
ABatRe-Sim: A Comprehensive Framework for Automated Battery
Recycling Simulation

Huanqing Wang, Kaixiang Zhang, Keyi Zhu, Ziyou Song, Zhaojian Li

Abstract— With the rapid surge in the number of on-road
Electric Vehicles (EVs), the amount of spent lithium-ion (Li-
ion) batteries is also expected to explosively grow. The spent
battery packs contain valuable metal and materials that should
be recovered, recycled, and reused. However, only less than
5% of the Li-ion batteries are currently recycled, due to a
multitude of challenges in technology, logistics and regulation.
Existing battery recycling is performed manually, which can
pose a series of risks to the human operator as a consequence of
remaining high voltage and chemical hazards. Therefore, there
is a critical need to develop an automated battery recycling
system. In this paper, we present ABatRe-sim, an open-source
robotic battery recycling simulator1, to facilitate the research
and development in efficient and effective battery recycling au-
tomation. Specifically, we develop a detailed CAD model of the
battery pack (with screws, wires, and battery modules), which
is imported into Gazebo to enable robot-object interaction in
the robot operating system (ROS) environment. It also allows
the simulation of battery packs of various aging conditions.
Furthermore, perception, planning, and control algorithms
are developed to establish the benchmark to demonstrate
the interface and realize the basic functionalities for further
user customization. Discussions on the utilization and future
extensions of the simulator are also presented.

I. INTRODUCTION

The past decade has witnessed an explosive growth in
Electric Vehicles (EVs) due to their environmental friend-
liness, contribution to energy security, and cost reduction
in operation and maintenance. As a result, there has been
a concurrent surge in the number of spent lithium-ion (Li-
ion) batteries; it is estimated that the amount of spent Li-ion
batteries will hit 2 million metric tons per year by 2030
[1]. The spent battery packs contain valuable metals and
materials (e.g., cobalt, nickel, lithium, and manganese) that
account for more than half of the battery’s cost and can (and
should) be recovered, processed, and reused. However, only
a very small portion of batteries are recycled in a limited
number of mass battery recycling plants [1]. These factories
mostly rely on manual labor, and due to the remaining high-
voltage of battery packs and chemical hazards, specialized
training is required for workers. Moreover, the labor involved
in battery recycling is often monotonous and repetitive, mak-
ing it a prime candidate for robotic automation to improve the

Huanqing Wang, Kaixiang Zhang, Keyi Zhu and Zhaojian Li are with
the Department of Mechanical Engineering, Michigan State University,
East Lansing, MI 48824, USA (E-mail: {wanghu26, zhangk64, zhukeyi1,
lizhaoj1}@egr.msu.edu).

Ziyou Song is with the Department of Mechanical Engineering, Na-
tional University of Singapore, Singapore 117575, Singapore. E-mail:
ziyou@nus.edu.sg.

1The simulation platform is open-source and accessible at https://
github.com/hwan30/ABatRe-Sim.

operation efficiency and address the issue of labor shortage.
Developing robotic systems for automated battery recy-

cling, however, is a daunting task due to the great complexity
of battery packs that involve various materials, wires, metals,
and sensors. Those components come with various aging
conditions and are inter-connected with complicated struc-
tures. Dexterous and precise motions are required in order to
perform challenging operations such as pulling, unscrewing,
and lifting to successfully dismantle the batteries without
damaging the chemical packs in the battery cell. Further-
more, proper operation procedure needs to be established
to minimize the battery pack damages. Despite tremendous
interest, the development of robotic battery recycling is still
in its infancy. Existing robotic systems under exploration are
only designed for very specific tasks, such as unscrewing
[2], and gripping and cutting [3]. A comprehensive robotic
solution to recycling is very much lacking.

Since a battery pack is generally costly and burdensome
to acquire, maintain, and manage, there is a critical need
for a comprehensive simulation platform to facilitate the
development of enabling robotic battery recycling technolo-
gies, including perception, planning, and controls. Towards
that end, several simulation platforms have been attempted.
For example, [4] focuses on the sorting problem in bat-
tery recycling where battery parts are positioned flat on
the ground and sorted by a manipulator. Note that it is
oversimplified without considering the most labor-intensive
part of the process - disassembly. In [5], the battery pack
is treated as a single object and a cutting procedure is
simulated. However, the simulation offers limited fidelity
as the module remains unchanged visually throughout the
simulation, inadequate to provide a realistic and high-fidelity
representation of the battery systems. It is noted that [6]
analyzes the battery packs and provides insights on the
methodology of the general disassembly process, which is
useful for designing corresponding robotic procedures. The
simulation of a custom bit-changing tool to unscrew bolts
is also studied in [2], [7], which, however, only include
one specific procedure (i.e., unscrewing) of the battery
disassembly process. In summary, despite some advances,
a comprehensive simulation framework that can support the
development of robotic battery recycling still falls short.

