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Abstract— In this article, we propose an optimization-based
integrated behavior planning and motion control scheme, which
is an interpretable and adaptable urban autonomous driving
solution that complies with complex traffic rules while ensuring
driving safety. Inherently, to ensure compliance with traffic
rules, an innovative design of potential functions (PFs) is
presented to characterize various traffic rules related to traffic
lights, traversable and non-traversable traffic line markings, etc.
These PFs are further incorporated as part of the model predic-
tive control (MPC) formulation. In this sense, high-level behav-
ior planning is attained implicitly along with motion control as
an integrated architecture, facilitating flexible maneuvers with
safety guarantees. Due to the well-designed objective function of
the MPC scheme, our integrated behavior planning and motion
control scheme is competent for various urban driving scenarios
and able to generate versatile behaviors, such as overtaking
with adaptive cruise control, turning in the intersection, and
merging in and out of the roundabout. As demonstrated from
a series of simulations with challenging scenarios in CARLA,
it is noteworthy that the proposed framework admits real-time
performance and high generalizability.

I. INTRODUCTION

A. Background and Related Works

Recent developments in the automobile industry prompt
the emergence of autonomous vehicles, which enhance the
safety and efficiency of transportation. Typically, an au-
tonomous driving system contains environment perception,
behavior planning, motion planning and control technolo-
gies [1]. Despite the advancements in perceptions [2], [3], a
series of problems remain primarily unsolved in developing
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Fig. 1. The proposed integrated behavior planning and motion control
framework for autonomous driving. The framework models the objectives
of collision avoidance and traffic rule compliance as potential functions.

effective behavior planning and motion control schemes,
especially in various complicated urban driving scenarios.
With the rapid development of data science and artificial
intelligence, learning-based methods are investigated to make
decisions and generate control commands for autonomous
vehicles. In [4], [5], reinforcement learning is adopted to
address difficult urban traffic scenarios based on the data
recorded from the real world or reactive simulators. How-
ever, the lack of interpretability hinders their wide appli-
cation in real-world applications. Another popular category
is optimization-based methods, which also remove heuristic
rules but provide good interpretability. For motion planning,
iLQR is widely used to facilitate complex driving tasks
and alleviate the high computational burden by applying ad-
vanced optimization techniques [6]–[8]. To advance behavior
planning, integrated optimization frameworks typically unify
the processes of behavior planning and low-level control by
formulating them as an integrated optimization problem [9].
In [10], [11], mixed-integer programming (MIP) is adopted
to handle the behavior planning task and obtain the dis-
cretized decision variables. However, MIP is non-convex and
generally considered to be time-consuming.

For the improvement of computational efficiency and
driving safety, the artificial potential field (APF) can be
suitably adopted, which integrates various forms of potential
functions (PFs) into the optimization goal to realize simul-
taneous behavior planning and motion control, exhibiting
both flexibility in problem formulation and high computation
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efficiency. Remarkably, a model predictive control scheme
incorporating APF is proposed in [12], where vehicles are
modeled as uncrossable obstacles and collision avoidance
with them is successfully performed in a simple straight-
line scenario. In [13], APF is introduced into emergency
avoidance tasks, and the minimum collision cost is ob-
tained when the collision cannot be avoided. In [14], the
lane-change maneuver is realized by applying an attractive
force generated by the goal point. The above literature
demonstrates the potential of APF for behavior planning
in autonomous driving. Hence, [15] proposes an integrated
framework with distributed APF for autonomous vehicles,
and achieved a high success rate in a single-lane intersection.
But this work only combines the traffic participants’ APF
and Depth-First-Search algorithm in the Frenet frame, which
leads to low computational efficiency, especially in higher
dimensional conditions, and this work is hard to generalize
to other urban driving conditions with multiple road lanes.

