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Abstract— Localization of objects is vital for robot-object
interaction. Light Detection and Ranging (LiDAR) application
in robotics is an emerging and widely used object localization
technique due to its accurate distance measurement, long-
range, wide field of view, and robustness in different conditions.
However, LiDAR is unable to identify the objects when they
are obstructed by obstacles, resulting in inaccuracy and noise
in localization. To address this issue, we present an approach
incorporating LiDAR and Ultra-Wideband (UWB) ranging for
object localization. The UWB is popular in sensor fusion
localization algorithms due to its low weight and low power
consumption. In addition, the UWB is able to return ranging
measurements even when the object is not within line-of-sight.
Our approach provides an efficient solution to combine an
anonymous optical sensor (LiDAR) with an identity-based radio
sensor (UWB) to improve the localization accuracy of the object.
Our approach consists of three modules. The first module is an
object-identification algorithm that compares successive scans
from the LiDAR to detect a moving object in the environment
and returns the position with the closest range to UWB ranging.
The second module estimates the moving object’s moving
direction using the previous and current estimated position
from our object-identification module. It removes the suspicious
estimations through an outlier rejection criterion. Lastly, we
fuse the LiDAR, UWB ranging, and odometry measurements in
pose graph optimization (PGO) to recover the entire trajectory
of the robot and object. For a static robot and a moving
object scenario, we show in experiments that the proposed
approach improves the average relative translational and ro-
tational accuracy by 44% and 31.6%, respectively, compared
to the conventional UWB ranging localization. Additionally, we
extend the approach to a moving robot and a moving object
scenario and show that our approach improves the average
relative translation and rotational accuracy by 13.5% and 36%,
respectively.

I. INTRODUCTION

Object localization is essential for many applications [1].
The literature shows several approaches for object localiza-
tion in environments with a prior map or known infras-
tructure [2]. For example, the Global Positioning System
(GPS) can provide meter-level accuracy but is unsuitable for

M. Shalihan, Z. Cao, K. Pongsirijinda, B. P. L. Lau, R. Liu, and
U-X. Tan are with the Engineering Product Development Pillar,
Singapore University of Technology and Design, 8 Somapah Rd,
Singapore, 487372. {muhammad shalihan,zhiqiang cao,
khattiya pongsirijinda}@mymail.sutd.edu.sg
{billy lau@sutd.edu.sg,ran liu,uxuan tan}
@sutd.edu.sg
C. Yuen is with the School of Electrical & Electronic Engineering,
Nanyang Technological University, 50 Nanyang Ave, 639798.
{chau.yuen}@ntu.edu.sg
L. Guo is with the Southwest University of Science and Technology,
Mianyang, Sichuan, China 621010.

indoor applications due to blocked signals by surrounding
buildings [3]. However, some applications may not have
prior information on the environment. Therefore, in these
environments, localization between a robot and an object is
crucial to accomplish a number of tasks, such as object-
following scenarios where a robot needs to follow a moving
object. Various sensors can be utilized for object localization,
such as odometry, Inertial Measurement Unit (IMU), Light
Detection and Ranging (LiDAR), visual cameras, and Ultra-
wideband (UWB) sensors. Odometry through wheel encoders
or the IMU is commonly used for localization as it provides
an estimated position with reference to the starting position.
The odometry shows good accuracy when used for short
periods. However, odometry is commonly known to drift
over-time [4]. Similarly, the IMU can measure position
changes but deteriorates over time due to the accumulation
of error [5]. Therefore, localization has been extensively
researched with the use of different sensors to improve the
localization accuracy of objects [6].