In this paper, we present a comprehensive simulation
platform for robotic battery recycling studies. The goal is
to provide a versatile simulation tool for researchers and
practitioners in the field to develop and refine processes
and algorithms (e.g, perception, planning, and control) to
enable efficient and effective robotic procedures. Towards

ar
X

iv
:2

30
3.

07
61

7v
1

 [
cs

.R
O

]
 1

4
M

ar
 2

02
3

https://github.com/hwan30/ABatRe-Sim
https://github.com/hwan30/ABatRe-Sim

the goal, we develop a simulation platform that treats the
disassembly process of a generic EV battery pack consisting
of 4 modules with inter-connected bolts and cables. We
import the battery pack specifications from a Computer-
Aided Drawing (CAD) model into Gazebo, enabling object
interactions by exploiting its physics engine. Procedures such
as unscrewing, pulling, and lifting are included to simulate
the essential tasks that arise in the disassembly process.
Furthermore, a default robot arm and sensor set is provided
with benchmark perception, planning and control algorithms
to demonstrate the interface and offer basic functionalities
for further extensions. Overall, the open-source platform
provides an efficient yet representative simulation of the
robotic disassembly process, which can be used to develop,
evaluate, and test relevant algorithms.

The rest of this paper is organized as follows. Section II
introduces the development of the simulated hardware and
environment while the benchmark perception, planning and
control algorithms are presented in Section III to demon-
strate the interface. The utilization and extendability of the
simulation framework is discussed in Section IV. Finally,
conclusions are drawn in Section V.

Depth CameraRobot Arm

Robot Gripper

Battery Pack

Fig. 1. Illustration of the simulation environment with a battery pack, a
robot arm/end-effector for manipulation, and a depth camera for perception.

II. SIMULATION PLATFORM DEVELOPMENT

The major components of the developed simulation plat-
form are depicted in Fig. 1, which includes a battery pack
model, a sensor set for perception, and robot arm and end
effector for manipulations. More specifically, the battery
pack model is created as a CAD drawing and imported
into Gazebo as an interactive object. The perception sensor
provides measurements (e.g., RGB image and 3D point
cloud) necessary for perceiving the scene to guide robot
operations. Lastly, a manipulator – a combination of robot

arm and end effector – is used to realize robotic operations
to disassemble the parts in the battery pack. We next present
the details of each module in the following subsections.

A. Battery pack modeling

Despite the growing interest in robotic battery recycling, a
suitable model integrated in robotic operating system (ROS)
is still lacking. The CAD drawings of battery packs are
considered proprietary information by the EV companies and
are generally not available to the research community. The
complexity and technical details make it challenging to create
such drawings. Furthermore, importing such complex models
into ROS-based simulation environment presents a challenge,
as the complexity of these models can lead to unexpected
behaviors in the physics engine of simulators such as Gazebo
[8]. While some sorting tasks have been simulated in the
Gazebo environment, they typically involve objects that are
either lying flat on the ground [4] or imported as a single
piece [5]. To our knowledge, a simulation platform involving
stacked or assembled battery objects is largely unavailable.

To address the aforementioned challenges, a detailed bat-
tery model is created in SolidWorks with major components
necessary for robotic disassembly. As shown in Fig. 2,
the silver blocks represent battery modules, connected by
high voltage cables in orange. The switch on the right side
(orange) is Manual Service Disconnect (MSD), which, when
unplugged, breaks down the pack voltage by half. The orange
box on the left side is the contactor box, which contains
high-voltage relays (contactors). The two orange lines on
the left-hand sides are the positive bus bar and the negative
bus bar, respectively. The red box is the BMS controller
which is the “brain” of the battery pack (marked red only for
demonstration purpose). The components mentioned above
account for the major structural parts of the battery pack.
Since adding more components of the same category only
involves repetitive work, we designed a generic EV battery
pack with four modules in Gazebo simulation, as shown in
Fig. 1. This battery pack also includes the battery base, two
cables, positive and negative bus bars, one contactor, one
MSD, and multiple bolts.