Furthermore, the above literature only assumes all the road
lanes are the same and there is no non-traversable road
lane marking. However, when the vehicle is in a tunnel,
behind an intersection, or on a bridge, etc., lane changing
is forbidden [16]. Another common problem of the current
literature is that traffic lights are not typically considered.
For example, in [17], the red traffic light state is treated as a
hard constraint, which causes the vehicle to brake suddenly
when it is close to the intersection; and apparently, this
affects the comfort of passengers and even driving safety in
dense traffic conditions. Therefore, it remains an interesting
problem to propose specific strategies to cater to more traffic
rules like different kinds of road lane markings and traffic
control signals based on an effective design of the potential
functions (PFs) of them. Moreover, finding an appropriate
way to integrate APF into autonomous driving systems is
valuable to improving computational efficiency.

B. Contributions and Paper Structure

This paper proposes an interpretable and computationally
efficient optimization-based autonomous driving framework
that realizes the integration of behavior planning and motion
control with a global navigation path. The contributions are
as follows:

• An integrated behavior planning and motion control
scheme is proposed, which renders real-time perfor-
mance in urban autonomous driving.

• The proposed framework admits high generalizability
due to an appropriate MPC problem formulation in the
Cartesian frame, which is adaptable to varieties of urban
driving conditions.

• An innovative design of PFs is proposed to characterize
the traffic rules that are commonly encountered in urban
driving scenarios, such that compliance with traffic rules
is ensured.

• Thorough simulations are performed in CARLA to-
wards a series of urban driving scenarios, which verifies
the effectiveness and efficiency of our proposed inte-
grated behavior planning and motion control scheme.

The remainder of this paper is organized as follows:
Section II formulates the MPC problem with a non-linear
vehicle dynamics model and the basic framework of our
proposed scheme. In Section III, the vehicles and traffic
rules are modeled with APF to be incorporated into the
MPC scheme. Section IV shows the simulation results of our
integrated behavior planning and motion control scheme for
different scenarios. Finally, Section V concludes this work.

II. PROBLEM FORMULATION AND THE AUTONOMOUS
DRIVING FRAMEWORK

A. Vehicle Dynamics Model

Because the speed of autonomous vehicles varies widely
under urban driving scenarios, this paper uses the nonlinear
dynamics model proposed by [18] to represent the vehicle
dynamics precisely. We utilize the discrete model derived
from the backward Euler method:

xτ+1 = f(xτ ,uτ )

=



px(τ) + Ts (vx(τ) cosφ(τ)− vy(τ) sinφ(τ))
py(τ) + Ts (vy(τ) cosφ(τ) + vx(τ) sinφ(τ))

φ(τ) + Tsω(τ)
vx(τ) + Tsa(τ)

mvx(τ)vy(τ)+TsLkω(τ)−Tskfδ(τ)vx(τ)−Tsmvx(τ)
2ω(τ)

mvx(τ)−Ts(kf+kr)
Izvx(τ)ω(τ)+TsLkvy(τ)−Tslfkf δ(τ)vx(τ)

Izvx(τ)−Ts(l2fkf+l2rkr)


,

(1)

where the state vector of the dynamics model is x =
[p, φ,v, ω]T where p = [px, py]

T is the vehicle position in
the global Cartesian frame, and v = [vx, vy]

T is the velocity
in the EV frame. Besides, φ is the heading angle referring
to the global Cartesian frame, and ω is the yaw rate. The
control input of the system is u = [a, δ]T , where a and δ
represent the acceleration and steering angle, respectively.
And we denote m as the vehicle mass, lf and lr as the
distance from the mass center to the front and rear axle, kf
and kr as the cornering stiffness of the front and rear wheels,
and Iz as the inertia polar moment. For simplicity, we define
Lk = lfkf − lrkr. Table I lists the values of the above
parameters. The model exhibits good numerical stability and
high accuracy even when there are wide range speed changes
as is typically observed in urban driving tasks [18].

