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Abstract—High-quality datasets can speed up
breakthroughs and reveal potential developing direc-
tions in SLAM research. To support the research
on corner cases of visual SLAM systems, this pa-
per presents Ground-Challenge: a challenging dataset
comprising 36 trajectories with diverse corner cases
such as aggressive motion, severe occlusion, chang-
ing illumination, few textures, pure rotation, mo-
tion blur, wheel suspension, etc. The dataset was
collected by a ground robot with multiple sensors
including an RGB-D camera, an inertial measure-
ment unit (IMU), a wheel odometer and a 3D Li-
DAR. All of these sensors were well-calibrated and
synchronized, and their data were recorded simul-
taneously. To evaluate the performance of cutting-
edge SLAM systems, we tested them on our dataset
and demonstrated that these systems are prone to
drift and fail on specific sequences. We will release
the full dataset and relevant materials upon pa-
per publication to benefit the research community.
For more information, visit our project website at
https://github.com/sjtuyinjie/Ground-Challenge.

Index Terms—Data Sets for SLAM, Data Sets for
Robotic Vision

I. INTRODUCTION

INTELLIGENT ground robots have been widely
used in industrial production and daily life, such

as logistics, cleaning, warehouses, security, and
food delivery. And navigation is the fundamental
capability for these robots to execute these diverse
tasks. To achieve reliable navigation, visual SLAM
(Simultaneous Localization and Mapping) problem

Authors † are independent researchers. Authors ‡ are with
Tencent Robotics X Lab, Shenzhen, China. ∗ Corresponding
Author: Conghui Liang (isaacliang@tencent.com)

has been researched for decades, with quite a few
classical methods proposed [1].

A recent developing trend in visual SLAM is low-
cost multi-sensor fusion, which has been verified
to be a practical approach [2] to enhance the ro-
bustness to diverse scenarios. Different sensors can
complement each other, maximizing the perceptual
awareness of environments. One of the best example
is that visual-inertial odometry (VIO) algorithms
can significantly improve the tracking stability and
accuracy in aggressive motion and textureless sce-
narios. While VIO systems have performed well in
most cases, [3] has proven that this does not apply
to ground vehicles. For generic movement patterns,
a VIO system has only four unobservable directions
(three for global translation and one for global
yaw). However, ground vehicles are restricted from
moving in a 2D plane, mostly along a straight line
or a circular arc, and thus the IMU is not sufficiently
activated. Therefore, the VIO system on the ground
robot will suffer from additional DoF unobservabil-
ity, such as the scale. To address this issue, [4] ex-
tends VINS-Mono [5] to incorporate low-frequency
wheel-encoder data and keep the scale observable.
Similarly, [6] proposes a RGB-D Encoder SLAM
system for differential-drive robots. Most recently,
[7] proposes an optimization-based visual-inertial-
wheel tightly coupled odometry, which claims to
work robustly in dark or overexposed conditions.
Nonetheless, its performance has not been tested on
any public dataset with ground truth trajectories.

We believe that progress in SLAM, like in the AI
field, is highly data-driven [8]. Although there have
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Fig. 1. Diverse scenarios included in our datasets: (a). A room under the motion capture system. (b). a richly-textured and well-lit
office. (c). A wall that lacks texture. (d). A hall with smooth floors. (e). A narrow corridor. (f). An outdoor slope. (g). Aisles with
carpet. (h). Hanging the robot on a bracket.

been extensive public datasets available to evaluate
different SLAM algorithms, most of these datasets
are outdated and do not challenge cutting-edge
SLAM algorithms. In our opinion, those datasets
focusing on challenging cases can more efficiently
reveal the defects and limitations of existing al-
gorithms. We notice that corner case detection in
autonomous driving receive extensive concern from
researchers [9] [10] because such cases could easily
cause the navigation system to drift. Similarly, once
the localization module of the robot fails, it might
cause industrial accidents and even pose potential
threats to human safety as well. Nonetheless, to our
knowledge, there is currently not much literature
discussing the corner cases of robot navigation,
which is not conducive to the safety of real-world
robot applications.