In this framework, we will demonstrate the detection
and disassembly of three main classes: bolts, cables, and
modules. The shape is imported through model editors. Its
physics properties are further hand-modified in XML scripts
to reduce the processing workload. Each component is set
to static in its XML script, but will only be replaced with a
movable version prior to picking due to the fact that fewer
interacting parts will reduce the physics engine processing
load. For example, movable bolts will be spawned prior to
the unbolting action while static bolts will be simultaneously
deleted. The same approach is applied to cables and modules.
In this way, a seamless transition is achieved without notice-
able visual differences. We use the built-in physics engine in
Gazebo to simulate the object interactions. Specifically, we
exploit the grasp plugin libgazebo_grasp_fix.so [8]
to establish a connection between two components when the

gripper approaches a particular position, and the object can
be dropped from the gripper when it is open.

BMS
Controller

MSD

Battery Base

High Voltage
Cable

Battery
Module

Contactor
Box

Neg. Bus
Bar

Pos. Bus
Bar

Fig. 2. The battery management system modeled in SolidWorks.

We have also taken into account scenarios where the bat-
tery pack is received damaged or in an imperfect condition,
which could be due to internal failure, transportation damage,
or aging. To address these imperfections, we have created
image filters that are available to simulate such conditions.
Fig. 3 illustrates four simulated conditions that could occur
when a pack is received at the disassembly station. Image
A depicts a dent or deformation that could occur after the
pack is pressed by other objects, resulting in convex shapes
on the right edges of the two packs on the right. Image B
simulates the case of an old improperly maintained pack
where coolant leaked out, leaving behind corrosion and
green coolant residuals. Image C simulates a long-sitting
pack where a light layer of dust is present on top. Image
D simulates the result of careless disassembly, where the
pack is left with multiple marks on the metal and paint
surfaces. These scenarios account for the possibility of a
poorly maintained or transported battery pack. We plan to
continue adding more scenarios to improve the capability of
simulating real-world situations.

B. Robot manipulator and sensing modality

While a number of robot arms can be used for this appli-
cation, we use Universal Robot 10, a 6-axis robotic arm, as
the default in the simulation platform. Note that the user can
choose other robotic arms in the simulation (see Section IV
for more details). In ROS, robots are described using Unified
Robot Description Format (URDF) files, which describe the
robot’s joint structures and kinematic relations. The files can
include additional details such as the visual and collision
properties of links, joints, sensors, etc. XACRO files (XML
Macros) are extensions of URDF that allow for smarter and
more modular descriptions of robots. Mesh files provide 3D
models for the visual representation of robots in simulations.
These files are often in STL or Collada format. The package
for the robot is referenced from the Universal Robot Github
Page [9]. Moreover, as shown in Fig. 4, two types of grippers
are incorporated with the robot arm to facilitate the battery
disassembly. Specifically, a Robotiq gripper [10] is utilized

A B

C D

Fig. 3. Function to generate simulated battery pack with deformation (A),
contamination (B), dust (C) and scratches (D).

for the first two operations, which involve unscrewing the
bolts and removing them as well as lifting the cables.
Following the removal of these parts, a vacuum gripper is
employed to pick up the modules. The vacuum gripper is
driven by the libgazebo_ros_vacuum_gripper.so,
which essentially creates linkages between objects when a
service is called. The animation resembles that of a vacuum
gripper. The robot arm and gripper are connected by creating
an additional link in-between. The robot and gripper files are
open-source ROS packages on GitHub [9], [10]. Inspirations
from other researchers’ integration with Universal Robots
[11], [12] also contribute to this project.

Vacuum GripperFinger Gripper

Fig. 4. Two types of grippers are used in our simulation.

Furthermore, a sensor is needed to understand the scene,
i.e., identifying and localizing the position of the objects.
To that end, we adopt Kinetic RGB-D camera as the sensor
modality, which is placed on top of the battery pack, as de-
picted by the green object in Fig.1. In Gazebo, the Kinect has
a ready plugin that renders color and depth images through
ROS topics. In our node, the color image is streamed into
the object detection node for inferencing different battery
parts (see Section III-A) and the depth image is then used
to generate the target positions to guide the manipulations.