TABLE I
PARAMETER SETTINGS OF THE VEHICLE MODEL

Notation Value Unit Notation Value Unit

kf -128916 N/rad lr 1.85 m
kr -85944 N/rad m 1412 kg
lf 1.06 m Iz 1536.7 kg · m2

B. Proposed Autonomous Driving Framework

As shown in Fig. 1, after a destination is assigned to the
EV, the global path is planned by the A∗ algorithm based
on the waypoints in the HD Map. To get the waypoints to



be followed in MPC, a real-time trajectory is generated by
spline interpolation based on the EV’s current state.

In terms of environmental perception, there are various
options, and we provide an alternative using sensor fusion.
Next, we formulate the objective function with five indices.
Notice that the SV collision avoidance and traffic rules
compliance functions are achieved by applying our presented
APF. With a variety of PFs, the proposed integrated behavior
planning and motion control scheme can implicitly generate
behavior planning commands (such as overtaking or follow-
ing). Finally, the OCP is formulated in a receding horizon
manner and solved to generate control commands for the EV.

C. Optimal Control Problem Formulation

This section formulates the behavior planning and motion
control scheme, which leverages the MPC to solve an optimal
control problem (OCP) in the receding horizon manner. The
cost function is formulated as

J(x,u,penv) =
N∑

τ=1

∥xref,τ − xτ∥2Q +

N∑
τ=1

∥uτ∥2R

+

N∑
τ=2

∥uτ − uτ−1∥2Rd
+ F (penv,x),

(2)

where N is the length of the receding horizon, xref,τ ∈ R6 is
the reference trajectory at the time step τ . In (2), Q ∈ R6×6,
R ∈ R2×2, Rd ∈ R2×2 are positive semi-definite diagonal
weighting matrices for penalizing reference tracking, energy
saving, and passenger comfort, respectively. F (penv,x) is
the APF for obstacle avoidance and traffic rule compliance.
Therefore, the OCP is constructed as:

min
x,u

J(x,u,penv)

s.t. xτ+1 = f(xτ ,uτ ),∀τ ∈ {1, 2, ..., N}
−umin ⪯ uτ ⪯ umax,∀τ ∈ {1, 2, ..., N}
−xmin ⪯ xτ ⪯ xmax,∀τ ∈ {1, 2, ..., N}.

(3)

Note that the first constraint represents the vehicle dynamics
(1). The second and third constraints indicate the restriction
on the control inputs and states, which are based on the
physics of the selected vehicle model. Problem (3) can be
reformulated to a nonlinear programming (NLP) problem and
solved by IPOPT in CasADi [19]. Direct multiple shooting
can be used, in which we treat the states at shooting nodes as
decision variables and improves convergence by lifting the
NLP problem to a higher dimension.

III. TRAFFIC PARTICIPANTS AND TRAFFIC RULES
MODELLING

In this paper, the repulsive PF for surrounding vehicles,
the repulsive PF for non-traversable lane markings, and the
attractive PF for the centerline of lanes are designed. Unlike
the traditional APF method, where the target position is set as
a gravitational field [20], this paper employs several novel
penalty terms to form the potential field in the integrated
behavior planning and control module:

F (penv,x) =
∑
K∈K

FK =
∑
K∈K

∑
i∈IK

fK(pK [i],x), (4)

Fig. 2. The APF is formed by the designed PFs, consisting of a three-lane
road structure with two traversable (FTR) and two non-traversable (FNR)
lane markings. The lateral positions of these markers are [5.25, -5.25] m
and [1.75, -1.75] m, respectively. Additionally, the vehicle PF FV is created
using two circles at the position of [pkx, pky ] = [3.0, 0] m. Lastly, the red
traffic light PF FTL is at pev

y = 7.9m.

where each element of the potential field FK is constructed
by all the PFs of the detected specific objects in class k. And
penv is concatenated by pK , K := {NR,TR,V,TL}, which
elements denote non-traversable lane markings, traversable
lane markings, surrounding vehicles, and dynamic traffic
lights, respectively. IK := {1, 2, ..., nK} denotes the objects
in class K. Noted, the notation of fK(pK [i],x) is simplified
as fK,i in the following parts. To simplify the PF design,
we classify existing lane markings into two categories:
traversable lane markings represented by broken lines and
non-traversable lane markings represented by solid lines.

