set that was also evaluated on the
known and unknown start configurations. On average the
operators spent (16.3 +6.4) min and executed 11.1 4 3.0
trials on the system to configure this task. Four out of the six

operators found solutions that achieved the task from every
start state. However, two of the operators’ final parameters
only achieved success rates of 50 % and 16.66 %.

C. Peg-in-Hole Task

The PDDL goal of the peg insertion task is (skiros:at
skiros:Peg-1 skiros:BoxWithHole-1). The BT
that is generated by the planner is shown in Fig. 3 and uses
two skills: 1) GoToLinear skill and 2) Peglnsertion skill.
The first skill moves the end effector from its current location
to the approach pose of the hole. Once it is reached, the peg
insertion procedure starts.

The Peglnsertion skill starts when the end effector
reaches the approach pose of the box. It uses four separate
SkiROS primitive skills to 1) set the stiffness of the end
effector to zero in (z) direction, 2) apply a downward force in
(») direction, 3) configure the center of the box as a goal and
4) additionally apply an overlaying circular search motion
on top of the reference pose of the end effector as described
in [11]. The BT returns success only if the peg is inserted
into the box hole by more than 0.01 m.

We model the peg insertion as a multi-objective and
multi-reward task. There are two objectives of the task,
1) successful insertion and 2) applied force. To assess the
efficacy of the first objective, we use three rewards, 1)
success of the BT, 2) peg distance to the hole, and 3) peg
distance to the box. For the second objective, we use a single
reward that measures the total force applied by the peg. There
are three learnable parameters in this task, 1) downward force
applied by the robot arm, 2) radius of the overlay search
motion and 3) path velocity of the overlay search motion.

We learn for 400 iterations in the simulation and repeat
this experiment 10 times. To increase the robustness of the
solutions we use domain randomization and evaluate each
parameter configuration in 7 worlds. We vary the location
of the box by sampling from a Gaussian distribution with a
standard deviation of 7mm and uniformly sample one out
of 5 start configurations of the robot arm. We compare the
performance of the learned policies with (1) the outcome
of the planner without a parameterized search motion, (2)
randomly chosen parameter configurations from the param-
eter search space used for learning and (3) policies that are
parameterized by human operators (see Fig. 5b).

The learned Pareto-optimal configurations consist of 6.1
points on average. We evaluated the insertion success using
the 5 known and additional 10 unknown start configurations
of the robot (Fig. 5b).

To find policies for this task, the human operators took
(31.8 & 10.9) min and executed 39 =+ 14 trials on the system.
However, compared to the randomly sampled policies the
average insertion rate only increased from 41 % to 52.2 %.
This is much lower than the average insertion rate of 96 % of
the best learned policies as shown in box four, Fig. 5b. Fur-
thermore, the average force that was chosen by the operators
compared to the learned policies was 16.6 % higher. Finally,
the successful insertions by the learned policies were also
18.1% faster. Therefore, the learned policies outperformed
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Fig. 5. The success rates of both experiments. The box plots show the

median (black line) and interquartile range (25" and 75" percentile); the
lines extend to the most extreme data points not considered outliers, and
outliers are plotted individually. The number of stars indicates that the p-
value of the Mann-Whitney U test is less than 0.1, 0.05, 0.01 and 0.001
respectively.

the human operators in both objectives while also producing
more reliable results.

V. CONCLUSION

In this paper we proposed a method for effectively com-
bining task-level planning with learning to solve industrial
contact-rich tasks. Our method leverages prior information
and planning to acquire explicit knowledge about the task,
whereas it utilizes learning to capture the racit knowledge,
i.e., the knowledge that is hard to formalize and which
can only be captured through actual interaction. We utilize
behavior trees as an interpretable policy representation that
is suitable for learning and leverage domain randomization
for learning in simulation. Finally, we formulate a multi-
objective optimization scheme so that (1) we handle con-
flicting rewards adequately, and (2) an operator can choose
a policy from the Pareto front and thus actively participate
in the learning process.

We evaluated our method on two scenarios using a real
KUKA 7-DOF manipulator: (a) a pushing task, and (b) a peg
insertion task. Both tasks are contact-rich and naive planning
fails to solve them. The approach was able to outperform
the baselines including the manual parameterization by robot
operators.

For future work we are looking into multi-fidelity learning
that can leverage a small amount of executions on the real
system to complement the learning in simulation. Further-
more, the use of parameter priors for the optimum seems a
promising direction to guide the policy search and make it
more efficient.
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Fig. 6. Pareto front of the peg task. Each experiment has a different color.
The goal is to maximize insertion reward while minimizing the interaction
forces.

APPENDIX

The implementation and the supplemental video are avail-
able at:
https://sites.google.com/ulund.org/SkiREIL
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