
Deep Reinforcement Learning-Based Control for Stomach Coverage
Scanning of Wireless Capsule Endoscopy

Yameng Zhang∗1, Long Bai∗1, Li Liu1, Hongliang Ren2, Max Q.-H. Meng3, Fellow, IEEE

Abstract— Due to its non-invasive and painless character-
istics, wireless capsule endoscopy has become the new gold
standard for assessing gastrointestinal disorders. Omissions,
however, could occur throughout the examination since con-
trolling capsule endoscope can be challenging. In this work,
we control the magnetic capsule endoscope for the coverage
scanning task in the stomach based on reinforcement learning
so that the capsule can comprehensively scan every corner of
the stomach. We apply a well-made virtual platform named
VR-Caps to simulate the process of stomach coverage scanning
with a capsule endoscope model. We utilize and compare two
deep reinforcement learning algorithms, the Proximal Policy
Optimization (PPO) and Soft Actor-Critic (SAC) algorithms, to
train the permanent magnetic agent, which actuates the capsule
endoscope directly via magnetic fields and then optimizes the
scanning efficiency of stomach coverage. We analyze the pros
and cons of the two algorithms with different hyperparameters
and achieve a coverage rate of 98.04% of the stomach area
within 150.37 seconds.

I. INTRODUCTION

As shown in Figure 1, wireless capsule endoscope (WCE)
is a swallowable intelligent capsule robot for in vivo imag-
ing, examination, and diagnosis of the gastrointestinal tract.
Compared with normally used gastroscopy and colonoscopy,
WCE excels for its non-invasive and less painful examination
and diagnosis [1], [2]. WCE can also implement many
other tasks such as PH measurement, temperature detection,
biopsy, precision drug delivery, etc. [3], [4], which offer
physicians more comprehensive and valuable information.
However, all those assignments rely on dynamic adjustment
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Fig. 1. Overview of magnetically controlled WCE system.

and control of WCE. The remote operation of WCE is very
challenging since its localizing and controlling are full of
uncertainty and complexity [5], [6]. Many researchers are
endeavoring to develop artificial intelligence models for the
motion control of WCE.

Currently, machine learning (ML) has achieved extensive
success in medical field [7]–[11]. Reinforcement learning
(RL), one of the paradigms and methodologies of ML, is
used to describe and solve the problem of maximizing the
reward or achieving a specific goal by learning strategies
during the agent’s interaction with the environment. It has
been effectively used in many domains, including computer
games [12], robotic arm control [13], autonomous driv-
ing [14], etc. The agent must rely on its own experiences
to learn from and enhance its course of action to adapt
to the environment because the external world offers little
information [15]. However, real-world systems always have
high-dimensional input data. It might be difficult for RL
algorithms to select the proper action. To effectively handle
the high-dimensional input data, we often utilize the neural
network to map the high-dimensional observation data to our
desired action data. Thus, when a neural network is applied in
the RL algorithm, we call it the deep reinforcement learning
(DRL) algorithm [16].

In this work, we use DRL algorithms to train a perma-
nent magnetic agent, which actuates WCE directly via the
magnetic field and then optimizes the efficiency of stomach
coverage scanning. The critical points of our work are listed
below:

• A permanent magnet will be trained and used to control
the pose and motion of WCE through the magnetic
field. Then, the WCE with a monocular camera will
automatically scan the maximum coverage area of the
stomach within minimal operating time.
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• We compare the effectiveness of two DRL algorithms,
i.e., the PPO [17] and SAC [18], in training the per-
manent magnetic agent. We analyze the effect of the
learning rate on the training results; hence we get a set
of appropriate hyperparameters for the training process.

II. RELATED WORK

Researchers have used RL algorithms to train WCE in
virtual, artificial, or real environments. G. Trovato et al. [19]
developed a robotic endoscope with flexible helical fins and
controlled its locomotion through Q-learning and SARSA al-
gorithms. The device was proven capable of passing through
colons at an appropriate speed without getting stuck. L. Wu
et al. [20] constructed a real-time quality improving system,
WISENSE, to enhance endoscopy’s scanning quality and
efficiency. The system was developed with deep convolu-
tional neural networks (DCNN) along with DRL algorithms
and compared with a control group. Experiments proved
that WISENSE significantly reduced the blind spot rate
of the esophagogastroduodenoscopy procedure. M. Turan
et al. [21] used a DRL algorithm to learn the continuous
control of a magnetically actuated soft capsule endoscope.
Their controller could reduce the tedious physical modeling
of complex and highly nonlinear behaviors. A. Marino et
al. [22] applied an RL-based control method to the mag-
netically flexible endoscope to reduce pain and increase
ergonomics in colonoscopy. They kept the endoscope in
contact with the tissue while ensuring that the endoscope au-
tomatically navigated the entire colon. K. İncetan et al. [23]
created a virtual gastrointestinal environment, VR-Caps, to
study the possibilities of applying various machine learning
algorithms, providing an easy-to-use simulation platform for
us to develop approaches that improve the quality of the
gastrointestinal treatment.