The lateral distance from the EV to the lane marking is an
essential value to determine the PF force. We define the road
centerline state vector as pi = [pxi, pyi, βi]

T , where the first
two items pxi and pyi represent the position of the current
road centerline in global Cartesian frame, and the last item
βi is the tangential angle of the current road. Therefore, the
lateral position of the lane marking is given as

sR(x,pi) =


(
pev
y (pi) +

wR

2

)
− yev(x,pi) left

yev(x,pi)−
(
pev
y (pi)−

wR

2

)
right

(5)

where left and right indicate the lane marking on the left or
right side of the vehicle, wR is the lane width, pev

y and yev

pev
y (pi) = pxi sin(βi) + pyi cos(βi), (6)

yev(x,pi) = px sin(βi) + py cos(βi), (7)

are the lateral positions of the lane centerline and the EV
in the heading angle-paralleled (HAP) frame, where the
orientation of the road is parallelled with the x-axis.

A. Non-Traversable Lane Markings

To comply with traffic rules, vehicles must not traverse
a solid lane marking. Therefore, when the distance between



the EV and the surrounding lane markings decreases to a
certain extent, the designed PF should give a repulsive force
that increases rapidly with decreasing distance to urge the EV
to steer away immediately. Based on the inverse proportional
function and power function, we designed the following PF
for the ith non-traversable lane marking:

fNR,i =


ms sRi

≤ 0.1
aNR

sR(x,pNR[i])bNR
− es 0.1 < sRi

< 1.5

0 sRi ≥ 1.5

, (8)

where aNR and bNR are the intensity and shape parameters
that control the strength of the repulsive force and the
effective range of the PF. The smooth parameters

es =
aNR

1.5bNR
, ms =

aNR

0.1bNR
− es

guarantee the continuity of the PF value when sRi
switches

between conditions. The heat map of the designed non-
traversable lane marking’s PF is illustrated on both sides
of the lateral direction in Fig. 2, where aNR = 100 and
bNR = 2.0.

B. Traversable Lane Markings

In the process of overtaking and lane changing, it is
necessary to traverse the broken lane marking on the road.
When the reference lane of the EV is blocked from ahead
by other traffic participants, the EV needs to switch to an
adjacent lane and keeping driving until the reference lane is
free. When EV is driving on a lane that is not the reference
one, designing a PF that keeps the EV driving along the
centerline is necessary, as otherwise the EV will be attracted
to the side of the current lane due to the attractive force of
the reference lane. Thus, the PF of the jth traversable lane
marking is designed as follows:

fTR,j =

{
aTR(sR(x,pTR[j])− bTR)

2 sRj
< bTR

0 sRj
≥ bTR

, (9)

where aTR is the intensity parameter and bTR is the effective
range of the repulsive force from the lane marking. Such PF
repulses the EV be away from the lane marking and stay
around the lane center. The heat map of the aggregated FTR
is shown in the middle area of the lateral direction in Fig.
2, where the parameters are aTR = 20 and bTR = 1.0.