Approaches for localization using LiDAR and visual-based
sensors such as the monocular camera provide accurate
localization results [7]. With this, LiDAR and visual-based
sensors are beneficial for object detection when in line-of-
sight. However, it is difficult to track the object of interest
from the rest of the obstacles and moving objects in the
environment. This difficulty arises because the LiDAR and
visual-based sensors can only distinguish between different
objects by applying computer vision approaches such as
[8] or the help of additional sensors such as the UWB
sensor. The UWB is popularly used to improve localization
results [9] [10]. The UWB provides up to centimetre-level
ranging accuracy under line-of-sight conditions. However,
the UWB does not provide the bearing information and is
susceptible to multi-path measurements under non-line-of-
sight conditions [11]. Non-line-of-sight UWB measurement
mitigation approaches, such as in [11], require data collection
and training of the neural network model before application,
which could take up much time. Therefore, we focus on
the pose estimation of a robot and a moving object through
odometry, UWB ranging, and LiDAR measurements.

The main idea of our approach is to improve the lo-
calization results of current UWB-ranging localization ap-
proaches by incorporating LiDAR measurements as a con-
straint through a pose graph optimization (PGO) framework.
In our experiments, a moving object has both odometry and
UWB data. The robot provides odometry, carries a UWB
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Fig. 1: Overview of the proposed localization approach with a
robot (blue colour) and a moving object (red colour). We perform
pose estimation with UWB ranging (green lines) and odometry
(red and blue dotted lines) measurements, as well as LiDAR
measurements produced by our object-identification module (see
yellow points). The estimated poses from the object-identification
module are passed for outlier rejection and optimized through a pose
graph optimization module. Mapped obstacles are for visualization
purposes only.

for ranging, and also carries a 2D-LiDAR to identify the
moving object. A simple illustration of the proposed method
can be found in Figure 1, where the map is only used
for visualization purpose only, as our approach targets real-
life scenarios where a prior map of the environment is not
available

We propose fusing UWB ranging, odometry, and LiDAR
measurements in line-of-sight conditions to produce accurate
pose estimations. Even though the LiDAR measurements are
only available during line-of-sight scenarios, the overall tra-
jectory of the object will be improved given accurate object-
identification pose estimates. To eliminate false positives, we
introduce a heuristic outlier rejection mechanism that com-
pares the estimation of the object’s moving direction from
our module and the current estimated object’s orientation
from PGO. Finally, inlier LiDAR measurements are fused
with UWB ranging and odometry through PGO to estimate
the object’s trajectory. The contributions of this paper are
summarized as follows:

• We propose an approach for pose estimation between
a robot and an object using UWB ranging, odometry,
and LiDAR measurements. In particular, an object-
identification module is used to identify the object
through LiDAR scans and improve localization accu-
racy using the detected object position compared to the
conventional UWB ranging localization.

• We present an approach to determine the moving di-
rection of an object based on successive LiDAR scans
to improve localization accuracy and introduce a mech-
anism to reject incorrect measurements by comparing
results from the object-identification module with esti-
mated pose from optimization.

• We perform extensive experiments to evaluate the per-
formance of the proposed approach in a complex en-
vironment of size 16m×12m. We have achieved an

improvement of 44% and 31.6% in translational and
rotational accuracy, respectively, for a static robot and
a moving object scenario. For the moving robot and
moving object scenario, we achieve an improvement
of 13.5% and 36%, respectively, in translation and
rotational accuracy.

We organize the remaining of this paper as follows:
Section II introduces the related work. Section III describes
the proposed localization technique to fuse UWB ranging,
odometry, and LiDAR measurements. Section IV shows the
experimental setups and results. Finally, Section V concludes
this paper and discusses future work.

II. RELATED WORK

The robotics community shows a growing interest in object
localization, especially for real-world applications such as
when a robot needs to follow an object. As a result, there
is growing research on object localization through different
approaches. For example, Long et. al. [12] proposed a
method for accurate object localization by introducing three
processes: region proposal, classification, and accurate object
localization. Features extracted from a region of interest
from an image through a convolutional neural network go
through an unsupervised bounding box regression algorithm
that localizes and optimizes the position of the detected
object. Similarly, Tychsen-Smith et. al. [13] proposed a sim-
ilar approach but designed the Fitness Non-Max Supression
(NMS) and derived a novel bounding box regression based
on a set of Intersection-over-Union (IoU) upper bounds to
obtain greater localization accuracy. However, the methods
mentioned above require training a model. Although these
methods can be implemented on smaller training data, the
performance is unsatisfactory due to limitations in feature
representation and model complexity [14].

