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Abstract— Acquiring human skills offers an efficient ap-
proach to tackle complex task planning challenges. When
performing a learned skill model for a continuous contact task,
such as robot polishing in an uncertain environment, the robot
needs to be able to adaptively modify the skill model to suit the
environment and perform the desired task. The environmental
perturbation of the polishing task is mainly reflected in the
variation of contact force. Therefore, adjusting the task skill
model by providing feedback on the contact force deviation
is an effective way to meet the task requirements. In this
study, a phase-modulated diagonal recurrent neural network
(PMDRNN) is proposed for force feedback model learning in
the robotic polishing task. The contact between the tool and the
workpiece in the polishing task can be considered a dynamic
system. In comparison to the existing feedforward neural
network phase-modulated neural network (PMNN), PMDRNN
combines the diagonal recurrent network structure with the
phase-modulated neural network layer to improve the learning
performance of the feedback model for dynamic systems.
Specifically, data from real-world robot polishing experiments
are used to learn the feedback model. PMDRNN demonstrates a
significant reduction in the training error of the feedback model
when compared to PMNN. Building upon this, the combination
of PMDRNN and dynamic movement primitives (DMPs) can
be used for real-time adjustment of skills for polishing tasks
and effectively improve the robustness of the task skill model.
Finally, real-world robotic polishing experiments are conducted
to demonstrate the effectiveness of the approach.

I. INTRODUCTION

Learning from demonstration (LfD) is increasingly be-
ing used for robotic contact tasks, including tactile tasks
[1][2][3], assembly tasks [4][5][6], cutting [7][8], writing
[9] and polishing [10][11]. Traditional kinematics-based skill
learning often overlooks vital force and stiffness information,
making it challenging to apply effectively to intricate tasks
involving complex force interactions [12][13]. Among these
tasks, contact force tracking is particularly important, espe-
cially in continuous contact tasks such as robot polishing.
However, in contact tasks with environmental uncertainty,
when the measured force signal deviates from expected
values, it is possible to try to correct the skill action
by correlating the force information with the movement
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primitive. Force signals measured by force sensors are the
basis of this work. Mapping the contact force error to the
adjustment amount of the skills model is one of the ways
to address this problem [1], which can enhance the robust-
ness of the contact task skills model. Initially, some hand-
designed feedback models [14][15] were used to map the
sensor-measured error to the amount of movement primitive
correction. However, these models were limited to specific
tasks with non-high-dimensional sensing. Therefore, some
data-driven approaches [16] were proposed to generalize the
learning of sensor feedback models.

However, in tasks like polishing, in addition to the rel-
ative sliding between the tool and the workpiece, there is
also rotation of the tool or workpiece, and various factors
influence the relationship between the amount of trajectory
correction and the contact force. In robotic polishing tasks,
the tool-to-workpiece contact force is related to the physical
parameters of the tool and workpiece, the contact depth and
area, and the relative rotational speed [17]. The mapping
relationship between force error and skill model adjustment
in the feedback model of polishing task serves the same main
purpose as force tracking control methods such as impedance
control. Impedance control adjusts acceleration, velocity and
position based on contact force errors, and thus, the two
processes influence each other during force tracking. So the
relationship between contact force error and skill model ad-
justment is analogous to a dynamic system. Moreover, robot
polishing skills consist of time-series data, where data at
different moments can have an influence on each other. And
Recurrent neural network (RNN) can memorize historical
information to adapt to more complex dynamic environments
[18]. So RNN is more suitable for force sensor feedback
model building compared to feedforward neural network
(FNN). It is worth noting that the polishing contact process
can be modeled to be a dynamic system, and constructing
a sensor feedback learning model that is more suitable for
dynamic systems is more suitable for the generalization task
of polishing skills. To better model the force error feedback,
we propose a novel force sensor feedback learning model
called PMDRNN. PMDRNN takes into account the interac-
tive dynamics between the tool and the workpiece, as well as
the effect of adjacent moments, and the effect of the phase
function in the skill model DMP, which satisfies the learning
of dynamical system features associated with the canonical
system in DMPs. By combining the phase-modulated term[1]
with the diagonal recurrent neural network (DRNN) [19] to
improve the accuracy of the force sensor feedback learning

ar
X

iv
:2

31
0.