C. Surrounding Vehicles

The main traffic participants on the road are vehicles
and pedestrians, both of which are strictly prohibited to
collide. We approximate each on-road vehicle with two
identical circles aligned in the longitudinal direction that
covers the entire vehicle. In order to avoid surrounding
vehicles smoothly and quickly, we design the following PF:

fV,k =

2∑
q=1

2∑
o=1

aV

((pxq − pkox)2 + (pyq − pkoy)2)bV
, (10)

where aV and bV are the intensity and shape parameters,
which control the strength of the repulsive force and the

effective range of this PF. As the vehicle is represented by
two circles, we must calculate the circles’ positions and sum
their force to formulate the integrated PF. The position vector
[pkox, pkoy]

T denotes position of the oth circle of the kth
surrounding vehicle, and we have[

pkox
pkoy

]
=

[
1 0
0 1

] [
pkx
pky

]
±
[

cosβi

sinβi

]
rV, (11)

where the common radius of the circles is rV = 1.2 and
o = {0, 1} indicates whether the circle is front or rear. Fig.
2 illustrates the potential field of a SV. And the parameters
are set as aV = 5.0, and rV = 1.2 m.

D. Traffic Control Signals

In addition to obeying the rules of lane markings, vehicles
must also obey the command of traffic lights. This paper
proposes a novel PF for traffic lights, which can restrict the
lateral and longitudinal positions of the EV simultaneously.
The PF applies repulsive forces in three directions to the ego
vehicle without changing its original reference trajectory. In
particular, the PF in front of the EV is designed as

fTL,1 = cTL

(
aTL1

dev
x

+
aTL2

dev
yl

+
aTL2

dev
yr

)
, (12)

where cTL is an indicator of the state of the traffic light,
which equals to 0 is the traffic light is green and 1.0
otherwise. Besides, aTL1 and aTL2 are intensity parameters
in the longitudinal and lateral orientations, respectively, and
dev
x is the longitudinal distance from EV to the stop line.

Moreover, dev
yl, d

ev
yr are the distance of the EV to the left and

right lane markings, respectively, which can be calculated by
(5) as well. As shown in the right side of Fig. 2, the FTL
(with aTL1 = 20 and aTL2 = 40) is able to urge the EV to
stay behind the stop line when the traffic light is red.

IV. SIMULATION RESULTS

In this section, we comprehensively evaluate the pro-
posed framework towards three different representative urban
driving scenarios. We implement the proposed scheme in
CARLA [21] based on Ubuntu 20.04 with AMD Ryzen
5600G CPU and NVIDIA RTX 3060 GPU.

A. Simulation Scenarios

1) Scenario 1: Roundabout Driving: In the roundabout
scenario, the EV is going to enter the roundabout from the
east entrance and leave at the opposite exit with a reference
velocity vref = 35 km/h. Typically, the heavy traffic flow
renders great difficulties for this task. Moreover, the frequent
and unpredictable lane-changing behavior of other vehicles
makes the driving task even more challenging.

2) Scenario 2: Multi-Lane Adaptive Cruise Control: In
this scenario, the EV aims to follow the current lane at a
given speed vref = 40 km/h while keeping a safe distance
from the leading vehicle until reaching the terminal state. It is
pertinent to note that, apart from maintaining a safe distance
from surrounding vehicles, traversable and non-traversable
lane markings should also be considered in this task.



9s 18s

25s 28s

(a) Roundabout

9s 13s

15s 33s

(b) Multi-lane Adaptive Cruise Control

3s 7s

11s 14s

(c) Crossroad

Fig. 3. Simulation on three illustrative urban driving scenarios in CARLA.
Four key frames are selected for each scenario, and the velocity reference is
set to 35 km/h, 40 km/h, 20 km/h, respectively, for the three scenarios from
left to right. The red line on the EV represents the trajectory generated from
the spline interpolation described in Section II-B while the cyan line shows
the optimized predicted trajectory with receding horizon N = 10.

3) Scenario 3: Crossroad Driving: To get through the
crossroad safely, the EV, with vref = 20 km/h, needs to
comply with the state change of the traffic light. In this task,
the global path leads the vehicle to a left turn at the dense
crossroad where the traffic light is about to turn red as the EV
approaches. Meanwhile, the non-traversable lane markings
constraints cannot be violated during the turning process.