III. BENCHMARK ALGORITHM IMPLEMENTATION

In this section, we describe the benchmark perception,
planning, and control algorithms that come with the simula-
tion platform, which demonstrates how to interface the sim-
ulation modules described in Section II and provides basic
functionalities for customized extensions. Fig. 5 depicts the
interaction between the software and the simulated hardware.
Specifically, RGB images from the camera are consumed
by the perception node, and a deep learning algorithm is
employed to detect various parts of the battery pack (e.g.,
screws, cables, battery module). A high-level task planner
is then used to determine the disassembly stage and subse-
quently the next item to remove. The target XY Z position is
then retrieved from the depth image, which is subsequently
sent to the low-level planning and control algorithms for low-
level disassembly executions. We next present the details of
the algorithms in the following subsections.

Detect objects with
SSD ResNet

Localize Target

Determine
Disassembly Stage

Decide the next item
for picking

Trajectory Generation

Robot Control

Battery Pack ModelDepth Camera Manipulator

Robotic Hardware Gazebo Simulation Environment

Algorithms

Planning and Control

Vision & High-Level Planning

Fig. 5. The interface between algorithm software and robot hardware.

A. Deep learning for object detection

Detecting various parts of the battery pack is a key step to
perform disassembly. Deep learning-based techniques have
been widely used for object detection and have received
significant attention in recent years. There are numerous ma-
chine learning frameworks such as PyTorch and TensorFlow,
and there are also open-source implementations that use pre-
trained models for common objects with webcams. However,
it should be noted that although there exist many Gazebo
simulation integrations for object detection, fewer of them
use more recent frameworks like TensorFlow 2 and recent
learning algorithms like YOLOv5.

For the object detection task, we utilize TensorFlow 2.11.0
to deploy the learning algorithm. The model architecture
is constructed with SSD ResNet50 V1 FPN 640x640 [13],
which is selected from the open-source TensorFlow model
zoo. The model structure is shown in Fig. 6. Different from
SSD [14] that uses VGG16 as its backbone, the SSD ResNet
FPN uses ResNet50 as the backbone and provides additional
convolutional layers for classification [15]. ResNet50 is a
deeper backbone than VGG16 as it has 50 layers and it

is introduced to address the problem of vanishing gradients
in deep neural network [16]. The architecture also utilizes
Feature Pyramid Network (FPN) for better feature extraction.
FPN is a type of multi-scale feature extraction method that
enhances the detection of objects of varying scales and
sizes [17].

ResNet50

Extra Feature Layers

Detections Non-maximum
Suppression

Classifier: Conv layer

Classifier: Conv layer

Conv layer

Fig. 6. The architecture of SSD ResNet50 FPN.

The task of image labeling is known to be a laborious
process, requiring significant investments in time and human
resources. Our research has determined that a dataset consist-
ing of 120 labeled images is sufficient for our model to detect
all three classes in a simulated environment, which exhibits
lower complexity than real-world images. For the effective
deployment of this approach in real-world applications, a
larger dataset, and a corresponding increase in the volume
of labeled images, will likely be needed. To account for
different conditions in the real world, data augmentation
techniques [18] is applied to extend the dataset, enabling
tests under a broader range of conditions. Specifically, a data
augmentation script is included in the simulation framework
to characterize more variations in the data and improve the
robustness of the models trained on the dataset. The tool can
enlarge the dataset with random brightness, contrast, crop
portion, flip orientation, Gaussian noise level, and rotation
position. A sample of the enlarged dataset, consisting of eight
distinct pictures, is shown in Fig. 7.

The model training is performed on a separate computer
with Ubuntu 20.04LTS operating system, an Intel Core i9-
9820x CPU, and two NVIDIA GeForce RTX 2080Ti GPUs.
In our training process, we specified the number of classes to
be 3, the batch size to be 4, the warm-up steps to be 2000, and
the training steps to be 25000. The entire training process
took 1 hour 15 minutes and 9 seconds. Once the training
is complete, the model is exported as a benchmark model
for object detection purposes. The following are the final
training metrics: classification loss of 0.03157, localization
loss of 0.01083, regulation loss of 0.01415, and total loss
of 0.05655. The exported model can then be employed
for inferencing objects of interest. The inference node and
Gazebo simulation were experimented on a Dell Precision
PC with an Intel i7-11700 CPU and no dedicated GPU, and
we only experience a small amount of latency.

The streaming of Kinetic camera images, object detection
inference, and the communication of the process information
(stage flags, coordinates) are all integrated into a single

Brightness

Contrast

Crop

Random
Flip

Gaussian
Noise

Rotation

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 Image 7 Image 8

Fig. 7. The dataset can be expanded to 6 different variations using data
augmentation method.

