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Abstract— Maps are essential to mobile robotics tasks like
localization and planning. We propose the open street map
(osm) XML based Area Graph file format to store hierarchical,
topometric semantic multi-floor maps of indoor and outdoor
environments, since currently no such format is popular within
the robotics community. Building on-top of osm we leverage the
available open source editing tools and libraries of osm, while
adding the needed mobile robotics aspect with building-level
obstacle representation yet very compact, topometric data that
facilitates planning algorithms. Through the use of common
osm keys as well as custom ones we leverage the power
of semantic annotation to enable various applications. For
example, we support planning based on robot capabilities, to
take the locomotion mode and attributes in conjunction with
the environment information into account. The provided C++
library is integrated into ROS. We evaluate the performance of
osmAG using real data in a global path planning application
on a very big osmAG map, demonstrating its convenience and
effectiveness for mobile robots.

I. INTRODUCTION

Autonomous mobile robots have found extensive appli-
cations in various fields such as agriculture, industry, and
commerce. These robots rely on known maps for autonomous
localization, mission-planning and navigation to accomplish
tasks. A well-defined map representation serves as a pre-
requisite for mobile robots to execute their tasks effectively.
Given the substantial differences in scale and structural char-
acteristics between indoor and outdoor environments, map
representations for mobile robots vary significantly. For out-
door scenarios, large-scale vector maps like OpenStreetMap
are common. Point cloud maps are often employed in smaller
outdoor scenarios [1]. In indoor settings, 2D or 3D grid
maps and point cloud maps are the most widely used map
representations. Consequently, most robots are designed for
either indoor or outdoor environments exclusively.

With the further advancement of sensor technology, maps
are becoming more accurate and detailed. Simultaneously,
improvements in simultaneous localization and mapping
(SLAM) algorithms have led to increased precision and scal-
ability in map construction. However, memory and computa-
tion constrains limit the use of point cloud and 3D grid map
based approaches for large areas for localization. They are
also typically too detailed for most semantic information that
is to be encoded, like room numbers or terrain types. Finally,
3D mesh and point cloud based maps are quite difficult to
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Fig. 1. Two buildings with two stories each rendered from osmAG and
with a planned path utilizing an elevator from one building to the other.

employ for path planning and navigation. Therefore, for most
of these tasks, 2D grid maps are still widely used in robotics.
They are suitable up to a certain size in terms of storage and
computation, but become computationally more demanding
as map sizes grow. They do not readily provide semantic
information and, most crucially, are inherently 2D, so fail to
support multi-level scenarios like buildings with more than
one floor.

Graph structures encoding the topology of an environment
are a solution to these problems [2]. These graphs repre-
sent places (vertices) and how they are connected (edges).
Topometric maps additionally encode metric information
about the position of these elements. These graphs can
also be easily organized in a hierarchical manner, grouping
several places or connections into a parent structure. Adding
semantic information to the graph elements further enhances
the utility of the map. In our paper [3] we go further into
details about hierarchical topometric representation of 3D
robotic maps.
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In our previous work [4] and [5] we developed the
so-called Area Graph, a topometric representation generated
from 2D grid maps. That work is based on a so-called
TopologyGraph [6], which is a pruned and simplified
version of the Voronoi Diagram. The Area Graph has as
graph nodes areas and as edges passages between the areas:
passages mark where it is possible for a robot to traverse
from one area to another area that is touching the first area.

In this paper we present an on-file format to store said
Area Graph. Additionally, we define how a hierarchy of
areas and passages can be established and how semantic
information can be added to it. That on-file format is
based on and fully compatible with the open street map
XML format - we just define certain use patterns and
special osm tags that encode the hierarchical, semantic Area
Graph structure in the osm XML tag “way”, that is used
for both areas and passages. We also provide the osmAG
C++ library to load osmAG files into memory and utilize
them for visualization and planning in the Robot Operating
System (ROS). Fig. 1 shows a multi-story osmAG map and
a planned path.

