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Abstract—With the increasing prevalence of drones in various
industries, the navigation and tracking of unmanned aerial
vehicles (UAVs) in challenging environments, particularly GNSS-
denied areas, have become crucial concerns. To address this need,
we present a novel multi-LiDAR dataset specifically designed for
UAV tracking. Our dataset includes data from a spinning LiDAR,
two solid-state LiDARs with different Field of View (FoV) and
scan patterns, and an RGB-D camera. This diverse sensor suite
allows for research on new challenges in the field, including
limited FoV adaptability and multi-modality data processing.

The dataset facilitates the evaluation of existing algorithms
and the development of new ones, paving the way for advances
in UAV tracking techniques. Notably, we provide data in both
indoor and outdoor environments. We also consider variable UAV
sizes, from micro-aerial vehicles to more standard commercial
UAV platforms. The outdoor trajectories are selected with close
proximity to buildings, targeting research in UAV detection in
urban areas, e.g., within counter-UAV systems or docking for
UAV logistics.

In addition to the dataset, we provide a baseline comparison
with recent LiDAR-based UAV tracking algorithms, benchmark-
ing the performance with different sensors, UAVs, and algo-
rithms. Importantly, our dataset shows that current methods
have shortcomings and are unable to track UAVs consistently
across different scenarios.

The dataset is available on GitHub1.
Index Terms—UAV; Tracking; Solid-State LiDAR; Dataset

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are gaining widespread
use across diverse application domains due to their agility
and ease of deployment [1], [2]. Equipped with only a flight
controller and basic sensor suite, they serve as efficient and
adaptable mobile sensing platforms [3], [4]. Recent research
has focused on UAV navigation in GNSS-denied environments
[5], [6], [7], [8], as well as state estimation in both single and
multi-UAV systems [9], [10].

The integration of UAVs into multi-robot systems empha-
sizes the importance of tracking between robots for rela-
tive or global state estimation methods [11], [12]. Track-
ing UAVs from an unmanned ground vehicle (UGV) within
multi-robot setups allows for miniaturization and enhanced
flexibility, reducing the reliance on high-accuracy onboard
localization [13], [14]. The UGV often acts as a base station,

1https://github.com/TIERS/uav multi lidar dataset
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Fig. 1: Illustration of the hardware used in the experiments. At the
bottom, the tracking sensors including Ouster OS1-64, Livox Mid-
360, Livox Avia and Intel RealSense D435.

supplying crucial data to enable UAV operation even in areas
with limited GNSS signals.

Despite significant progress in UAV tracking using GNSS
and other sensors, challenges persist. GNSS signal unavail-
ability in certain environments, like indoors or urban canyons,
restricts the accuracy and reliability of UAV positioning and
tracking. Additionally, existing methods may rely on costly
hardware or necessitate substantial computational power, af-
fecting their practicality and scalability [15], [16]. These
limitations and challenges underscore the need for new ap-
proaches that are more robust, accurate, and efficient, capable
of operating effectively in GNSS-denied environments. More-
over, external tracking of UAVs from the ground has gained
relevance in the context of counter-UAV solutions [17].

One of our primary objectives is to address the scarcity of
data from solid-state LiDARs. These cutting-edge sensors, a
recent development in long-range scanning technology, pro-
duce high-density point clouds, making them highly suitable
for tracking objects in three-dimensional space, including
UAVs [15]. Their non-repetitive scan patterns allow for the
generation of dense point clouds with adjustable frequencies
and variable field of view (FoV) coverage. Recognizing the
need for more data to propel research in the direction of
general-purpose and sensor-agnostic LiDAR data processing
algorithms, we have taken the initiative to bridge this gap.
Thus, we introduce our novel multi-LiDAR dataset, com-
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prising a spinning LiDAR, two solid-state LiDARs featuring
different FoV and scan patterns, and an RGB-D camera
combination. This dataset aims to facilitate advancements in
UAV tracking and foster the development of robust algorithms
capable of handling a diverse range of LiDAR data.