Python script called Vision Algorithm. The pseudo code for
this module is shown in Algorithm 1, which processes the
image and generates the bounding boxes with corresponding
pixel coordinates. The pixel coordinates are transformed into
the coordinates under the world frame, which are then passed
to the planning and control module.

Fig. 8. Results of objects of interest detected using the TensorFlow object
detection API, with bounding boxes and confidence levels displayed.

B. Planning and Control

The planning and control algorithm of robotic motion is
designed using the components from the open-source ROS
package, MoveIt!, and can be further modified by users with
the functions provided in the demo. MoveIt! is a compre-
hensive software framework for robotic motion planning
and manipulation. Once a robot is set up and initialized

Algorithm 1 Perception Algorithm
1: procedure OBJECT DETECTION WITH GAZEBO DEPTH

CAMERA
2: Input: Kinect camera images
3: Output: Stage flag; Detected objects with bounding

boxes; Image coordinates of Detected objects
4: Convert ROS image topics to OPENCV format.
5: TensorFlow inference model detects objects and cre-

ates the bounding boxes.
6: Initialize and append elements to bolt list if ”Detec-

tion Class”=bolt.
7: Initialize and append elements to cable list if ”De-

tection Class”=cable.
8: Initialize and append elements to module list if

”Detection Class”=module.
9: Default: Stage flag = 1 ; Flag for bolt removal

operation; Find the object center.
10: if length(bolt list)==0 then
11: Stage flag = 2 (Flag for cable removal operation)
12: Find the object center.
13: end if
14: if length(cable list)==0 then
15: Stage flag = 3 (Flag for module removal opera-

tion)
16: Find the object center.
17: end if
18: Return output
19: end procedure

in the MoveIt! configuration, users can conveniently finish
the task of planning and control for the robot through the
API provided. By employing the Planning Scene Interface,
users can add the collision objects in the scene to achieve
collision-free planning. The arm (Arm group) and the gripper
(Gripper group) are powered by MoveGroup, which is a
component of MoveIt! that provides interfaces for controlling
motion planning and execution. In our demo, we exploit the
Rapidly-exploring Random Tree (RRT) [19] algorithm for
the planning of the robot as a C++ node in ROS, which
makes it convenient for users to edit their own planning
and control algorithms if necessary. With the Kinematics and
Dynamics Library, we obtain a group of joint angles given a
desired pose in the Cartesian workspace. Then we iteratively
take samples in the joint configuration space and use the
functions that MoveIt! provides to check the validity of the
sampled states. As the iteration progresses, a collision-free
joint trajectory is then generated. When every point in the
joint configuration space has the same probability of being
sampled, this algorithm can be guaranteed successful if there
is a feasible path. Taking some biased sampling strategy
can accelerate the progress. Having obtained a feasible joint
trajectory, we then use the Iterative Spline Parameterization
algorithm from MoveIt! to interpolate a timed trajectory that
is executable for the robot.

The planning algorithm discussed above is outlined in
Algorithm 3. To briefly explain, Lines 4-11 initializes the
algorithm. Line 5 obtains one group of joint configuration

Algorithm 2 Planning and Control Algorithm
procedure MOVEIT PLANNER BATTERY DISASSEM-
BLY PROCESS

2: Input: Stage flag; World coordinates of detected
objects X,Y, Z

Output: None
4: Initialize environment and planning scene.

while Stage flag == 1 do
6: Arm group planning - Move to target (X,Y, Z)

Gripper group planning - Close
8: Arm group planning - Twist motion

Arm group planning - Move to drop location
10: Gripper group planning - Open

end while
12: while Stage flag ==2 do

Arm Group Planning - Move to target (X,Y, Z)
14: Gripper Group Planning - Close (ROS Service:

Grasp Plugin → Attach)
Arm Group Planning - Move to drop location

16: Gripper Group Planning - Open (ROS Service:
Grasp Plugin → Detach)

end while
18: while Stage flag ==3 do

Arm Group Planning - Move to target (X,Y, Z)
20: ROS Service: Vacuum Gripper Plugin → On