Instead of processing images from a visual camera with
deep-learning methods, point cloud data from the LiDAR can
provide high positioning accuracy for object localization. For
example, Huang et. al. [15] proposed a frame-to-frame scan
matching algorithm based on an attention mechanism. In this
method, the selected landmark is not switched to another
before it becomes invisible. Therefore, the approach will
not accumulate errors while the landmark is not changed,
giving high matching accuracy. Successive scans can then
be compared, similar to the work of Mihálik et. al. [16] to
identify moving objects based on Euclidean distance moved
by the points in the point cloud. However, with multiple
moving objects in the environment, an additional sensor, such
as the UWB, may be required to accurately narrow down the
results to identify the object of interest. The UWB is popular
among the robotics community to help compensate for
odometry errors caused by drift over long periods due to its
low cost, and low power level consumption. For example, Liu
et. al. [6] and Cao et. al. [17] improve pose estimation results
by minimizing UWB rangings taken at different positions
and fusing the UWB ranging measurements with odometry
through PGO. In addition to the UWB helping in object-
identification, and improving pose estimations in PGO, the



LiDAR measurements from the object-identification can also
be fused with the UWB ranging measurements to improve
results further.

Research on the fusion of UWB ranging and LiDAR mea-
surements have been performed with promising results. Song
et. al. [18] and Zhou et. al. [19] proposed a UWB/LiDAR
fusion for cooperative range-only SLAM. Building on the
work of Ding et. al. [20] which employs LiDAR Inertial
Odometry (LIO) for robust LiDAR localization, Nguyen
et. al. [21] proposed the LiDAR-Inertia-Ranging Odometry
(LIRO) localization by introducing UWB ranging measure-
ments for fusion with LiDAR and inertial measurements. The
LIRO approach improves localization accuracy compared to
LIO by having only two or three anchors deployed in the
environment. With the LiDAR giving a more comprehen-
sive picture of the surrounding environment, fusing LiDAR
measurements with the UWB ranging measurements helps to
remove errors accumulated in the LiDAR-based SLAM algo-
rithms. However, the experiment mentioned above includes
UWB beacons placed around the environment to provide
ranging measurements between robots and nearby obstacles,
which is not ideal, especially in emergencies. We propose
a method to fuse odometry, UWB ranging, and LiDAR
measurements in a PGO without the need for infrastructure.

III. LOCALIZATION BETWEEN A ROBOT AND AN OBJECT

UWB Ranging
Measurements

Odometry
Measurements

LiDAR Scan

Module 3: Pose Graph
Optimization with UWB,
Odometry and LiDAR

Module 2: Object Moving
Direction Estimation and

Outlier Rejection

Module 1:
Object-Identification

with 2D LiDAR

Reject? Pose
Estimate

Yes

No

Fig. 2: Flowchart of the proposed object localization approach by
fusing odometry, UWB ranging, and LiDAR measurements.

In this section, we formulate the problem for localization
between a robot and an object using UWB ranging, odometry
and LiDAR measurements without prior knowledge about
the infrastructure. An overall view of our proposed approach
is shown in Figure 2. It consists of three modules, which
are (1) Object-Identification with 2D LiDAR, (2) Object
Moving Direction Estimation and Outlier Rejection, and (3)
Pose Graph Optimization with UWB, Odometry, and LiDAR.
First, we identify the object’s pose based on the LiDAR
measurements from the robot in the object-identification
module. Next, we compute the moving direction of the object
and perform outlier rejection by comparing the object’s
pose output from our object-identification algorithm with
the current estimated pose from PGO through a heuristic
strategy. Lastly, we estimate the robot’s and object’s pose by
incorporating UWB ranging, odometry, and the object’s pose
identified by our object-identification module through PGO.