14
86

0v
2 

 [
cs

.R
O

] 
 2

2 
N

ov
 2

02
3



model.
Combining the trained PMDRNN with the DMPs allows

for real-time modification of the skill model while consid-
ering the force feedback error. This approach differs from
directly modifying the forcing term weights and residual
terms in the DMPs model, which is a characteristic of
contact tasks. The main process of this study is illustrated
in Fig.1. Firstly, the operator constructs the desired skill
model DMPs and the desired contact force trajectories by
demonstrating the nominal skills. Secondly, the actual con-
tact force trajectory is obtained by executing the nominal
skill in an environment with environmental perturbations.
The modified skill model is then obtained by correcting
the nominal skills to ensure that the contact force trajectory
in the non-nominal environment reaches the desired state.
Subsequently, the force feedback model PMDRNN is trained
using the correction term C of the skill model and the error
∆F between the desired contact force and the actual contact
force. Finally, the trained force feedback model is utilized for
real-time adjustment of DMPs to correct the force deviation
in real-world robot polishing tasks.

Contributions Firstly, a novel force sensor feedback
model called PMDRNN is proposed to address the mapping
problem between multidimensional contact force errors and
trajectory skill corrections in robot polishing tasks. Secondly,
the combination of PMDRNN and DMPs enables real-time
adjustment of the polishing skill model based on force
feedback, thereby enhancing the self-adaptability of the skill
model. Thirdly, real robot polishing experiments validate the
effectiveness of the proposed method, demonstrating that
the inclusion of the force feedback model improves the
robustness of the skill model.

II. RELATED WORK

Contact tasks skills learning from demonstration In
robotic contact tasks, the robot’s position [20], orientation
[21], contact force [22][23] and impedance [24][25][26]
information are closely related to the skills involved. Typ-
ically, DMPs [27][28] are used to learn skills related to
robot position and orientation data, with orientation data
commonly represented in the form of quaternions. Chang et
al. [29] proposed the contact dynamic movement primitives
to learn position, orientation and force trajectories from
demonstrations. They further adapted the impedance param-
eters online using a control policy trained by reinforcement
learning (RL). Davchev et al. [21] explored the effects
of adding Gaussian perturbations in different forms when
utilizing DMPs for skill learning in contact tasks. These per-
turbations were applied to various components, such as the
forcing term, phase-modulated coupling term, and directly
in the task space. Different perturbations were found to be
beneficial for different tasks, for example, residual learning
in the task space improved the robustness of the peg-in-hole
skill model. Yu et al. [30] used electromyography (EMG)-
based method to estimate human upper limb stiffness and
impedance information. They then employed a DMPs model
to simultaneously capture movement and impedance features.

Kim et al. [31] proposed a neural network-based movement
primitive (NNMP) to learn a continuous trajectory, which
could be used as input to a force controller. In robotic
polishing tasks, researchers usually use DMPs to model the
position, orientation and force information of the polishing
task separately [11][32]. Force tracking is then implemented
through a skills model with either an impedance or pro-
portional integral differential (PID) controller. However, fine
planning of the parameters for force tracking controllers is
usually required, and the limited trajectory adjustment range
of force tracking control is not conducive to generalizing
the trajectory of robotic polishing tasks considering force
feedback.

Sensor feedback learning To enhance the robot’s adapt-
ability to environmental perturbations, it is essential to es-
tablish a mapping between sensory space errors and action
space corrections. Pastor et al. [14] initially utilized a linear
feedback model for the mapping between sensor errors
and action corrections. Rai et al. [16] employed nonlinear
differential equations to represent a reactive modification
term for movement plans and used a neural network to learn a
reactive policy from human demonstrations. To incorporate
the movement phase dependency into the feedback model,
Sutanto et al. [33] proposed phase-modulated neural net-
works (PMNNs), which could learn phase-dependent feed-
back models. Building upon this, Sutanto et al. [1] presented
a full framework for learning feedback models for reactive
motion planning and used a sample-efficient RL algorithm
to fine-tune these feedback models for novel tasks through
a limited number of interactions with the real system. It
is worth noting that all these sensor feedback models are
involved in the tuning of the skill model as one term of the
DMPs. Moreover, these methods are mainly applied to the
tactile devices.