Adopting the open street map XML standard has
advantages in its widespread use and support from mature
software, facilitating map editing, visualization, updates,
and corrections. Apart from autonomous cars and a few
other notable exceptions [7], open street map has not been
widely adopted in the robotics community, even though
some indoor approaches exist [8], [9].

The AreaGraph encodes the areas of rooms based on
the architectural walls. We can create the AreaGraph
from complete 3D point clouds [3] or from 2D grid
maps [4], [5]. We obtain furniture-free 2D grid maps by
either employing according to Simultaneous Localization
and Mapping technologies [10], [11] or by rendering
CAD building data into 2D grid maps. The memory
consumption of our abstract osmAG is orders of magnitude
smaller than 2D or 3D grid maps and point clouds, and
planning on them is easy and fast, as our experiment will
show. In [12] we already utilize osmAG for localization
and tracking of a mobile robot with a 3D LiDAR, see Fig. 2.

The key contributions of this work are:

• Definition of an on-disk map representation osmAG to
store hierachical, semantic, topometric map data in the
open street map format with additional robotics-centric
Area Graph data.

• Providing a C++ library osmAGlib to load osmAG into
memory and perform tasks like visualization in ROS
and path planning.

• Providing a big osmAG map and performing various
experiments with it 1.

1https://github.com/STAR-Center/osmAG

Fig. 2. Application of osmAG for robot localization with a 3D LiDAR
pointcloud in the Robot Operating System ROS [12]

II. RELATED WORK

A. Hierarchical Topological Maps

In recent years, there has been great interest in the inte-
gration of hierarchical, semantic, and topological mapping.
Specifically, learning-based semantic segmentation has made
significant progress, enabling high-precision semantic seg-
mentation of 3D point clouds and images. Current research
on semantic maps mainly focuses on object-level [13], [14]
or dense maps, which include volumetric models [15], point
clouds [16], [17], and 3D grids (voxels) [18]. These methods
do not involve the estimation of higher-level semantics,
such as rooms, and often return dense models that are not
suitable for direct navigation. Segmentation alone also does
not provide topological connections of neighboring areas.

The second research line focuses on constructing hierar-
chical topological map models. Hierarchical maps have been
widely used since the inception of robotics [2], [19]. Early
works focus on 2D maps, exploring the use of multi-layer
maps to address the apparent discrepancy between metric
and topological representations [20], [21].

More recently, 3D Scene Graphs have been introduced as
expressive layered models for 3D environments. A 3D Scene
Graph is a hierarchical graph where nodes represent spatial
concepts at multiple abstraction levels and edges represent
relationships between concepts. Armeni et al. [22] pioneer
the use of 3D Scene Graphs in computer vision, modeling the
environment as a graph that includes low-level geometry (i.e.,
metric-semantic grids) , objects, rooms, and camera poses,
and presented the first algorithm to parse metric-semantic 3D
grids into 3D Scene Graphs.

Rosinol et al. [23] propose a novel 3D Scene Graph model
that directly builds from sensor data, including subgraphs
for places (useful for robot navigation), modeling objects,
rooms, and buildings, and capturing moving entities in the
environment.

https://github.com/STAR-Center/osmAG


The work most similar to ours is a semantic SLAM
method Hydra [24]. Hydra constructs a real-time multi-level
3D Scene Graph using onboard sensors. It transforms a
local Euclidean Signed Distance Function (ESDF) into a
metric-semantic 3D grid and a Voronoi diagram. It extracts
a topological map of places and uses a method inspired by
community detection for room segmentation. Our proposed
osmAG has a similar hierarchical structure, but we con-
struct the map offline. Unlike Hydra’s oversegmented room
segmentation, we accurately segment areas. While Hydra
focuses on fine-grained indoor object mapping, we target
large indoor and outdoor environments, including multi-floor
scenes with adaptable layering.