A. Object-Identification with 2D LiDAR

Algorithm 1: Estimate object pose at time t xt
L from

LiDAR with reference to the robot.
Input: LiDAR point cloud with reference to the robot Pt

R

at time t and UWB ranging between the robot and
object: rt at time t.

Output: Object pose estimation from LiDAR at time t
xt
L.

// Adaptive Clustering of Pt
R according

to [22] returns array of clusters Ct.
1 � Compare Ct−1 with Ct based on Euclidean distance

and return array of moving objects Ct
dynamic at time t

according to [16].
// Narrow down to the position of

interest from the cluster array of
moving objects.

2 for Ct
k ∈ Ct

dynamic do
3 � Compute Euclidean distance of Ct

k ∈ Ct
dynamic

with respect to the robot.
4 � Cluster position with a distance to the robot closest

to the current UWB ranging rt is estimated as the
object 2D position xt

L.
5 end
6 � Compute the estimated moving direction of the object

θtL at time t with 2D positions xt
L and xt−1

L .
7 � Return the estimated object pose identified by LiDAR

xt
L at time t given by the 2D the position xt

L and moving
direction θtL.

An overview of the object-identification module is shown
in Algorithm 1. The pose of the object obtained through our
object-identification and object moving-direction estimation
module at time t is denoted as xt

L = [xt
L, θ

t
L], where xt

L

is the 2D position and θtL is the heading. The subscript L
indicates that the estimation is from our proposed object-
identification and object-moving-direction estimation mod-
ule. The laser scans from the 2D LiDAR with reference
to the robot are converted into a 2D point cloud Pt

R =
{pi|pi = (xi, yi) ∈ R2, i = 1, ..., I}, where I is the total
number of points in a single scan. Next, adaptive clustering is
performed according to [22]. Adaptive clustering was chosen
instead of the conventional clustering algorithm [23]. Instead
of a fixed-distance threshold, which can be inaccurate, the
adaptive clustering algorithm will return the pose of the
segmented objects centre based on a Euclidean distance
threshold:

d∗i = 2 · cri · tan
Θ

2
, (1)

where Θ refers to the angular resolution of the LiDAR. A set
of values d∗i are considered at fixed intervals to compute the
maximum cluster range cri using the inverse of Equation
1. This returns cluster positions that include the object’s
position with reference to the robot in a point cloud array
Ct = {ctk|ctk = (xt

k, y
t
k) ∈ R2, k = 1, ...,K} at time t, where

K is the total number of clusters in the point cloud Pt
R.

The position of the object xt
L can be estimated by com-

paring two successive point clouds from the LiDAR. This



will result in an array of positions from all moving objects,
including all the ones not intended. Therefore, we narrow
down to the object of interest from the array of moving
objects (Ct

dynamic) using UWB ranging. First, we compute
the distances between the robot and the different positions
Ct

dynamic. Next, we compare the difference between UWB
ranging and the computed distances. The position from
Ct

dynamic with the closest distance to the current UWB-range
measurement and within 0.3m of the current UWB-range is
identified as the object’s pose from the LiDAR. Due to the
criterion employed here, false positives are minimized. This
estimated position is used as the input for our object-moving-
direction estimation and outlier rejection module, which will
be explained in the next subsection.

B. Object Moving Direction Estimation and Outlier Rejec-
tion

In this module, we estimate the object’s moving direction
using two successive object 2D positions, xt−1

L and xt
L,

from our object-identification module. The estimated object
moving direction is given by:

θtL = atan2(ytL − yt−1
L , xt

L − xt−1
L ), (2)

where xt−1
L = [xt−1

L , yt−1
L ] denotes the previous estimated

object 2D position and xt
L = [xt

L, y
t
L] denotes the current

estimated object 2D position from the LiDAR in our pro-
posed object-identification algorithm.