The main contributions of this work are the following:
(i) A dataset with data from 3 different LiDAR sensors and

an RGB-D camera in both indoor and outdoor environ-
ments. This is, to our knowledge, the first diverse dataset
in terms of LiDAR sensors for UAV tracking. The dataset
includes a spinning LiDARs with 64 (Ouster OS1-64)
channels, two different solid-state LiDARs (Livox Mid-
360 and Livox Avia) with different scanning patterns and
FoVs, and an RGB-D camera (RealSense D435). Given
the short range of the point cloud generated by the camera
compared to the LiDARs, we only extracted RGB images
from it. Low-resolution images with depth, near-infrared,
and laser reflectivity data from the Ouster sensor complete
the dataset. These are illustrated in Fig. 1.

(ii) The dataset includes sequences with motion capture-
based (MOCAP) ground truth in both indoor and out-
door environments. The indoor trajectories exhibit more
intricate patterns than the outdoors, while the outdoor
sequences were deliberately selected to simulate potential
docking and infrastructure inspection scenarios [18] by
emphasizing their proximity to a building.

(iii) Based on the presented dataset, we provide a baseline
comparison with recent LiDAR-based UAV tracking algo-
rithms, benchmarking the performance with different sen-
sors, UAVs of different sizes (from micro-aerial-vehicles
to more standard commercial platforms), and algorithms.

Considering the distinctive characteristics of the dataset we
have presented, we believe it offers a timely and valuable
contribution, complementing the existing datasets that pri-
marily focus on mobile robots indoors or autonomous cars
outdoors. The diversity of sensors within our suite paves
the way for exploring new challenges within the research
community. This dataset serves as a valuable resource to
facilitate the development of new algorithms in UAV tracking
that effectively address the challenges posed by limited sensor
FoV and various scanning modalities. By leveraging this
dataset, researchers can make significant strides in enhancing
adaptability and robustness in their algorithms, thus advancing
the field of LiDAR-based UAV tracking.

In the following sections, we will first provide a brief
review of related work on UAV tracking and LiDAR-based
sensing in Section II. Then, we will provide an overview of the
configuration of the proposed sensor system in detail. Section
IV explains the evaluation procedure of available methods on
the proposed data set. Finally, Section V concludes the study
and introduces suggestions for further work.

II. RELATED WORK

Tracking UAVs using LiDAR technology poses significant
challenges due to UAVs’ small size, diverse shapes, fast move-
ments, and unpredictability. In the absence of existing datasets

dedicated to UAV tracking, we outline various research efforts
that have explored innovative methods to enhance the detection
and tracking of UAVs utilizing LiDAR technology.

Researchers have investigated different approaches to ad-
dress the limitations of 3D LiDAR technology and improve
UAV detection and tracking. One method involves proba-
bilistic analysis of detections using a rotating turret-mounted
LiDAR, enabling a wider FoV coverage with fewer LiDAR
beams while continuously tracking only a select number of
hits [19].

Combining segmentation techniques and a simple object
model with temporal information has shown promising results
in reducing parametrization efforts and generalizing well in
diverse settings [20]. Other studies incorporate Euclidean
distance clustering and particle filter algorithms to perform
UAV detection and tracking [21].

For UAV deployment from ground robots, relative localiza-
tion between devices is crucial. In previous works, we exten-
sively evaluated the effectiveness of multi-scan integration. Li
et al. proposed a multi-modal approach that combines three
tracking modalities and integrates multiple scans to adjust
point cloud density and size for processing [22]. Catalano et
al. introduced a method that dynamically adjusts the LiDAR
frame integration time based on the distance to the UAV and
its speed, fusing two simultaneous scan frequencies using a
Kalman filter and Inverse Covariance Intersection for robust
and accurate tracking [23], [7].

Cooperative navigation frameworks have been introduced
to guide a secondary UAV with unreliable self-localization
using a primary UAV equipped with a LiDAR sensor. These
frameworks utilize occupancy voxel maps and Kalman Filter-
based multi-target tracking techniques[24].