III. METHODOLOGY

We use the ML-Agents toolkit [24] to implement our
training objective. ML-Agents toolkit is an open-source
package built in the Unity environment. It provides some
implementations of state-of-the-art DRL algorithms, which
is pretty helpful in training intelligent agents for virtual
games. However, before we start training, we have to define
and formulate some primary constraints and policies in the
environment so that the agent is trained within our expecta-
tions. Here are two critical problems: how we formulate the
scanning level in the stomach and how we define the reward
in the training episode, so in Sections III-A and III-B, we
describe our solutions to the two problems, respectively. In
Section III-C, we give an introduction to the PPO and SAC
algorithms.

A. Scanning Level Definition

In the environment setup, we assign a monocular camera
to the WCE so that the WCE can obtain the inner images
of the stomach in real time. However, this does not work
for the measurement of the scanning area. To solve this
problem, we use the point cloud chart of the stomach to

Algorithm 1 Vertice detection in each episode
Require: point cloud chart of organ models
Ensure: diff_coverage in every step

1: Intialization:
2: vertice_count← 24822;
3: visible_vertices[ ]← [ ];
4: color_vertices[ ]← [red];
5: vertices[ ]← vertice_positions;
6: visible_count ← 0, previous_coverage ← 0, step ←

0, current_coverage← 0, diff_coverage← 0;
7: while step < 1500 do
8: step← step + 1;
9: Step with PPO or SAC algorithm;

10: i← 0;
11: repeat
12: i← i + 1;
13: if vertices[i] is visible for the camera then
14: visible_vertices.append(vertices[i]);
15: visible_count← visible_count + 1;
16: color_vertices[i]← blue;
17: end if
18: until i ≥ vertice_count
19: current_coverage← 100× visible_count

vertice_count ;
20: diff_coverage ← current_coverage −

previous_coverage;
21: previous_coverage← current_coverage;
22: end while

formulate the scanning level. The underlying logic is that
we fix the perspective angle of the WCE camera. When
the camera captures vertices, we accumulate the number
of vertices having been scanned and calculate the real-time
coverage ratio by dividing the number of visible vertices by
the number of all vertices. This method helps measure the
coverage ratio difference between two consecutive steps and
is thus pretty valuable in defining the reward list. We provide
the pseudo-codes of the vertice detection in Algorithm 1,
where more detailed processes can be found.

B. Reward Definition

The training framework of the DRL-based WCE system
is presented in Figure 2. The permanent magnetic agent
takes actions in the VR-Caps environment, which provides
an interpretation of reward and observations to the DRL
algorithm, which then offers guidance on the agent’s actions.
The PPO and SAC algorithms are explicit DRL algorithms
that are relatively easy to follow. But the environment is
always so intricate and versatile that unexpected problems
may happen with the failure of parameters formulation. In
this project, we define the WCE’s position, rotation, velocity,
and the magnet’s position as observations. The actions are
defined as the two horizontally translational motions of the
magnet. The reward for the coverage policy is the area
coverage difference between two consecutive time steps, that
is:

rt = k(Ct − Ct−1), (1)
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Fig. 2. Training framework of DRL-based WCE system.
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Fig. 3. Training workflow of DRL-based WCE system within one episode.

where Ct denotes the area coverage ratio at time t. k denotes
a scaling factor for fast convergence. The area coverage ratio
is calculated as the proportion of the vertices detected by
the WCE’s mono camera to all the vertices contained in
the stomach. Besides, we assign penalty rewards for the
agent when the WCE scans areas that have been detected.
Also, when the capsule or magnet exceeds their position or
velocity boundary, we should give a minus reward to the
agent and then end the episode. We list the reward-defining
pseudo-codes in Algorithm 2, which shows more details
in reward calculation. Combining Algorithms 1 and 2, the
overall training workflow of the DRL-based WCE system
is illustrated in Figure 3, which shows detailed training
processes within one episode with 1500 steps at most.