III. PRELIMINARIES

A. DMPs in Cartesian space

The task skills model DMPs in Cartesian space
are divided into position DMPs and orientation DMPs
[10][27][28]. After collecting the position and orientation
data {tk, pk, qk}, k ∈ [1, T ] from the demonstrated task,
DMPs are used to model the related skills. Where tk denotes
the time series, pk and qk denote the position and quaternion
orientation sequences at the end of the robot in Cartesian
space, respectively.

Position DMPs:

τ ż = αp(βp(gp − p)− z) + fp(s) (1)

τ ṗ = z (2)

Orientation DMPs:

τ ṙ = −αe(βeeQ + r) + diag(2 log(qg ∗ q0)) + fq(s) (3)

τ ėQ = r (4)

eQ = 2 log(qg ∗ q) (5)
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Fig. 1. This figure shows the process of using the proposed method for learning and implementing feedback strategies. The force feedback model is first
trained based on data from real-world robotic demonstration tasks, and then the trained model is used to adapt the task skill model in real-time to achieve
the desired contact skills

Where the αp ,βp ,αe and βe are constant coefficients,
and βp = αp/4 , βe = αe/4. gp and qg denote the robot
position and orientation at the end point. And q0 denotes
the robot orientation at the starting point. p and q denote
the position and quaternion orientation of robot movement.
s is the phase term of the canonical system. Moreover, z
and r are intermediate variables. q is the conjugate of a unit
quaternion q. The nonlinear forcing terms fp(s) and fq(s)
are defined as linear combinations of M radial basis functions
Ψi(s)(6)-(10). More details can be found in [10] and [28].

fp(s) =

∑M
i=1 wi,pΨi(s)∑M

i=1 Ψi(s)
s (6)

fq(s) =

∑M
i=1 wi,qΨi(s)∑M

i=1 Ψi(s)
s (7)

Ψi(s) = exp(−hi(s− ci)
2) (8)

ci = i/M, ci ∈ [0, 1] (9)

hi =
1

2(ci+1 − ci)
2 , (hM = hM−1) (10)

B. Modulation terms of DMPs

In general, there are three ways to adapt the DMPs model
to enhance the robustness and generalization performance
of the DMPs skills model [21], which are adjusting the
forcing term fp(s)ω+η , the coupling feedback term C(η) and
adjusting directly in the action space, as shown in (11).

τ ż = αp(βp(gp − p)− z) + fp(s)ω+η+C(η) + η (11)

Where η denotes the added bias. If the skill model
is adjusted by the feedback term, the forcing term de-
termines the nominal trajectory, and the phase-modulated
feedback/coupling term C(η) makes an adaptation to the
skill model based on sensor feedback. In this study, the skill
modulation is centered around the error in the force measured
by the sensor, so the main focus is on the design of C(η).

IV. FORCE FEEDBACK LEARNING MODEL:
PHASE-MODULATED DIAGONAL RECURRENT

NEURAL NETWORKS

This section focuses on the proposed feedback model
PMDRNN in robot polishing tasks and the force feedback-
based skill model correction method achieved through the
joint implementation of PMDRNN and skill models DMPs.

A feedback model-based skill adjustment framework com-
bining PMDRNN and DMPs is shown in Fig.2. The trained
feedback model PMDRNN is utilized to fine-tune the DMPs
model, enabling the adjustment of the contact force to reach
the desired state in the actual environment. In the context
of polishing tasks, the feedback model for contact force is
employed to predict the adjustment term C of the skill model
DMPs, which is dependent on the error between the desired
contact force and the actual contact force.
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Fig. 2. Skill adjustment framework via feedback models
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Fig. 3. The architecture of PMDRNN

PMDRNN is a framework designed to learn force/torque
feedback models from human demonstrations. Given the
complexity of the contact model in robot polishing tasks and
the time-series-dependent nature of contact dynamics, the
DRNN [19] structure is utilized to learn the sensor feedback
model. Moreover, to address the challenges of gradient
explosion and gradient disappearance, the gate recurrent unit
(GRU) is used to learn time series information, as it offers
computational efficiency compared to the long short-term
memory (LSTM) [34]. Furthermore, the phases of actions
are incorporated into the network construction to make the
feedback model dependent on the evolution of phases [1],
enabling improved scalability of the skill model in the time
domain. Fig.3 depicts the architecture of the PMDRNN,
which mainly consists of an input layer, a GRU hidden layer,
regular hidden layers, a phase-modulated hidden layer and
an output layer. The input data consists of the force sensor
feedback error, as well as the outputs of the previous two
moments, Ct−1, Ct−2.