An innovative “LiDAR-as-a-camera” concept fuses images
and point cloud data generated by a single LiDAR sensor
to track UAVs without prior knowledge. Custom YOLOv5
models trained on panoramic images bring computer vision
capabilities to LiDAR technology [6].

In the context of autonomous UAV landing on a moving
ground vehicle, Kim et al. employed a clustering algorithm to
identify the UAV within the point cloud data, enabling precise
position estimation and the elimination of outliers [25].

Departing from traditional track-after-detect approaches,
some studies leverage motion information by analyzing 3D
details in 360° LiDAR scans and trajectory patterns to classify
UAVs and non-UAV objects [26], [27].

These research efforts demonstrate the versatility of Li-
DAR technology for enhancing UAV detection and tracking.
However, the absence of a dedicated dataset specific to UAV
tracking presents an opportunity for our novel dataset to
address this gap and provide valuable resources for advancing
UAV tracking algorithms in diverse real-world scenarios.

III. SYSTEM OVERVIEW

The data collection’s sensor configurations are illustrated
in Fig. 1, while detailed information about each sensor can
be found in Table I. As the primary objective of this work



Fig. 2: Data collecting platform, top view (left) and front view (right)

is on UAV tracking, the system was mounted on a stationary
platform.

A. Hardware

The main goal of our sensor system is to gather data
from a diverse range of LiDAR sensors, each offering distinct
characteristics. These sensors include two innovative low-
cost solid-state LiDARs, as well as a 3D spinning LiDAR.
Additionally, an RGB-D camera is integrated into the setup.

Specifically, our data collecting platform consists of a 64-
channel Ouster spinning LiDAR (OS1), two Livox solid state
LiDAR sensors: Mid-360, featuring a nearly 360° FoV, and
Avia, with an almost-circular FoV. The setup is completed
with an Intel RealSense D435 RGB-D camera.

The top and front views depicted in Fig. 2 allow for a
comprehensive understanding of the distances, positions, and
orientations.

The LiDARs are linked to a Gigabit Ethernet router, as well
as to an onboard computer on the platform. This computer
is equipped with an Intel i7-10750h processor, 16 GB of
DDR4 RAM memory, and 1 TB SSD storage. To maintain
a distinct connection from the LiDARs, the Optitrack system
is physically attached to the same computer via a separate
Ethernet interface. Furthermore, the RealSense D435 camera
is connected to a USB 3.2 port for seamless integration and
operation.

Master
Avia Driver

Rosbag

OS-1 Driver

Mid-360 Driver OptiTrack Driver

D435 Driver

100 Hz

100 Hz

20 Hz

100 Hz

30 Hz

Fig. 3: ROS drivers and data gathering frequency for the different
LiDAR sensors used in our platform.

B. Software

Our software system is exclusively built upon ROS Noetic,
operating on Ubuntu 20.04. The ROS drivers and the publish-

ing frequency of the various sensors are visually represented
in Fig. 3. To address the absence of hardware signals for
sensor data synchronization, as observed in other datasets in
the literature [28], we adopt an approach aimed at minimizing
the data synchronization challenge. This involves running all
the sensor drivers and data recording programs locally on
a high-performance computer. By doing so, in conjunction
with the networking equipment, we effectively reduce data
transmission latency at both the hardware and software levels.
Timestamps are applied at the ROS drivers to ensure syn-
chronization. Additionally, we maintain timestamp consistency
across all sensors by leveraging the Precision Time Protocol
(PTP), which is specially designed for high-precision time
synchronization within local networks.

C. Sensor Calibration

The extrinsic parameters for the LiDARs were determined
using optimization methods similar to those presented in [29].
The calibration process was conducted in an indoor office
environment with the sensor platform stationary. During cali-
bration, we treated the coordinate system of the Ouster LiDAR
sensor as the reference frame. To enhance the level of detail
in the environment, ten consecutive frames of point cloud data
were integrated from the solid-state LiDARs.