B. Overall Performance

In the implementation of the proposed integrated behav-
ior planning and motion control framework, the prediction
horizon is set as N = 10 and the sampling time is set as
∆T = 0.05 s. In each scenario, we select four key frames
for visualization from one trial shown in Fig. 3, with their
tracking error shown in Fig. 4(a)-(c) respectively. In Scenario
1, as shown in Fig. 3(a), the EV is commanded to change its
lane to enter/exit the roundabout at 9 s and 18 s. However,
the planned path is blocked by the vehicles in front of it.
Thus, the EV keeps finding an appropriate chance to change
lane, which makes the curve of ∆v fluctuates violently.
For Scenario 2, as shown in Fig. 3(b), the EV is desired
to maintain a speed at 40 km/h. In this trial, the leading
vehicle slows down at 9 s, so that the EV merges into its
neighbor lane temporarily at 13 s in order to maintain the
desired forward velocity; and return to the original lane at
15 s to lower the tracking error. In terms of Scenario 3, at the
crossroad, the reference speed for the EV is set as 20 km/h.
As shown in Fig. 3(c), the EV stops smoothly at the crossroad
after the traffic light turns red at 3 s, which leads to the
gradually increased velocity error around t = 5 s. The peak
velocity error at 11 s is caused by the sudden acceleration of
the two surrounding vehicles at the intersection. To further
demonstrate the effectiveness of our proposed integrated
behavior planning and motion control scheme, we execute
the simulation of 30 trials for each scenario and evaluate
the performance quantitatively. We define a trial without any
vehicle collision as a success. The success rate, computation
time together with the average tracking error are listed in Ta-
ble II. Therefore, our proposed method can be applied to the

TABLE II
OVERALL PERFORMANCE IN DYNAMIC URBAN DRIVING SIMULATION

Scenarios Succ. Rate (%)
Average Tracking Error Computation Time (ms)

∆p (m) ∆v (m/s) ∆φ (rad) Ave.±SD Max

Roundabout 93.3 0.495 2.340 0.020 9.39±3.40 24.09
Multi-lane ACC 84.0 0.468 1.742 0.031 11.00±3.41 48.40

Crossroad 80.0 0.424 1.640 0.022 6.86±2.38 30.08

three highly dynamic scenarios with a satisfactory success
rate and good tracking performance. In particular, we achieve
the highest success rate in the roundabout scenario at 93.3%.
As for the tracking performance, the velocity term is the most
significant tracking error among the three scenarios due to
the difficulty of maintaining a constant speed in the highly
dynamic environment with unpredictable traffic elements,
which is consistent with our analysis before on one trail
from Fig. 4(a). Yet we can still attain a velocity error lower
than 2.3404 m/s in the challenging scenarios. Moreover, the



(a) Tracking error in Scenario 1 (b) Tracking error in Scenario 2 (c) Tracking error in Scenario 3

(d) PF value in Scenario 1 (e) PF value in Scenario 2 (f) PF value in Scenario 3

(g) Control input in Scenario 1 (h) Control input in Scenario 2 (i) Control input in Scenario 3

Fig. 4. Tracking error, PF value, and control input from one trail in three urban driving scenarios. (a), (b), (c) record the position error ∆p, steering
angle error ∆φ, and target velocity tracking error; (d), (e), (f) record the PF values including

∑
FV,

∑
FNR,

∑
FTR, and

∑
FTL; (g), (h), (i) record the

acceleration a and steering angle δ.

formulated OCP can be solved within milliseconds, from
which the real-time performance of the integrated behavior
planning and motion control scheme is demonstrated.

With the above analysis, we conclude that the proposed
urban autonomous driving framework is able to generate safe
reactions, and keep high traffic efficiency with high-level
behavior planning in real-time with flexible maneuvers.