Input layer: The input to the PMDRNN are the error
between the actual contact force and the expected contact
force ∆F = Factual − Fexpected ∈ R6, and the outputs of
the previous two time steps of the PMDRNN Ct−1, Ct−2.
The output of the input layer is htinput = tanh(WF∆Ft +
WC1Ct−1 + WC2Ct−2 + binput). Where WF ,WC1, and

WC2 denote the weight matrixes between different neural
network layers, binput is the bias vector of this layer. The
structure of the input layer is more suitable for dynamic
system learning, which is consistent with the characteristics
of polishing contact.

GRU: The GRU hidden layer is a self-recurrent layer,
which has better learning performance for sequence data and
is more suitable for stable learning of sequence data with a
small sample size compared to RNN and LSTM. The output
of the GRU hidden layer is (15).

rt = sigmoid(Wrh
t
input + Urh

t−1
GRU + br) (12)

zt = sigmoid(Wzh
t
input + Uzh

t−1
GRU + bz)) (13)

⌢

h
t

GRU = tanh(Whh
t
input + Uh(rt ◦ ht−1

GRU ) + bh) (14)

htGRU = zt ◦ ht−1
GRU + (1− zt) ◦

⌢

h
t

GRU (15)

Where rt and zt represent the reset gate and the update
gate. Wr,Wz,Wh, Ur, Uz , and Uh denote the weight ma-
trixes and br, bz , and bh denote the bias vectors.

Hidden layers: The hidden layers perform nonlinear
processing on the output of the previous layer to extract
signal features. The output of one of the hidden layers is:
hti = sigmoid(Whi

hti−1 + bhi
). Where, i represents the



index of the hidden layer, and if it is the first hidden layer,
hti−1 = htGRU .

Phase-modulated hidden layer: The phase-modulated
hidden layer considers the motion phase in this network,
making the feedback model relevant to the motion phase.
Its output is defined as (16).

htpm = G⊙ (Whpm
htL + bhpm

) (16)

G = [G1G2 · · ·GN ]
T (17)

Gi(s, u) =
ψi(s)∑N
j=1 ψj(s)

u, i = 1, . . . , N (18)

Where htL is the output of the last hidden layer. s and u
are the phase variable and phase velocity, respectively. ψi(s)
denotes the basis function.

Output Layer: The output C of the output layer is the
weighted output of the phase-modulated hidden layer: C =
wT

Chpm.

V. EXPERIMENTS AND ANALYSIS

In this study, the PMNN and PMDRNN are trained and
compared by using real robot polishing data to evaluate
their performance. The superiority of our proposed method
is demonstrated through regression learning results in robotic
polishing applications. Additionally, we integrate the trained
force feedback model into the robot polishing skill model to
assess its impact on robustness in the face of environmental
perturbations.

A. Experimental setup

Validation experiments of the robot polishing feedback
model are conducted on a robotic polishing demonstra-
tion platform (Fig.4), which consists of an UR16e robot,
a demonstrator, an ATI Gamma force/torque sensor, a
NAKANISHI spindle, a MiSUMi felt wheel, an aluminum
workpiece, and a PC. The felt wheel has a diameter of 25mm
and a thickness of 26mm.

In this study, it is assumed that the contact between the
felt wheel and the workpiece is non-rigid. Robot polishing
demonstration experiments rely on the impedance control.
Experiments with different environmental settings are con-
ducted to collect the dataset {tk, pk, qk, fk} , k ∈ [1, T ] for
force feedback model training. Different environments here
refers to different contact forces in different tool-workpiece
contact states. Specifically, different contact states and con-
tact forces are obtained for the same skill execution due to,
for example, uncertainty in the position of the workpiece
with respect to the robot and the tool. fk is the contact force-
torque in Cartesian space, and the data is sampled at 50 Hz.
In this study, the spindle speed is set to 2000rpm and the
specification of the polishing paste is W10-2000 mesh. In
addition, a specific polishing experiment (Fig.5) is conducted
to validate the proposed method, focusing on the adjustment
of robot position data while keeping the robot orientation
constant.