To align the point cloud data from each LiDAR to the
reference frame, we employed manual measurements of a
set of features in the environment. Subsequently, we utilized
the Generalized Iterative Closest Point (GICP) method to
iteratively optimize the relative transformation between the
reference frame and LiDARs [30]. This iterative optimization
process ensures accurate and precise calibration, enhancing the
overall performance of the LiDAR-based system.

Similarly, we determined the extrinsic parameters between
the Ouster sensor and the Intel RealSense D435 camera using
the depth cloud produced by the latter. We also provide
additional stationary data for extrinsic calibration, if a custom
calibration is preferred.

The intrinsic parameters of the sensors are given based on
factory settings and manufacturer information.

D. Ground Truth

Accurately generating ground truth data in complex environ-
ments is a challenging task, as evidenced by various existing
datasets. Many benchmarks rely on GNSS/INS fusion methods
to produce ground truth pose data. Nevertheless, in indoor
environments, GNSS signals are unavailable, making this
approach infeasible. In such indoor settings, MOCAP systems
have become widely embraced due to their ability to provide
positioning data with millimeter-level accuracy. However, their
practicality is limited by the range of the cameras, typically
falling within the 10 to 20 m range. Additionally, the relatively
intricate setup required by MOCAP systems has hindered their
adoption for outdoor environments.

To address the need for reliable ground-truth data in di-
verse environments, our present dataset includes MOCAP-
based ground-truth data for both indoor and outdoor scenarios.



TABLE I: Sensors specification for the presented dataset. Angular resolution is configurable in the OS1-64 (varying the vertical FoV). Livox
lidars have a non-repetitive scan pattern that delivers higher angular resolution with longer integration times. Range is based on manufacturer
information, with values corresponding to 80% Lambertian reflectivity and 100 klx sunlight.

IMU Type Channels FoV Angular Resolution Range Freq. Points

Ouster OS1-64 ICM-20948 spinning 64 360°×45° V:0.7°, H:0.18° 120 m 20 Hz 1,310,720 pts/s
Livox Mid-360 ICM-40609 solid-state N/A 360°×59° N/A 70 m 100 Hz 200,000 pts/s
Livox Avia BOSCH BMI088 solid-state N/A 70.4°×77.2° N/A 450 m 100 Hz 240,000 pts/s
RealSense D435 N/A RGB-D camera N/A 69°× 42° V: 1080, H: 1920 at 30 fps 10 m 30 Hz -

This ensures comprehensive coverage and facilitates robust
evaluation in various real-world conditions.

E. Dataset Sequences

Our dataset is organized into three distinct categories based
on the environment and trajectory structure: structured indoor,
unstructured indoor, and unstructured outdoor. Each category
captures specific movement patterns and characteristics, as
follows:

(i) Structured Indoor: This subset (HolybroStdn) comprises
simple trajectories represented by predefined, systematic
patterns, including a circle, a cube, a spiral, and an
up and down movement. These structured trajectories
are intentionally included to provide standardized, re-
producible, and easily interpretable movement patterns.
By employing these basic trajectories, ablation studies
can be performed on isolated and specific aspects of
different methods. This naturally allows for evaluating
scenarios where different elements are decoupled. The
structured indoor trajectories act as a reference point for
understanding how well a method performs under well-
defined and controlled conditions.

(ii) Unstructured: In this subset, trajectories exhibit a more
irregular nature, simulating movements that occur both
indoors and outdoors without strict adherence to pre-
defined patterns. These trajectories aim to capture the
spontaneous and less structured nature of real-world flight
scenarios, where a UAV’s movements can vary signifi-
cantly based on the environment and other influencing
factors.

A comprehensive list of sequences in each category is
shown in Table II.

Fig. 4 displays a subset of the dataset, represented in three
dimensions to enhance the understanding of spatial distances
in each direction. Complete visualizations of all recorded
trajectories are available on the project’s GitHub page.