C. Effectiveness Analysis of the Designed APF

In this section, the effectiveness of the embodied APF in
the proposed integrated framework is evaluated. Observed
from Fig. 4(d)-(f), the four PFs effected very well. Their
combined effect allows the EV to drive reactively, smoothly,
and safely to its destination in all three scenarios in Fig.
3. To ensure traffic safety and avoid collision with other
vehicles, the vehicle PF should emit repulsive force to the
EV when it gets closer to the surrounding ones. But if
a surrounding vehicle gets too close, it could generate a
relatively large repulsive force on the EV, and the EV will
diverge from the target lane. So exerting a repulsive force
from the lane marking is necessary to urge the EV to drive
in its own lane, so that the traffic rule would be obeyed by not
crossing non-traversable lane markings. In Fig. 3(a), when
the EV is exiting the roundabout before 25 s, a surrounding

vehicle is driving very closely, and it doesn’t mean to exit
the roundabout. At this moment, the repulsive force FV
is increasing and urges the EV to leave that vehicle. But
as shown in Fig. 4(d), when EV gets closer to the road
boundary, there exists a non-traversable lane marking, the
repulsive force FNR gets larger rapidly and urged the control
output δ keep around 0, which avoids the EV from traversing
the road boundary. Thus, it ensures the safety of the EV and
prevents traffic rule violations.

Besides, the EV needs to keep in the middle of a strange
lane, when it is urged to change lanes caused by some
vehicles ahead occupying its original lane, like the situation
shown in Fig. 3(b) around 13 s. In the multi-lane adaptive
cruise control (ACC) simulation, the EV is cruising on the
highway at a given lane but the vehicle ahead blocks its way
when t = 13 s. Because of the large FV, the EV changes to
its right lane and stays in the middle autonomously with the
help of the increasing FTR shown in Fig. 4(e).

To obey the rules regarding dynamic traffic lights in the
crossroad scenario in Fig. 3(c), the repulsive FTL increased
smoothly but still quickly when the traffic light is getting
“red”, causing the EV to stop smoothly as shown in Fig. 4(f)
so that provide a comfortable ride experience. Fig. 4(i) illus-
trates that when the traffic light becomes red from 3 s to



7 s, the acceleration a became relatively large to brake the
EV before the stop line. In summary, the PF takes effective
and urges the control input change reactively with PF values,
when different urban driving situations are encountered.

D. Failure Case Analysis
To improve the success rate and enhance the urban driving

safety of our proposed integrated behavior planning and
motion control scheme, the failure cases in Section IV-B are
analyzed in detail. Collision failure occurs most frequently
in the crossroad scenario. Traffic rule violation includes
driving to a solid line marking and running a red light,
which occurs in the roundabout and multi-lane ACC. As

(a) Aggressive overtaking (b) Driving to a solid line

Fig. 5. Typical failure cases in the total 90 trials of simulation in CARLA.

shown in Fig. 5(a), the EV overtakes the vehicle on the left
aggressively and crashed it. One possible reason is that the
prediction of other vehicles’ trajectory is naive and the EV
doesn’t expect the surrounding vehicle to be so aggressive. In
Fig. 5(b), the EV drives onto the solid yellow line, because
of avoiding the vehicle on the right. One possible reason is
that the PFs for lane markings are not in effect, because there
is no explicit lane marking in the crossroad.

V. CONCLUSIONS

In this work, we propose an integrated behavior planning
and motion control scheme for urban autonomous driving,
in which we encode collision avoidance and compliance
with common traffic rules as a unified potential field by
soft constraints. High-level behavior planning is achieved
with simultaneously low-level control. We implement the
proposed framework on three challenging urban driving
scenarios, where a high success rate and good tracking
performance are attained. Moreover, we demonstrate the
effectiveness of the designed PFs in generating safe and
flexible maneuvers. Potential future work is to consider the
trajectory prediction of the surrounding vehicles and develop
guiding PFs in special areas such as intersections where
explicit traffic regulations are not available.
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