As there may be multiple misidentified objects from
the object-identification module due to multiple dynamic
obstacles in the environment, we introduce a heuristic outlier
rejection mechanism to remove suspicious moving direction
measurements estimated by our object-identification module
in the previous subsection. Given the estimated moving direc-
tion from our object-identification module θtL, we compare
it with the current estimated object orientation from PGO θtO
as follows:

Ωt
L,θ =

{
ω, if |θtL − θtO| ≤ ϑ

0, otherwise
, (3)

where ϑ is the error threshold set in radians, and ω is
the value set for the LiDAR moving direction information
matrix Ωt

L,θ. If the condition is satisfied, the moving direction
information matrix value will be set to a high value ω to
indicate that the measurement is trusted. If the condition is
not satisfied, the moving direction information matrix will be
set to 0 to indicate that the measurement cannot be trusted.
It is unlikely for the orientation of the moving object to
change drastically from its previous orientation. Therefore,
a threshold value to reject false positives using the currently
estimated object orientation from PGO works well and does
not break the estimation due to a fast-moving orientation
change. PGO is then performed after rejecting outlier moving
direction measurements to improve localization accuracy.
The parameters ϑ and ω will be further studied in the next
section.

C. Pose Graph Optimization using UWB, Odometry, and
LiDAR

The objective is to estimate the trajectory of the robot
x1:T
R ={x1

R,..., xT
R} and the object x1:T

O ={x1
O,..., xT

O} from
time 1 up to time T , where xt

O=[xt
O, ytO, θtO] and xt

R=[xt
R,

ytR, θtR] represents the pose of the object and robot obtained
through PGO at time t respectively. We use rt to denote
the UWB ranging between the robot and the object at time
t. The LiDAR measurements, which include the object’s
2D position and moving direction obtained through our
object-identification and object-moving-direction estimation
module at time t, are denoted as xt

L and θtL respectively. We
estimate the robot and object pose given the odometry, UWB
ranging, and LiDAR measurements through a centralized
PGO solution. The PGO technique uses the poses of the robot
and objects as nodes in a graph to be estimated. Each node
represents a specific pose at a given time step. The graph’s
edges connect these nodes based on the measurements
provided, forming constraints between them. To find the
optimal configuration of poses, PGO minimizes the error of
these constraints using methods such as maximum likelihood
estimation or nonlinear optimization techniques. This process
leads to a refined and globally consistent estimation of the
poses in the system’s trajectory. In our approach, the errors
to be minimized through maximum likelihood estimation is
as followed:

argmin
x1:T
R

,x1:T
O

T∑
t=2

e(xt−1
R ,xt

R,∆xt
R)

TΩt
Re(x

t−1
R ,xt

R,∆xt
R)︸ ︷︷ ︸

Robot odometry constraint

+

T∑
t=2

e(xt−1
O ,xt

O,∆xt
O)

TΩt
Oe(x

t−1
O ,xt

O,∆xt
O)︸ ︷︷ ︸

Object odometry constraint

+

T∑
t=1

e(xt
R,x

t
O, r

t)TΩt
R,Oe(x

t
R,x

t
O, r

t)︸ ︷︷ ︸
UWB ranging constraint

+

T∑
t=1

e(xt
R,x

t
O,x

t
L)

TΩt
L,xe(x

t
R,x

t
O,x

t
L)︸ ︷︷ ︸

Object position constraint (Module 1)

+

T∑
t=1

e(xt
R,x

t
O, θ

t
L)

TΩt
L,θe(x

t
R,x

t
O, θ

t
L)︸ ︷︷ ︸

Object moving direction constraint (Module 2)

,

(4)

where e(·) denotes the residual function that computes the
residual error of odometry, UWB ranging and a LiDAR pose
measurement from our object-identification module given
a pose configuration for the robot xt

R and the object xt
O.