Arm Group Planning - Move to drop location
22: ROS Service: Vacuum Gripper Plugin→ Off

end while
24: Return output

end procedure

qt which complies with the given target pose pt, and the
validity of qt is checked. Then a tree structure {V, E} is
initialized, where V is the set of nodes, and E is the set
of edges. One node v has two components, one being the
joint configuration q, and the other being the distance to the
root of the tree, i.e., v0. In the while-loop, we first take the
biased sampling, which has a probability of 0.2 for choosing
qt as a result and 0.8 for uniform sampling. Then with the
sampled qs, the nearest node qnearest ∈ V is found. In Line
15, Steer function is used to replace qs with qnew if qs
is too far away from or too close to qnearest, in order to
efficiently explore the joint configuration space and find a
feasible trajectory. After verifying the validity of the edge
(vnearest, vnew), vnew is added to the tree {V, E}. In Line
22-23, the neighboring nodes of vnew is checked to see
whether those nodes are closer to v0, if their ”father” node is
changed to vnew. If qt is added to the tree, a valid trajectory
is then obtained by back-propagation in the tree {V, E} from
vt.

In our simulator, high-level control actions, such as un-
screwing bolts, removing cables, and lifting modules, are
executed based on different stage flags as shown in Algo-
rithm 2, while the C++ node handles low-level trajectory
generation and inverse kinematics. In order to initiate the
simulation, it is crucial to launch all necessary functions,
such as Gazebo world, frame transformation, vision, and

Algorithm 3 Editable Planner
procedure BIASED RRT

Input: Target pose in the Cartesian space pt, Current
joint configuration q0

3: Output: A feasible joint trajectory q = q0q1q2...qn
Specify max iteration time imax;
qt = InverseKinematics(pt);

6: if IsV alid(qt) then
Return q = ∅;

end if
9: v0 = [q0, d0], where d0 = 0;

V = {v0}, E = ∅;
i = 0;

12: while i < imax do
qs = Sample(qt);
qnearest = FindNearest(qs, V);

15: qnew = Steer(qs, qnearest);
if IsV alid(qnew, qnearest) then

Continue;
18: end if

dnew = dnearest + ||qnew − qnearest||;
vnew = [qnew, dnew];

21: V = V
⋃
vnew, E = E

⋃
(vnearest, vnew);

vneighbors = FindNeighbors(vnew, V);
E = Rewire(qnew, qneighbors, V, E);

24: if qt ∈ V then
Return q = GenTraj(V,E, qt);

end if
27: i = i+ 1;

end while
Return q = ∅

30: end procedure

control in ROS nodes, and establish communication through
ROS topics. For the disassembling task, the first step is to
unscrew the bolts. The detected bolts are appended to a list
for preparation in the perception node. The first item in the
list has its coordinates sent to the frame transformation node,
which converts the u, v coordinate frame to the camera frame
and then to the world frame for the robot to pick up. Given
the corresponding pose of targets, a collision-free trajectory
for the robot is generated and executed by the C++ node.
After picking the bolt, the simulation adds a twisting motion
to simulate unscrewing. Once all bolts in the first class are
removed, the simulation proceeds to the second stage – cable
picking. With the bolts no longer locking down the cables,
they are then ready to be picked. The whole workflow is
demonstrated in Fig. 9. Specifically, at the beginning of the
simulation, A1 displays the first object that is targeted for
disassembly (dark blue circle indicates the desired location
to place the end effector of the robot), while A2 shows the
arm moving to the location to pick it up. B1 shows the
real-time disassembling process, where the perception node
selects the next bolt while B2 shows the robot executing the
task. In C1, it is displayed that there is only one bolt left,
and C2 shows a zoomed-in view of the gripper for picking.
In D1, the transition between the first and second stages is

A1

A2

B1

B2

C1

C2

D1

D2

E1

E2

Fig. 9. Illustration of the simulated battery disassembly process. A: The first bolt is detected by the perception node and the robot moves to execute its
removal; B: The second bolt is then located by the perception node and the robot moves over to remove it; C: After several removals, the perception node
detects the last bolt and the robot executes its removal; D: Once all bolts are removed, the perception node detects the cable and the robot proceeds to
remove it; E: The detection of the module is carried out by the perception node, and the robot performs the removal action with a vacuum gripper.