To fill this gap, we present a novel SLAM dataset
for ground robots, which aims to challenge existing
cutting-edge SLAM systems with corner cases and
thus promotes the progress of the multi-sensor
fusion SLAM algorithm. The challenges of our
datasets lie in two areas: specific movement patterns
and sensor failures, which will be elaborated in
subsequent sections. Some scenarios covered in
our datasets are visualized in Figure 1. Our major
contributions are summarized as follows:

• We collect a novel visual SLAM dataset for
ground robots with a rich pool of sensors in
diverse environments both indoors and out-
doors. Particularly, the dataset covers a series
of challenging sequences including sensor fail-
ures and specific movement patterns.

• State-of-the-art SLAM algorithms of different
settings are tested on our benchmark. And the
results indicate these systems are not robust
enough for situations such as sensor failures.

• To facilitate the research on corner cases
of robot navigation, we will release the full
dataset with ground truth trajectories and the
configuration file of each tested algorithm upon
paper publication.

II. RELATED WORKS

A. SLAM Datasets for Ground Robots

Most existing SLAM datasets are collected by
UAVs [11] or cars [12], but only a few are targeted
at ground robots. For instance, Rawseeds [13] and
UTIAS [14] provide RGB images only, thus making
them unsuitable for evaluating multi-sensor fusion
systems. The Rosario dataset [15] is rich in sensor
variety, yet is specifically designed for agricultural
environments. M2DGR [2] captures diverse indoor
and outdoor scenarios, including some challenging



TABLE I
COMPARISON OF SLAM DATASETS ON GROUND ROBOTS

Dataset Environment RGB Depth IMU Odom
Rawseeds [13] In/Outdoors !

UTIAS [14] Indoors !
TUM RGBD [17] Indoors ! ! !

NCLT [18] In/Outdoors ! !
Rosario [15] Outdoors ! ! !

OpenLORIS [16] Indoors ! ! ! !
SubT-Tunnel [19] Outdoors ! !

M2DGR [2] In/Outdoors ! !
Ours In/Outdoors ! ! ! !

scenes like elevators and darkrooms, but doesn’t
contain wheel odometer information which is essen-
tial for multi-sensor fusion SLAM algorithms due
to its low cost and high precision. OpenLORIS [16]
offers rich sensor types in visual challenging sce-
narios such as highly dynamic markets and poorly
exposed corridors, but wheel challenges or motion
challenges are not included.

B. Corner Cases

Corner cases, i.e., extreme and non-predictable
situations, are a popular research topic in au-
tonomous driving [20]. Although infrequent, these
cases can potentially threaten the security and re-
liability of autonomous navigation systems. Cor-
ner cases exist in robot navigation tasks as well.
To address such challenging scenarios, researchers
have proposed various methods, such as RGB-D
SLAM [21] and DS-SLAM [22], to handle dy-
namic environments, and GVINS [23] to deal with
degenerate cases including low-speed movement,
less than four visible satellites, and GNSS-denial
environments. Additionally, [24] proves that their
method is robust in aggressive motions and a visual
texture-less white wall. Nonetheless, we note that
there are still plenty of corner cases that tend
to be overlooked, such as wheel slippage, motion
blur, and complete visual occlusion. There is a
lack of SLAM datasets specifically designed for
studying these corner cases, which is a gap yet
to be filled. To sum up, it is urgent and critical
to collect a novel SLAM dataset with rich sensor
types, precise calibration, and sufficient challenge to

Fig. 2. Our ground robot for data collection. Red is x-axis, green
is y-axis, and blue is z-axis.

support studies on corner cases, particularly sensor
failures.

III. THE GROUND-CHALLENGE DATASET

A. Sensor setup

We construct a ground robot for data collection
and the sensor locations on the robot are shown
in Figure 2. The chassis is equipped with a front-
view VI-Sensor (Visual-Inertial Sensor) that cap-
tures RGB and depth images along with 6-axis
IMU’s measurements. Driven by two driving wheels
providing odometer information and four assisting
wheels, the robot also has a high-precision 9-axis
Xsens IMU and a 16-beam 3D LiDAR.