The data collection for the indoor and outdoor trajectories
was conducted in distinct locations to capture a diverse range
of environments. The indoor data was gathered in the open
area of our lab, providing a controlled and confined setting
for UAV movements. On the other hand, the outdoor data was
acquired in an open area adjacent to the building, offering a
more estensive space for capturing trajectories with greater
distances and varied environmental conditions. While the in-
door trajectories exhibit both greater complexity and, in some,

TABLE II: List of data sequences in our dataset recorded indoor and
outdoor

Sequence Description Ground Truth Difficulty

HolybroStnd01 Structured(Up/Down) MOCAP Easy
HolybroStnd02 Structured(Square) MOCAP Easy
HolybroStnd03 Structured(Circle) MOCAP Easy
HolybroStnd04 Structured(Spiral) MOCAP Easy

Holybro01 Unstructured, Indoor MOCAP Easy
Holybro02 Unstructured, Indoor MOCAP Easy
Holybro03 Unstructured, Indoor MOCAP Easy
Holybro04 Unstructured, Indoor MOCAP Medium
Holybro05 Unstructured, Indoor MOCAP Medium

HolybroOut01 Unstructured, Outdoor MOCAP Medium
HolybroOut02 Unstructured, Outdoor MOCAP Medium

Autel01 Unstructured, Indoor MOCAP Easy
Autel02 Unstructured, Indoor MOCAP Easy
Autel03 Unstructured, Indoor MOCAP Easy
Autel04 Unstructured, Indoor MOCAP Medium
Autel05 Unstructured, Indoor MOCAP Hard

AutelOut01 Unstructured, Outdoor MOCAP Hard
AutelOut02 Unstructured, Outdoor MOCAP Hard

Tello01 Unstructured, Indoor MOCAP Medium
Tello02 Unstructured, Indoor MOCAP Medium
Tello03 Unstructured, Indoor MOCAP Hard
Tello04 Unstructured, Indoor MOCAP Hard
Tello05 Unstructured, Indoor MOCAP Hard

TelloOut01 Unstructured, Outdoor MOCAP Hard
TelloOut02 Unstructured, Outdoor MOCAP Hard

regularity, the outdoor trajectories emphasize their proximity
to the building, simulating potential docking scenarios.

We qualitatively assessed the complexity of each trajectory
accommodating for different UAV capabilities, classifying the
trajectories into three levels: easy, medium, and difficult. This
categorization is based on the size and speed of the UAV used
during data collection. Specifically, we utilized three different
UAVs - the Holybro, Autel II, and Tello. As expected, larger
UAVs tended to result in easier trajectories, while faster speeds
led to higher levels of difficulty. The difficulty levels are
chosen with the aim of enabling researchers to evaluate their
methods across a spectrum of challenges, ranging from simple
to more intricate flight paths, following similar standards in
previous datasets [31].

To introduce additional challenges, we designed the fourth
indoor track for each UAV as a circular path around an
obstacle and the fifth indoor track as a loop between two
obstacles. These obstacle tracks were specifically included to
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Fig. 4: Sample of recorded trajectories. Top row: HolybroStnd01, HolybroStnd02, HolybroStnd03, HolybroStnd04. Bottom row: Holybro03,
Autel02, Autel05, Tello04.

Fig. 5: Subsets of data from the Holybro01 sequence. The left column
shows the LiDAR point cloud from the Avia and the OS-1 as the right
column displays the point cloud from the Mid-360 as well as the RGB
image from the D435 and the signal image from the OS-1.

test the UAVs’ maneuvering abilities in constrained spaces,
further diversifying the difficulty levels and encouraging the
evaluation of methods under more intricate flight conditions.

In our dataset, the indoor trajectories typically span approx-
imately 16 m, whereas the outdoor trajectories cover larger
distances, extending up to 30 m. This contrast in distances al-
lows researchers to analyze trajectory characteristics in diverse
spatial contexts, emphasizing the importance of robust analysis
techniques that can adapt to varying scales and complexities.