shown as dark blue circle moving from the last bolt to the
first cable whereas in D2 the gripper goes on to pick up the
cables. After completing stage two, the modules are left to
be removed. Since the modules require a vacuum gripper to
pick them up, and the URDF does not support the dynamic
changing of grippers, we switch the gripper by relaunching
the corresponding URDF file and loading the vacuum gripper
plugin. In E1, the perception node selects the first module
to pick, while E2 shows the robot successfully picking this
object. Finally, all the modules are removed. The objects
MSD, positive bus bar, and negative bus are not implemented
in this simulation, as the process for disassembling them
follows the same concepts as for the bolts and cables.
The outcomes of the benchmark algorithm are presented
in Table I. Notably, all the assigned tasks were performed
successfully. However, it is worth-noting that the analysis
also reveals a prolonged execution time for bolt disassembly,
as generating a viable path took several attempts in some
cases, highlighting a needed area for further enhancements
over our C++ planner. While the current object detection
algorithm is able to accurately detect all objects and their
locations, the detection score is relatively low compared to
that of larger objects. There is still room for improvement
in detecting smaller objects with higher accuracy, which
is a known challenge in computer vision. Nonetheless, the
framework offers a comprehensive solution to automated
battery recycling, and meanwhile there is certainly potential
for further improvements and extensions, which will be
discussed next.

IV. EXTENSIONS AND DISCUSSIONS

The proposed framework is designed to be customizable
and adaptable to accommodate different research needs. The

TABLE I
BENCHMARK ALGORITHM EXECUTION RESULTS

Execution Time (s) Detection Score (%) Success
Bolt 1 15.3 54 Yes
Bolt 2 15.3 57 Yes
Bolt 3 15.3 53 Yes
Bolt 4 30.6 41 Yes
Bolt 5 23.4 38 Yes
Bolt 6 28.8 35 Yes

Cable 1 9.0 53 Yes
Cable 2 9.0 47 Yes

Module 1 9.0 100 Yes
Module 2 8.1 100 Yes
Module 3 18.0 100 Yes
Module 4 9.0 100 Yes

framework is composed of various entities, each of which
has been specifically designed to be highly interchangeable.
The entities that can be exchanged include the battery
model, robot model, perception algorithm, planning, and
control. The battery model is currently developed for the
module battery pack, but users have the option to create
their own object of interest and integrate it into the Gazebo
environment. This flexibility allows researchers to tailor the
battery model to meet their specific research needs. A stable
and computationally efficient way of creating simulations has
been introduced in the framework. Working with stacked or
complex objects no longer requires monotonous tuning of
solid properties. Users can develop customized components
based on their needs by following the similar steps discussed
in this paper.

The current implementation of the framework can use
either the MoveIt OMPL library for planning or user-defined
planner. We have provided an customized entry port for
users who prefer to develop their own algorithm. This allows
them to implement their own algorithm instead of relying

on the Moveit planner, which may feel like a black box
to some users.The framework’s adaptability allows for the
modification of the planning and control section. As long
as the interface between the perception algorithm and the
planning and control algorithm is maintained, the remaining
components of the framework will continue to function as
intended. This allows control researchers to concentrate on
the development of the algorithm without having to delve
into deep learning related areas.

The current object detection model utilizes the SSD
ResNet architecture, which has a good balance between
speed and performance. However, users have the flexibility
to select a model that meets their specific requirements and
follow the training procedure in a similar manner. While
the picture settings in the Gazebo world are ideal, the real
world can present more variations, such as lighting, noise,
and more. Moreover, to enhance the detection robustness,
additional metrics can be incorporated. Data augmentation
techniques, such as those described in [18], can be applied
to extend the dataset, enabling tests under a broader range
of conditions. This will be crucial when detecting in the real
world, where real hardware can be subject to noise. Overall,
the modular design of the platform enables researchers to
continue developing and improving their area of interest.

V. CONCLUSION

This paper presented a comprehensive simulation platform
for research on robotic battery recycling. A generic EV
battery pack consisting of 4 modules with inter-connected
bolts and cables, a manipulator, and a Kinetic RGB-D camera
were integrated as the main components of the simulated
hardware system. A CAD model that depicts the EV battery
pack was designed and imported into Gazebo for object inter-
actions. Various procedures, including unscrewing, pulling,
and lifting, were considered to imitate the key tasks involved
in battery disassembly. Moreover, benchmark perception,
planning, and control algorithms were provided to guide the
manipulator in executing different disassembly tasks. The
whole simulation platform was compact and efficient, and it
can be used for further development, evaluation, and testing
of robotic battery disassembly algorithms. Future works will
include adding more simulated hardware components (e.g.,
different battery packs) to enhance the capabilities of the
platform, exploring more efficient perception, planning and
control algorithms, and developing multi-armed systems for
collaborative disassembly.