The ground truth trajectories and point clouds
are generated by the Velodyne LiDAR and the
Xsens IMU using Fast-LIO2 [25], a state-of-the-
art LiDAR-based SLAM system. To evaluate its
performance, we compared the high-precision tra-
jectories generated by a motion capture system with
16 infrared cameras to those generated by Fast-
Lio2. The experiment revealed that Fast-LIO2 can
reach a positioning accuracy of 3cm in a small-scale
(15m x 15m) indoor room. Additionally, as reported



TABLE II
SPECIFICATIONS OF SENSORS

Device Type Spec. Freq.(Hz)

VI-sensor Realsense D435I
RGB: 640*480, 69 H-FOV, 42.5V-FOV 15

Depth: 640*480, 0.1∼10 meters 15
IMU: 6-axis 200

IMU Xsens Mti-300 9-axis 400
Wheel Odometer AgileX 2D 25

LiDAR Velodyne VLP-16 16 beam,360 H-FOV,30V-FOV 10

in [25], Fast-LIO2 can achieve less than 0.1m end-
to-end error in an outdoor trajectory spanning 1000
meters. Thus, considering that it is difficult for
visually-based SLAM algorithms to achieve similar
accuracy in challenging scenarios, we use the result
of Fast-LIO2 as the pseudo-ground-truth trajectory.

TABLE III
AN OVERVIEW OF SCENARIOS IN OUR DATASET.

Scenario Seq. Num Dist./m Vel./(m/s) Size/GB
Office 3 75.5 0.46 4.7
Room 3 102.1 0.66 4.6

Darkroom 3 92.0 0.45 6.1
Wall 3 86.7 0.46 5.6

Motionblur 3 166.6 1.15 4.3
Occlusion 4 273.8 0.82 9.9
Roughroad 3 68.1 0.37 5.4

Slope 2 128.5 0.66 5.7
Hall 3 263.3 0.87 8.7
Loop 2 371.8 1.12 9.9

Corridor 2 68.1 0.37 5.4
Rotation 3 12.4 0.06 5.4

Static 2 1.9 0.00 2.7
Total 36 1780.0 — 78.8

B. Synchronization and Calibration

We capture all the data using the ROSbag tool
in the Robot Operating System (ROS). The RGB
camera and 6-axis IMU embedded in the Realsense
D435I are hard-synchronized, while the depth im-
ages are pixel-by-pixel aligned to the RGB images.
The 3D LiDAR and 9-axis IMU are software-
synchronized by triggering data capture at the
same instance. To calculate the camera intrinsics
of pinhole cameras, we use the MATLAB Cam-
era Calibration Toolbox. To calibrate the internal
parameters of the IMU, we use the toolbox from

[28], which includes the white noise and random
walk of both the gyroscopic and accelerometer
measurements. We choose the IMU frame as the
reference to calibrate the extrinsic parameters (rela-
tive poses) between sensors, and employ the toolbox
from [29] for calibrating the extrinsic parameters
between cameras and IMU.

C. Data collection

We provide an overview of our dataset in Table
III. All data was captured using the Rosbag tool
within the Robot Operating System (ROS). The
recording process is as follows: First, we recorded
Office and Room sequences, where the robot moves
slowly in a well-lit and textured office or room
respectively, to test the performance of different
algorithms in normal situations. Subsequently, we
designed a series of corner case experiments from
three aspects: visual challenge, wheel odometer
challenge, and particular movement pattern, which
are presented as follows:

1) Visual Challenge: In our experiments, we
manipulate the robot to move in a room with
poor illumination (Darkroom sequences), back and
forth in front of walls lacking texture (Wall se-
quences), and through scenarios of varying degrees
of occlusion (Occlusion sequences). Figure 3 (a)
shows sequences Occlusion1∼2, which involves a
person walking in front of the robot and causing
intermittent partial occlusion. Figure 3 (b) dis-
plays sequence Occlusion3, in which the camera
is covered with the palm repeatedly. In sequence
Occlusion4 (Figure 3 (c)), a piece of black tape is
attached to the camera’s lens to completely block its
view, disabling feature extraction and matching for
visual SLAM. Furthermore, Motionblur sequences
are generated by rapidly translating and rotating the



TABLE IV
ATE RMSE (M) OF SLAM SYSTEMS ON SAMPLE SEQUENCES

Type Sequence / Method VINS-Mono [5] VINS-RGBD [26] VIW-Fusion [7] EKF [27] Raw Odometer
Normal Office3 0.35 0.31 0.18 0.16 0.16