Constraints are additionally parameterized with a certain
degree of uncertainty, which is denoted as the information
matrix (i.e., Ωt

R,Ωt
O,Ωt

R,O,Ωt
L,x,Ωt

L,θ) in Equation 4.
Due to the non-convexity of Equation 4, the optimization

converges to a local minimum without a reasonable initial
guess, and there is no guarantee of finding the best solution.
Therefore, we use the known initial robot and object position
with reference to the robot as an initial guess for optimiza-
tion. Based on the initial guess, we then perform nonlinear



optimization via g2o [24]. Next, we study all three modules
using real-world experiments to show their effectiveness.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results of
our approach and compare them with two other methods:
pure odometry and conventional UWB ranging localization.
Furthermore, we include results for the fusion of odometry
and LiDAR to provide a comprehensive comparison. We
begin by describing the experimental setups in Section IV-A.
Subsequently, we present the results obtained using a setup
comprising a static robot equipped with a 2D LiDAR and
a moving object (robot without LiDAR), and evaluate the
pose estimation outcomes in Section IV-B. Building upon
that, we extend the proposed approach to a setup involving
a moving robot (with LiDAR) and a moving object (robot
without LiDAR), and assess the performance of our method
in Section IV-C.

The first experiment focuses on verifying the effectiveness
of the proposed approach using a static robot and a moving
object. Additionally, in this experiment, we identify the
optimal values for ϑ and ω. The second experiment aims to
validate the robustness of our approach on a moving robot
and a moving object, utilizing the best values for ϑ and
ω based on the previous experiment. All experiments were
conducted on a system equipped with an Intel Core i7-6600U
CPU for reliable and consistent performance.

A. Experiment Setups

Robot 
 with LiDAR 

Moving Object
without LiDARStatic

Obstacles

Dynamic
Obstacles

Fig. 3: Snapshot of experiment setup with a robot (turtlebot
equipped with LiDAR) and moving object (turtlebot without Li-
DAR) in an indoor environment with static and dynamic obstacles.

In this subsection, we present the experimental setup to
demonstrate the proposed approach with a robot (a turtlebot
with LiDAR) and an object (a turtlebot without LiDAR)
in an indoor environment of 16m×12m which consists of
static and dynamic obstacles. Fig. 3 shows a snapshot of
the experimental setup. The robot and object each carry
one UWB node (NoopLoop LinkTrack) with a range of
up to 100m and a sampling frequency of 50Hz. The robot
and object output odometry measurements with a frequency
of 10Hz. In addition, the robot also carries a 2D LiDAR
(Hokuyo LiDAR), which publishes laser scans at 20Hz. All
modules are run using the Robot-Operating-System (ROS)
[25].

For the experiments, ground truth was obtained using the
Hokuyo LiDAR to perform Adaptive Monte Carlo Localiza-
tion (AMCL) [26] given a map created through GMapping

[27], which provides accurate pose estimations for both
the robot and the object. The accuracy of our proposed
approach was evaluated by comparing the computed relative
translational and rotational errors of the robot and the object
against the ground truth data.

B. Experiments with a Static Robot and a Moving Object

This section presents the experimental results to demon-
strate the proposed approach with a static robot and a moving
object. The robot is static at its initial position, while the
moving object moves along different paths.

1) Evaluation of Pose Estimation using UWB, Odometry
and LiDAR: We commence our evaluation by examining
pure odometry, a method known to exhibit drift over time.
Next, we assess UWB ranging localization [17], which
combines UWB ranging and odometry measurements to
minimize the residual error of the UWB range. The third
approach under evaluation is the fusion of odometry and
LiDAR measurements, without the incorporation of UWB
ranging as constraints. Lastly, we evaluate our proposed
approach, which integrates LiDAR, UWB ranging, and
odometry measurements for accurate pose estimation. Fur-
thermore, we investigate the impact of the LiDAR moving
direction information matrix value on the precision of the
pose estimation results.

TABLE I: Evaluation of different approaches based the average
relative translational error (metres) and relative rotational error
(radians) between the static robot and the moving object.