F. Data Format

Data collection within the ROS environment makes use of
the rosbag format, which has emerged as a standard within the
robotics research community. Fig 5 showcases sampled data
frames from a subset of the sensors. Detailed data formats for
each type of data included in the dataset are as follows:

(i) Point cloud data from spinning LiDAR (OS1-64) is
recorded as sensor msgs::PointCloud. Each point in the
point cloud contains four values (x, y, z, I), representing
local Cartesian coordinates (x, y, z), and the measured
laser reflectance (I).

(ii) Point cloud data from solid-state LiDARs, Avia, and
Mid-360, employs Livox’s custom data format named
livox ros driver/CustomMsg in the rosbags. This custom
message includes a base time and an offset time relative to
the base time for each point. This approach compensates
for the non-repetitive pattern inherent to solid-state Li-
DARs and allows for de-skewing of the point cloud data,
addressing distortions caused by the sensor’s egomo-
tion. We have retained this message type for algorithms
involving point cloud deskewing and related research.
However, to facilitate visualization in tools like Rviz and
compatibility with standard LiDAR processing algorithms
relying on ROS messages, we provide format conversion
tools to transform the Livox custom message data to the
standard ROS message type, sensor msgs::PointCloud.
The converted points now hold five values (x, y, z, I, C),
where x, y, z represent local Cartesian coordinates, I is
the intensity of the point, and C incorporates the line
(integer part) and point timestamp (decimal part).

(iii) Images from RGB camera. The RealSense D435 camera
publishes RGB images at 1920×1080 resolution and a
30 Hz frequency. The message type is sensor msgs ::
Image.

(iv) Images from the high-resolution spinning LiDAR
(OS1-64) consist of fixed-resolution range images, near-
infrared images captured by the laser sensor, and signal
images. Each pixel in these images represents the distance
from the sensor origin to the point, the captured light’s
strength, and the object’s reflectivity, respectively. These



TABLE III: Position error (RMSE) for the dynamic scan tracking IEKF and IKF (N/A when the error diverges because the estimated trajectory
is incomplete. Unit: meter)

Method HolybroStnd01 HolybroStnd02 HolybroStnd03 HolybroStnd04 Holybro01 Holybro02 Autel02 Autel03 Tello01 Tello02

IEKF
Avia 0.0431 0.037 0.0425 0.0526 0.0592 0.0649 0.0984 0.183 0.125 0.1182

IKF
Avia 0.0415 0.0272 0.0389 0.042 0.1155 N/A 0.112 0.0395 N/A 0.1321

IEKF
Mid-360 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

IKF
Mid-360 0.1042 N/A N/A N/A 0.0673 N/A N/A N/A N/A N/A

TABLE IV: Percentage of successfully estimated trajectories for he
dynamic scan tracking IEKF and IKF on the selected data subset (N/A
when the method was not designed for that type of LiDAR)

LiDAR IEKF IKF

Livox Avia 100% 80%
Livox Mid-360 0% 20%

Ouster N/A N/A

images are published at a frequency of 10 Hz and have 16
bits per pixel with a linear photo response. The standard
ROS message type, sensor msgs/Image, is used for these
image data.

(v) Inertial data is available from both spinning and solid-
state LiDARs, featuring three built-in 6-axis IMU sensors
with a 3-axis gyroscope and a 3-axis accelerometer. The
IMU data is published at a frequency of 100 Hz for the
spinning LiDAR and 200 Hz for the solid-state LiDAR.
The standard ROS message type, sensor msgs::Imu, is
employed for IMU data in the rosbags.

(vi) Ground truth data is derived from the MOCAP
system and is included in the rosbags as geome-
try msgs::PoseStamped messages. These data are ob-
tained from the computer connected to the OptiTrack
cameras via a VRPN connection, providing precise
ground truth information.

IV. EXPERIMENTAL EVALUATION

This section covers the characterization of the different
tracking approaches for the dataset sequences.

A. Metrics

First, to quantify the disparity between the different LiDAR
sensors and the external position system estimates, we com-
puted the error by taking the difference between the position
estimates obtained from both systems for two distinct positions
and orientations of the target. This analysis revealed a Root
Mean Squared Error (RMSE) of 0.0143 m.