Darkroom2 1.66 0.82 0.53 0.22 0.30
Visual Wall2 1.21 1.00 0.15 32.91 0.57

Challenge Motionblur3 9.37 32.31 0.78 0.42 0.79
Occlusion4 *a * * 0.22 0.23
Roughroad3 0.17 25.52 0.14 0.11 0.11

Wheel Slope1 9.41 2.84 0.65 0.89 0.89
Challenge Hall1 7.06 94.27 0.85 2.16 2.79

Loop2 6.09 3.44 9.23 16.70 17.61
Motion Corridor1 4.48 0.85 1.12 1.78 2.17

Challenge Rotation3 29.12 0.19 0.18 0.14 0.14
Static1 * * * 5.61 3.54

aIf a SLAM system fails to initialize or track frames less than a half of total frames, we mark it *.

(a) (b)

(c) (d)

Fig. 3. (a) Moving feet. (b) occluding the camera with a palm.
(c) complete occlusion. (d) motion blur

robot, creating motion blur for cameras (Figure 3
(d)).

2) Wheel Odometer Challenge: The Hall and
Loop sequences are collected in a hall with smooth
ground and a heavily carpeted aisle loop, respec-
tively, where the wheels slip significantly. More-
over, we record Roughroad sequences to test the
performance of the localization algorithm on rough
roads.

3) Particular Moving Patterns: In the Sequences
Corridor1 and Corridor2, the robot moves forward
in a zigzag shape and straight forward, respectively.
In the zigzag route, motion blur and less overlap-
ping between adjacent image frames will lead to
errors in feature matching. In the Rotation sequence,

the robot only rotates and hardly translates, which
makes it difficult for vision-based algorithms to
estimate the depth of feature points by triangulation.
In the Static sequences, the robot stands still on a
bracket, and we control its wheels to move in differ-
ent directions through the handle. This experiment
aims to test whether SLAM systems coupled with
the wheel odometer can work well when the robot
wheel is suspended. Finally, we operate the robot
from a flat surface to another, passing through a
slope. In this experiment, since the wheel odometer
only provides two-dimensional speed observations,
it could be misleading to estimate three-dimensional
trajectories.

IV. EVALUATION

The features of all the sequences are described
on our project website. We evaluated some SLAM
systems with different sensor configurations on
twelve representative sequences from our dataset.
The tested algorithms are ORB-SLAM3 [30], an
optimization-based SLAM system; VINS-Mono [5],
one of the state-of-the-art monocular visual-inertial
systems; VINS-RGBD [26], a fusion algorithm
of RGB-D and IMU information based on the
VINS-Mono [5] framework; and VIW-Fusion [7],
a tightly-coupled visual-inertial-wheel system fea-
turing online extrinsic calibration and wheel-aided
initialization. Also, we use an EKF algorithm [27]
for fusion of IMU and wheel odometer.

The EVO tool [31] was used to align all the
estimated trajectories with ground truth trajectories
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Fig. 4. Estimated and ground-truth (GT) trajectories of 12 sample sequences are visualized on the x-y plane.

to obtain the ATE RMSE [17]. The quantitative
results are shown in Table IV, with the estimated
trajectories in 2D plotted in Figure 4. Since most
of the selected sequences are highly challeng-
ing (even with sharp turns), ORB-SLAM3 (both
monocular-inertial and RGBD-inertial version) per-
formed poorly on most of our test sequences,
with frequent tracking failures (less than 50% of
successfully tracked frames), initialization failure,
or scale drift. In contrast, SLAM algorithms with
multi-sensor fusion (like VIW-Fusion [7]) achieved
better localization results but failed in some specific
scenarios as well. We discuss the experiment results
in detail as follows:

a) Normal Situation: The ATE RMSE results
on Sequence Office3 indicate that existing localiza-
tion methods can perform well when the motion
mode matches the assumptions of these algorithms
and all the sensors work well.

b) Vision Challenge: In Sequence Darkroom2
and Motionblur3, VINS-Mono [5] and VINS-
RGBD [26] drift a lot due to visual failures, while
Wheel odometer based algorithms work more ro-
bustly in this case. In Sequence Occlusion4, all the
vision-based methods including VIW-Fusion [7] fail
to initialize because of poor feature extraction. This
finding indicates that VIW-Fusion [7] has not been
adequately designed to handle adverse conditions. A
more prudent strategy may be to combine the wheel
odometer and IMU to output a trajectory when a
visual sensor failure is detected.

c) Wheel Odometer Challenge: In the se-
quences Roughroad3 and Slope1, vision-based sys-
tems perform worse than wheel odometer-based
algorithms due to inaccurate scale estimation in
aggressive motion. In Sequence Hall1, VINS-Mono
[5] and VINS-RGBD [26] drift significantly due
to ground reflection and faraway feature points.