C. DRL Method Description

We select two widely used DRL algorithms, i.e., the PPO
and SAC, to train the magnetic agent. Both the PPO and
SAC algorithms are stochastic policy-based approaches. The
PPO algorithm is an on-policy method. It has the stability
and reliability of trust-region methods and is simple to
implement. The SAC algorithm is an off-policy method.
It has high sample efficiency and incorporates the clipped
double-Q trick. Because of the inherent stochasticity of the
policy in SAC, it benefits from something like target policy
smoothing.

During the training process, the agent is trained with many
episodes, and the reward of every step is recorded until the
cumulative reward converges to a point. Table I shows some
hyperparameters we use in the DRL project. By adjusting
the hyperparameters, such as the learning rate, we will see
the effect of some hyperparameters on the training. Also,
by comparing the reward and loss curves of the PPO and

Algorithm 2 Magnetic agent training in each episode
Require: position and velocity of the capsule and magnet
Ensure: reward in every step

1: Intialization:
2: capsule_angular_velocity ← 0, capsule_velocity ←

0;
3: magnet_angular_velocity ← 0,magnet_velocity ←

0;
4: reward[ ] ← 0, step← 0, diff_coverage ← 0, r ← 0;

5: while step < 1500 do
6: Collect Observations:
7: capsule_position, capsule_rotation, capsule_velocity,

magnet_position,magnet_rotation← Unity;
8: step← step + 1;
9: Step with PPO or SAC algorithm;

10: r ← diff_coverage;
11: if r > 0.02 then
12: reward[step]← 0.1× r;
13: else
14: reward[step]← −0.01;
15: end if
16: Action delivery:
17: [magnet_velocity, magnet_angular_velocity] ←

trained neural network;
18: magnet_position ← magnet_position +

magnet_velocity ×∆t;
19: magnet_rotation ← magnet_rotation +

magnet_angular_velocity ×∆t;
20: if capsule_velocity exceeds its boundary then
21: reward[step]← −0.1;
22: end the episode;
23: else if capsule_position exceeds its boundary then
24: reward[step]← −0.1;
25: end the episode;
26: else if magnet_position exceeds its boundary then
27: reward[step]← −0.1;
28: end the episode;
29: end if
30: end while

SAC, we can find and select an optimal training model for
the capsule endoscope platform. Finally, we expect the area
coverage ratio to increase dramatically and the detecting time
to be shortened significantly.

IV. SIMULATION VALIDATION

A. Environment Setup

We want to train a permanent magnetic agent to control
the pose and motion of WCE via the magnetic field so that
the WCE scans the maximum coverage area of the stomach
within minimal operating time. However, it is hard for us to
access patients and WCE devices in the real world. We utilize
the Unity-based comprehensive simulation platform for WCE
operations named VR-Caps [23] to facilitate our research.
VR-Caps is a virtual active capsule environment that can
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Fig. 4. Simulation results of SAC. (a) cumulative reward; (b) policy loss;
(c) value loss.
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Fig. 5. Simulation results of PPO. (a) cumulative reward; (b) policy loss;
(c) value loss.

TABLE I
HYPERPARAMETERS IN THE PPO AND SAC ALGORITHMS

Trainer PPO SAC

Batch Size 512 512
Buffer Size 4096 512000
Hidden Units 128 128
Learning Rate 0.001 0.0005
Learning Rate Schedule Linear Linear
Max Steps 3000000 3000000
Memory Size 128 128
Num Layers 2 2
Time Horizon 1024 1024
Sequence Length 64 64
Summary Freq 10000 10000
Gamma 0.99 0.99
Num Epoch 5 N/A
Lambd 0.95 N/A
Epsilon 0.2 N/A
Beta 0.005 N/A
Tau N/A 0.005

simulate a series of realistic tissues, organs, and different
types of WCE. Its virtual environment can help accelerate
the design, testing, and optimization process of WCE robots.
Besides, it is relatively easy to adjust the attributes and
parameters of the VR-Caps environment. We use a mono
camera WCE in VR-Caps and test it in a virtual stomach with
viscosity and gravity. Moreover, we add a permanent magnet
outside the stomach that can support the active movement
of WCE. The virtual platform of our simulation is Unity
Version 2019.3.2f1 and ML-Agents Release 1. The training
environment is based on the Intel Core™ i7-12700KF CPU
and NVIDIA RTX 3060Ti GPU.