Approach Rel. trans error (m) Rel. rot error (rad)
Pure Odom 0.28 ± 0.12 0.066 ± 0.024

Odom + UWB 0.25 ± 0.092 0.038 ± 0.011
Odom + LiDAR

(with moving direction
and rejection)

0.26 ± 0.056 0.039 ± 0.009

Odom + UWB + LiDAR
(w/o moving direction) 0.29 ± 0.15 0.061 ± 0.031

Odom + UWB + LiDAR
(w/o rejection) 0.23 ± 0.070 0.057 ± 0.024

Odom + UWB + LiDAR
(with moving direction

and rejection)
0.14 ± 0.032 0.026 ± 0.006

The outcomes of the various approaches are summarized
in Table I, providing a comprehensive overview. For pure
odometry, the average translational error amounted to 0.28m,
accompanied by an average rotational error of 0.066rad. As
depicted in Fig. 4(a), we observe a noticeable drift of the
odometry from the ground truth as time progresses.

The Odom + UWB approach (UWB ranging localization)
in Figure 4(b) improved the error caused by drift, with a
0.25m average translational error and a 0.038rad rotational
error. Although introducing UWB ranging as a constraint
improved translational and rotational accuracy, UWB ranging
measurements between the static robot and the moving object
in non-line-of-sight scenarios will be longer than the actual
distance. Fortunately, the data from LiDAR attached to
the static robot could help further improve the localization
accuracy and compensate for this error.
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Fig. 4: Trajectories estimated by different approaches for the static robot and a moving object scenario. The green lines denote the UWB
ranging constraints, and the point of intersection for the green lines is the static robot.
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Fig. 5: Experimental evaluation of the relative translational and
rotational error between the static robot and the moving object with
the proposed approach (with moving direction and rejection) over
time.

The Odom + LiDAR approach (fusion of odom and
LiDAR without odometry) which introduces LiDAR mea-
surements in the localization algorithm through our object-
identification module produced comparable results to UWB
ranging localization with a 0.26m average translational error
and a 0.039rad rotational error. However, the localization
accuracy can be further improved by adding an additional
constraint through UWB ranging measurements. Our pro-
posed approach builds on the UWB-ranging localization ap-
proach. We evaluated our proposed method without moving
direction, without outlier rejection, and with both moving
direction and outlier rejection to show the importance of
the moving direction estimation and rejecting outliers. With
moving direction estimations and the outlier rejection mech-

anism, the proposed approach produced the best results with
a 0.14m average translational error and a 0.026rad rotational
error. We compare the estimated moving direction of the
moving object from our moving object identification module
with the current estimated orientation from PGO. If the
difference is within a threshold of 0.3rad, we set a high
value for the moving direction in the information matrix. In
addition, the average translational and rotational error of the
different approaches over time was also evaluated, as shown
in Figure 5. We show that our proposed approach maintains
a consistent translational and rotational error over time, with
a maximum of 0.225m and 0.041rad, respectively.

TABLE II: Evaluation of different outlier rejection threshold values
ϑ on the average relative translational error (metres) and relative
rotational error (radians) between the static robot and the moving
object.

Value ϑ Rel. trans error (m) Rel. rot error (rad)
0.1 0.28 ± 0.10 0.055 ± 0.020
0.2 0.19 ± 0.069 0.039 ± 0.012
0.3 0.14 ± 0.032 0.026 ± 0.006
0.4 0.17 ± 0.030 0.039 ± 0.012
0.5 0.23 ± 0.076 0.049 ± 0.016

TABLE III: Evaluation of different orientation information matrix
values ω on the average relative translational error (metres) and
relative rotational error (radians) between the static robot and the
moving object.

Value ω Rel. trans error (m) Rel. rot error (rad)
1 0.30 ± 0.15 0.063 ± 0.031

10 0.24 ± 0.11 0.052 ± 0.018
100 0.21 ± 0.079 0.042 ± 0.016
1000 0.19 ± 0.069 0.042 ± 0.009

10000 0.14 ± 0.032 0.026 ± 0.006
100000 0.15 ± 0.045 0.030 ± 0.009

2) Impact of Different Object Moving Direction Infor-
mation Matrix Values: In this experiment, the information
matrix for the static robot odometry Ωt

R, moving object
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Fig. 6: Trajectory of the moving object and moving robot ground truth trajectory, with UWB ranging localization, and with the proposed
approach (with moving direction and rejection). The green lines refer to the UWB-ranging constraints between the moving robot and the
moving object.