Here, VIW-Fusion [7] maintains satisfactory posi-
tioning performance even with slight wheel slip-
page, demonstrating the advantages and necessity of
multi-sensor fusion in complex scenarios. However,
when the wheels slip more severely in Sequence
Loop2, the significant deviation caused by the wheel
odometer increases the localization error of esti-
mated trajectories. This can be attributed to two
main reasons: current algorithms lack the ability
to detect wheel slippage, and the angular velocity
provided by the wheel speedometer is not accurate,
leading to the long-term divergence of the estimated
trajectory. To reduce the accumulation of errors, it is
suggested that IMU’s angular velocity measurement
be used instead of the wheel odometer’s.

d) Particular Movement Patterns: In Se-
quence Corridor1, the zigzag movement of the
robot not only fails the feature extraction but also
leads to severe wheel slippage. Therefore, all the
tested algorithms cannot accurately estimate the
trajectory. In Sequence Rotation1, pure rotation
causes severe errors in depth estimation by VINS-
Mono’s triangulation, while the remaining tested
systems perform well thanks to measurements from
other sensors. Finally, in Sequence Static1, VIO
systems cannot be initialized successfully due to the
lack of IMU excitation. Since the wheels are still
moving after suspension, the wheel odometer-based
methods mistake the robot being in motion.

In summary, VINS-Mono [5] is most likely to
generate catastrophic localization results in corner
cases, and VINS-RGBD [26] can also inevitably
fail when severe camera failures occur. We have
noticed that the wheel odometer alone can achieve
good results in most situations, except for severe
wheel slippage. Integrating the IMU and the wheel
odometer through the EKF [27] can achieve higher
accuracy than the raw odometer. Nonetheless, the
trajectory of the EKF can shake violently in the
initialization phase due to the inaccuracy in the
initial covariance estimation (this part was manually
eliminated in our experiment). VIW-Fusion [7] can
achieve satisfying accuracy and robustness in most
sequences, but its initialization in visual failure
needs improvement. Furthermore, it lacks consid-
eration for wheel slippage, and its adopted dead

reckoning model will diverge in a long trajectory
due to inaccurate angular velocity estimates.

The experiments conducted demonstrate the va-
lidity and value of our dataset as a benchmark for
existing SLAM systems. The results further suggest
that there is still much room for improvement in
current cutting-edge multi-sensor fusion algorithms
for real-world applications. Sensor failures, such
as complete occlusion and wheel suspension, can
be fatal for single-sensor-based methods; however,
multi-sensor fusion systems should be designed
to be more robust in these cases. For instance,
we posit that a reliable visual-IMU-wheel system
should be able to explicitly identify scenarios where
visual observations are inaccurate and respond ac-
cordingly (e.g. disable visual information and rely
only on wheel odometer and IMU). Nevertheless,
to our knowledge, corner case identification and
troubleshooting have been scarcely addressed in
prior work. Therefore, we provide this dataset to
support relevant researches.

V. CONCLUSION

We present Ground-Challenge, a novel ground
robot dataset to encourage breakthroughs in multi-
sensor fusion SLAM algorithms. Specifically, we
have crafted a series of corner case experiments,
including sensor failures in diverse environments, to
challenge current cutting-edge SLAM systems. We
have tested these systems on our dataset and ana-
lyzed their limitations in various scenarios, thus pro-
viding potential developing directions for SLAM.
We are committed to continually updating our
benchmark dataset. Specifically, we will mount 2D
and 3D LiDAR on the robot, design experiments
to invoke corner cases, and utilize higher-precision
equipment such as motion capture systems to ensure
accurate ground truth for LiDAR SLAM in our
future work.
Acknowledgement Thank Tencent Robotics X Lab
for support to this work.
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