REFERENCES

[1] M. Jacoby, “It’s time to get serious about recycling lithium-ion
batteries,” Chemical & Engineering News, vol. 97, 2019.

[2] K. Wegener, W. H. Chen, F. Dietrich, K. Dröder, and S. Kara, “Robot
assisted disassembly for the recycling of electric vehicle batteries,”
Procedia Cirp, vol. 29, pp. 716–721, 2015.

[3] I. Kay, R. Esmaeeli, S. R. Hashemi, A. Mahajan, and S. Farhad,
“Recycling li-ion batteries: Robotic disassembly of electric vehicle
battery systems,” in ASME International Mechanical Engineering
Congress and Exposition, vol. 59438, 2019, p. V006T06A061.

[4] A. Rastegarpanah, H. C. Gonzalez, and R. Stolkin, “Semi-autonomous
behaviour tree-based framework for sorting electric vehicle batteries
components,” Robotics, vol. 10, no. 2, p. 82, 2021.

[5] A. Rastegarpanah, J. Hathaway, and R. Stolkin, “Vision-guided mpc
for robotic path following using learned memory-augmented model,”
Frontiers in Robotics and AI, vol. 8, 2021.

[6] J. F. Hellmuth, N. M. DiFilippo, and M. K. Jouaneh, “Assessment
of the automation potential of electric vehicle battery disassembly,”
Journal of Manufacturing Systems, vol. 59, pp. 398–412, 2021.

[7] W. H. Chen, K. Wegener, and F. Dietrich, “A robot assistant for
unscrewing in hybrid human-robot disassembly,” in Proceedings of the
IEEE International Conference on Robotics and Biomimetics, 2014,
pp. 536–541.

[8] J. Buehler, “gazebo-pkgs,” https://github.com/JenniferBuehler/
gazebo-pkgs.git, 2016.

[9] rosindustrial, “universal robot,” https://github.com/ros-industrial/
universal robot.git, 2016.

[10] Rosindustrial, “robotiq,” https://github.com/ros-industrial/robotiq.git,
2016.

[11] J. Yang, “UR with Robotiq grasp gazebo,” https://github.com/
JingyuYang1997/UR with Robotiq grasp gazebo.git, 2018.

[12] L. Huang and H. Zhao, “Implementation of UR5 pick and place in
ROS-Gazebo with a USB cam and vacuum grippers,” https://github.
com/lihuang3/ur5 ROS-Gazebo.git, 2018.

[13] H. Yu, C. Chen, X. Du, Y. Li, A. Rashwan, L. Hou, P. Jin, F. Yang,
F. Liu, J. Kim, and J. Li, “TensorFlow Model Garden,” https://github.
com/tensorflow/models, 2020.

[14] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” in Proceedings of
the 14th European Conference on Computer Vision, 2016, pp. 21–37.

[15] F. R. Fathabadi, J. L. Grantner, I. Abdel-Qader, and S. A. Shebrain,
“Box-trainer assessment system with real-time multi-class detection
and tracking of laparoscopic instruments, using CNN,” Acta Polytech-
nica Hungarica, vol. 19, no. 2, 2022.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[17] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 2117–2125.

[18] D. Chen, X. Qi, Y. Zheng, Y. Lu, and Z. Li, “Deep data aug-
mentation for weed recognition enhancement: A diffusion proba-
bilistic model and transfer learning based approach,” arXiv preprint
arXiv:2210.09509, 2022.

[19] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” The International Journal of Robotics Research, vol. 20, no. 5,
pp. 378–400, 2001.

https://github.com/JenniferBuehler/gazebo-pkgs.git
https://github.com/JenniferBuehler/gazebo-pkgs.git
https://github.com/ros-industrial/universal_robot.git
https://github.com/ros-industrial/universal_robot.git
https://github.com/ros-industrial/robotiq.git
https://github.com/JingyuYang1997/UR_with_Robotiq_grasp_gazebo.git
https://github.com/JingyuYang1997/UR_with_Robotiq_grasp_gazebo.git
https://github.com/lihuang3/ur5_ROS-Gazebo.git
https://github.com/lihuang3/ur5_ROS-Gazebo.git
https://github.com/tensorflow/models
https://github.com/tensorflow/models

	I Introduction
	II Simulation Platform Development
	II-A Battery pack modeling
	II-B Robot manipulator and sensing modality

	III Benchmark Algorithm Implementation
	III-A Deep learning for object detection
	III-B Planning and Control

	IV Extensions and Discussions
	V Conclusion
	References