odometry Ωt
O, UWB ranging Ωt

R,O, and moving object po-
sition Ωt

L,x constraints are set to 1. We investigated different
values ω for the information matrix of the estimated object
moving direction Ωt

L,θ provided by our object-identification
module for PGO. We perform a simple criterion check
for the reliability of the estimated moving direction from
our proposed approach by comparing it with the estimated
object orientation from PGO. We observe that if the moving
direction estimated by our proposed approach and the current
orientation estimation from PGO is within a threshold of
0.3rad based on experimentation shown in Table II, setting
the value for the object moving direction information matrix
Ωt

L,θ to 10000 increases the localization accuracy most. We
show improved localization accuracy as the value for the
object moving direction information matrix Ωt

L,θ increases
up to 10000. However, when the values go above 10000, it
causes the localization accuracy to get worse slowly.

C. Experiments with a Moving Robot and a Moving Object

TABLE IV: Evaluation of different approaches based on average
relative translational error (metres) and relative rotational error
(radians) between the moving robot and the moving object.

Approach Rel. trans error (m) Rel. rot error (rad)
Pure Odom 0.79 ± 0.34 0.28 ± 0.100

Odom + UWB 0.52 ± 0.17 0.25 ± 0.065
Odom + LiDAR

(with moving direction
and rejection)

0.52 ± 0.30 0.021 ± 0.064

Odom + UWB + LiDAR
(with moving direction

and rejection)
0.45 ± 0.032 0.16 ± 0.050

This section presents the experimental results demon-
strating the proposed approach with a moving robot and a
moving object. The moving robot and the moving object
were manually controlled to move along different paths. The
best values for ϑ of 0.3 and ω of 10000 from Section IV-
B2 were used for evaluating the proposed method against
pure odometry, UWB ranging localization, and the fusion of
odometry and LiDAR measurements only. Figure 6 visual-
izes the ground truth trajectory, the estimated trajectory with
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(a) Relative translational error between the moving robot and the moving
object.
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(b) Relative rotational error between the moving robot and the moving
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Fig. 7: Experimental evaluation of the relative translational and
rotational error between the moving robot and the moving object
with the proposed approach (with moving direction and rejection)
over time.

UWB ranging localization, and also the estimated trajectory
with the proposed approach for the moving robot and the
moving object.

We show in Figure 7 that our proposed approach produces
significant improvements in the relative translational and ro-
tational accuracy between the moving robot and the moving
object compared to pure odometry, the conventional UWB
ranging localization, and fusion of odometry and LiDAR
measurements only. Furthermore, we highlight the improve-
ments of our proposed approach in Table IV, where the
proposed approach improved the conventional UWB ranging
localization by 13.5% and 36% in the relative translation and
rotation error respectively.



V. CONCLUSIONS

We proposed an approach for moving object localization
using UWB ranging, odometry, and LiDAR measurements
between a moving object and a robot in unknown environ-
ments. Our approach consists of three modules that identify
the moving object’s position using LiDAR, estimate the
moving object’s moving direction and reject outlier moving
direction estimations, and perform PGO to estimate the mov-
ing object’s position. The proposed approach was verified be-
tween a robot and a moving object in an indoor environment
of 16m×12m with obstacles. The results showed that the
proposed approach achieved an average localization accuracy
of 0.14m in translation and 0.026rad in rotation, which sig-
nificantly improves accuracy compared to the conventional
UWB ranging localization in an environment with one static
robot and one moving object. We also showed the importance
of moving direction estimations and an outlier rejection
mechanism to discard suspicious moving direction estimates
from our object-identification module. Additionally, the pro-
posed approach was tested with a moving robot and a moving
object which produced significant improvements compared to
the conventional UWB ranging localization. In future works,
we will extend the work with multiple robots identifying
multiple moving objects given that the moving objects can
provide odometry. Another research direction is to apply the
proposed approach for autonomous moving object-following
tasks using a moving robot.
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