Fig. 4. The robotic polishing platform

T=0s T=5s T=10s T=15s T=20s

Fig. 5. Demonstrated robotic polishing trajectory

B. Performance Comparison between PMNN and PMDRNN

PMNN and PMDRNN are used to learn the data of the
demonstration respectively. The total number of layers is set
to 5 for both models, i.e., there are three regular hidden layers
for PMNN and one regular hidden layer for PMDRNN. The
error term is set as the sum of squares due to error (SSR).
The learning rate is set as 0.02, the batch size is 8, and
the numbers of neurons in the hidden layers are 20. The
input is the contact force error between the nominal and
the non-nominal demonstration experiments, and the output
is the difference between the forcing term of the nominal
experimental skill model and the non-nominal experimental
skill model.

In the real-world robotic polishing experiment, the training
results are shown in Fig.6. Dataset 1 is obtained from
experiments with different start and end points, while dataset
2 is obtained from experiments with the same start and end
points. After 3000 training epochs on dataset 1, PMDRNN
achieves an error of 0.025, compared to PMNN’s error of
0.16, representing an 84% error reduction. On dataset 2,
PMDRNN reaches an error of 0.042, while PMNN had
an error of 0.202, showing a 79% error reduction. These
results highlight PMDRNN’s superior learning performance
for training robot polishing task force feedback models,
providing a strong basis for adjusting contact task skill
models based on contact force feedback.

The superior performance of PMDRNN over PMNN in
force feedback skill adjustment model learning comes mainly
from the introduction of DRNN. Because the input force
error term is a time-series signal and it resembles a dynamic
system between the input force error term and the output
skill model adjustment term, the use of DRNN can model
this type of interaction data better.



(a) Training results on dataset 1

(b) Training results on dataset 2

Fig. 6. Comparison of regression results of PMNN and PMDRNN

C. Robotic polishing experiments using PMDRNN-DMPs

After learning the contact force feedback phase-modulated
coupling term between the desired and actual contexts, the
PMDRNN adjusts the skill model online. When an undesired
state occurs in the task, the skill model adapts based on
feedback error to achieve the desired outcome. Experimental
results (Fig. 7) show that the adjusted skill model effectively
tracks the desired contact force (fluctuating between 20N
and 25N), with the red dashed curve closely matching it.
In contrast, PMNN (blue dotted dashed line) exhibits a
larger root mean square error (RMSE) of 1.83N compared
to PMDRNN’s 1.47N, indicating a 19.7% improvement in
force tracking accuracy for PMDRNN. This advantage is
especially evident in the first half of the experiment. 12.5s
ago, PMNN has an RMSE of 2.14N, while PMDRNN has
an RMSE of 1.51N, representing a 29.4% improvement
in force tracking accuracy for PMDRNN. These results
confirm the superiority of the proposed method, particularly
in achieving closer-to-desired force tracking. Throughout
real-world experiments, variations in the relative positions of
the workpiece and the tool introduce inherent uncertainties
into the resulting contact force. Notably, amalgamating the
force error components from the preceding two moments
emerges as a more advantageous strategy for refining the
skill model. The convergence of performance between the
two models beyond the 12.5-second mark can be attributed
to the resemblance between data gathered during real-world
skill-correction experiments and the training data obtained
from demonstration experiments.

The effectiveness of the force feedback learning method
in this study is validated in a real-world robot polishing task,
and more importantly, this provides a basis for the next step

of generalization between different tasks in combination with
RL.

VI. CONCLUSION

This paper presents the application of a feedback learning
model, PMDRNN, to robotic polishing for contact force
feedback and skill model correction. In the task of learning
from the robot polishing force dataset, the training accuracy
of the recurrent neural network PMDRNN, which considers
temporal and dynamic features, outperforms that of the
feedforward neural network PMNN. This demonstrates the
advantages of the proposed method. In a real-world robot
polishing task, the PMDRNN and DMPs are combined
to adjust the skill model online, making it closer to the
requirements of the desired task, and the experimental results
demonstrate the effectiveness of the adjustment strategy,
providing a basis for further improving the generalization
performance and robustness of the skill model by RL and
other methods. The PMDRNN is a recurrent neural network,
so the prediction can be made only after some time steps.
And the model can only be used in non-rigid contact tasks
such as polishing. More complex continuous contact tasks
and more kinds of application scenarios require the use
of more complex feedback models, and how to ensure the
learning accuracy and computing speed of the model at the
same time is a problem that needs further research.
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