To quantitatively evaluate the tracking performance, we
employed the Root Mean Squared Error (RMSE) metric, and
the summarized outcomes are presented in Table III. Addi-
tionally, we provide an overall assessment of each method’s
performance based on the percentage of successfully estimated
trajectories, as shown in Table IV.

B. Experiments

As part of our dataset, we provide an evaluation of current
UAV tracking methods on several sequences. The objective is
to compare the performance of different methods to provide
a baseline for future research. Throughout this section, we
discuss the best methods for different types of LiDAR sensors
and environments.

From our analysis, one of the key findings is the pressing
need for methods that can enhance UAV tracking with sparse
LiDAR data, regardless of the scanning pattern.

Regarding the dynamic tracking method [7] (IEKF and IKF),
initially designed for the Livox Horizon LiDAR, we observed
that it exhibits strong generalization capabilities and performs
effectively on the Livox Avia.

Among the tested methods, we observed that tracking
using the dense solid-state Livox Avia LiDAR yields superior
results compared to the sparser Mid-360. Specifically, the
IEKF method successfully estimated 100% of the selected
trajectories, while the IKF method achieved better results on
more standard patterns, such as HolybroStdn. However, it’s
worth noting that the dynamic tracking method, being designed
for dense solid-state LiDARs, exhibited poor performance on
the Mid-360, regardless of the trajectory type and UAV used.

In summary, our evaluation highlights the need for improved
UAV tracking methods, especially for sparse LiDAR data, and
demonstrates the varying performance of different methods
based on the type of LiDAR sensor and scanning environment.
These findings lay the groundwork for future research and
development in UAV tracking techniques.

V. CONCLUSION

We introduced a novel dataset collected through a multi-
LiDAR sensor system, including both indoor and outdoor
environments. The dataset comprises diverse LiDAR types
with varying resolutions and scan patterns, along with an RGB
camera. We also include UAVs with variable sizes common to
urban areas. This diverse range of sensors and UAVs provides
a unique opportunity for future research on general-purpose
algorithms, as our analysis reveals distinct performance varia-
tions among different algorithms based on the type of LiDAR
used. Consequently, there exists a substantial opportunity to
develop more robust LiDAR-based UAV tracking algorithms.

To facilitate algorithm analysis, we have included ground
truth data for both indoor and outdoor settings. The dataset’s
distinctive characteristics, encompassing a wide array of data
and environmental conditions, distinguish it from existing



literature. This paper thereby aims at establishing a solid
foundation for benchmarking and performing quantitative
comparisons between existing and forthcoming LiDAR-based
UAV tracking algorithms. This dataset promises to advance the
field of UAV tracking, opening up new avenues for cutting-
edge research and development.
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navigation and guidance of a micro-scale aerial vehicle by an accom-
panying uav using 3d lidar relative localization. In 2022 International
Conference on Unmanned Aircraft Systems (ICUAS), pages 526–535.
IEEE, 2022.

[25] Jonghwi Kim, Sangwook Woo, and Jinwhan Kim. Lidar-guided
autonomous landing of an aerial vehicle on a ground vehicle. In
2017 14th International Conference on Ubiquitous Robots and Ambient
Intelligence (URAI), pages 228–231. IEEE, 2017.

[26] Marcus Hammer, Marcus Hebel, Björn Borgmann, Martin Laurenzis,
and Michael Arens. Potential of lidar sensors for the detection of uavs. In
Laser Radar Technology and Applications XXIII, volume 10636, pages
39–45. SPIE, 2018.

[27] Marcus Hammer, Marcus Hebel, Martin Laurenzis, and Michael Arens.
Lidar-based detection and tracking of small uavs. In Emerging Imaging
and Sensing Technologies for Security and Defence III; and Unmanned
Sensors, Systems, and Countermeasures, volume 10799, pages 177–185.
SPIE, 2018.
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