B. Simulation Results

The learning rate plays a significant role in both the
model’s final results and convergence speed. With a minimal
learning rate, the loss of the model falls and converges very
slowly. With a considerable learning rate, the parameters
update so dramatically that the model will converge to a local
optimum point, or the loss will increase instead. Therefore,
in the respective simulation of SAC and PPO, we use four
different learning rates preselected within the convergence
range for training and seeking the best performance. The
other parameters for training can be found in Table I. The
simulation results of SAC are shown in Figure 4. From the
reward curves in Figure 4 (a), we can see that the model
converges the most slowly and the final reward (around 21)
is the lowest when the learning rate is 5e−5, while the reward
converges faster and achieves a higher value (around 26) at
the learning rates of 1e−3, 5e−4, and 1e−4. On the other
hand, the reward curves trained with the learning rates of
1e−3 and 1e−4 show unstable fluctuations. Therefore, the
results of the 5e−4 learning rate can be considered the best
results of the SAC algorithm. Meanwhile, The convergence
speed of policy loss and value loss in Figure 4 becomes
slower with decreasing learning rates, while the final losses
are similarly low at different learning rates.
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Fig. 6. Comparison between PPO and SAC. (a) cumulative reward; (b)
episode length; (c) entropy; (d) policy loss; (e) value loss.

Figure 5 shows the PPO algorithm trained with four
different learning rates. Through the convergence results of
the reward curves, the highest final reward value is the
learning rate of 1e−3, followed by the learning rates of 5e−3,
5e−4, and 1e−4. Besides, the learning rate 1e−3 also achieves
the best convergence speed. In policy loss and value loss, the
learning rates of 1e−3, 5e−4, and 1e−4 do not differ much,
and the 5e−3 learning rate shows significant instability in
both the reward and loss curves. Therefore, the learning rate
of 1e−3 should be the best result of the PPO algorithm.

Figure 6 shows the comparison between the best results
of the PPO and SAC. Although the PPO presents a faster
convergence rate, the final results on reward curves are
similar between the PPO and SAC. The policy loss and

Fig. 7. Coverage results of DRL in (a) 60 seconds, (b) 120 seconds, and
(c) 150 seconds. The final coverage rate is 72.87%, 94.66%, and 98.04% of
the stomach area within 60.02, 120.34, and 150.37 seconds, respectively.

value loss of the SAC are lower than those of the PPO.
The difference in the entropy curves should come from the
tanh in the SAC policy, which ensures that policy output
is bounded to a finite range. In this case, the SAC policy
distribution is no longer the original Gaussian distribution.
Conversely, this tanh is absent in the PPO policy. In other
words, the PPO calculates the entropy of old and new
strategies using the actions before the tanh. In contrast, the
SAC calculates the entropy of strategies using the actions
after the tanh, leading to the difference in the entropy curves.
Meanwhile, the SAC adds the derivative term of tanh(a)
when calculating the strategy entropy to offset the influence
of tanh as a correction.

C. Comparison between Manual Control and DRL Control

The DRL-based control is designed to give WCE a more
comprehensive scanning efficiency while freeing human la-
bor. In this case, we would like to compare the results
between the manual control and our DRL-based control
method. We trained 6 million steps with the SAC algorithm
with a learning rate of 5e−4. Figure 7 shows the results
of its trained model and its coverage rate at roughly 60
seconds, 120 seconds, and 150 seconds. Meanwhile, we
invited an experienced WCE researcher to operate the cap-



sule endoscope manually and recorded his coverage rate
simultaneously. Table II shows the coverage comparison
between the manual and DRL control. We know that the
DRL-based WCE scanning is much more efficient than the
manually controlled WCE scanning, as the DRL-controlled
WCE covered 98.04% of the stomach area within 150.37
seconds.

TABLE II
COMPARISON BETWEEN MANUAL AND DRL-BASED CONTROL

Time Manual Control DRL-based Control

60.02 seconds 58.84% 72.87%
120.34 seconds 80.68% 94.66%
150.37 seconds 86.69% 98.04%

V. CONCLUSION AND FUTURE WORK

In this work, We apply a virtual platform VR-Caps to
simulate the process of stomach coverage scanning with a
capsule endoscope model. Two monocular visual feedback-
based DRL methods, i.e., the PPO and SAC, are utilized for
training the permanent magnetic agent. We analyze the effect
of the learning rate on training results; hence we get a set of
appropriate hyperparameters for the training process. Finally,
we can complete coverage of 72.87%, 94.66%, and 98.04%
of the stomach area in 60.02, 120.34, and 150.37 seconds,
respectively. The coverage comparison between the manual
and DRL control shows the efficiency of the DRL method.

Further work can be carried out in two aspects: (a) train
and navigate the WCE in a more complex and challenging
environment, such as the peristaltic irregularly shaped small
intestine environment with food residues and air bubbles; (b)
generalize the model to real scenarios.
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