Another similar research direction is parsing the layout
of buildings from 2D or 3D data. A considerable amount
of work has been dedicated to parsing 2D maps [25],
including hypothesis-based methods [26] and learning-based
approaches [27]. One common method for constructing
topological maps from 2D occupancy grid maps is to com-
pute Voronoi diagrams, which facilitate the extraction of
structures such as points and regions as topological nodes.
Depending on the extracted structures, related research can
be roughly divided into three types: selecting key points of
the Voronoi diagram, such as region boundaries (e.g., doors),
to divide the environment into disjoint regions [28], [29];
using the vertices of the Voronoi diagram as nodes in the
topological map [6], [30]; performing region segmentation
based on the Voronoi diagram, treating regions as nodes,
as demonstrated in the work by Friedman et al. [31] using
Conditional Random Fields for labeling.

In addition to Voronoi-based methods, Bormann et al. [25]
introduced several approaches to parse 2D maps into region
nodes such as rooms, including morphology-based segmen-
tation, distance transform-based methods, and feature-based
segmentation. Hou et al. [4] proposed a method based on
Voronoi diagrams to construct a topological graph with
regions as nodes and corridors as edges, using a non-heuristic
region growing approach to identify meaningful areas such
as rooms. This method is used as the basis for the automatic
generation of the topological graph in this paper. Recent
work has focused on 3D data. Liu et al. [27] and Stekovic
et al. [32] projected 3D point clouds onto 2D maps, but this
approach is not suitable for multi-story buildings. Zheng et
al. [33] detected rooms by performing region growing on a
3D metric-semantic model.

III. OSMAG

In this section, we will provide a detailed exposition of
the structure and composition of the osmAG file format. Our
format utilizes the open street map XML tag “way” for areas
and passages of the Area Graph, standardizes the use of some
common attributes for the XML way elements and introduces
a couple of osm tags. osmAG maps can be embedded into
normal osm maps - since osmAG is fully compatible with
osm.

Fig. 3. Non-functional demo of the osm xml of osmAG

A. Definition

First we define some basic osmAG elements, followed by
their on-disk osm XML storage format (see Fig. 3). In the
beginning we just consider a non-hierarchical map - the more
complex definition for the hierarchy follows afterwards.

Area: The node of an AreaGraph that encodes an area as a
closed polygon, where the points are stored in an ordered list
of nodes. Often, especially indoors, areas represent rooms or
corridors. The construction algorithm has a parameter that
decides how to segment the space (minimum free distance).
But areas can also represent whole buildings, certain types
of streets or terrains or a whole campus.

Inner area: A free area surrounded by a boundary, e.g. a
room, such as the blue outline in Fig. 2. This information is
useful for example for localization, where you want to know
if you should match against this wall from the inside (inner
area) or the outside.

Structure area: The space containing a closed boundary,
which is the outer contour of the area and usually is a
parent of multiple sub-areas, for example the outer walls
of a building.

Passage: The edge of the Area Graph, connecting two areas
topologically. The two areas have to share at least two points
(nodes). Those shared points form the passage, which is
represented as a set of points forming a line.

The on-file format of osmAG follows the open street map
(osm) standard with some extensions:
XML tag: node: A geographic location as latitude and
longitude coordinates with an id.



Root node: A node tag that contains the pose of the map
origin. It converts the WGS84 geodetic coordinate system
to Cartesian coordinates as a reference point and facilitates
traditional robot indoor navigation.

XML tag: way: An ordered lists of nodes - the osm method
to encode both streets and areas.

osm way key: osmAG:id: While osm is unaware of our
tags, we cannot utilize the osm ids for ways, as they may
change when uploading the data to an osm server. Therefore,
we create our own ids for them.

osm way key: osmAG:type: If present that osm way is
part of the Area Graph. The value encodes whether this way
is an area or a passage.

osm way key: osmAG:areatype: Inner or structure, see
above.

osm way keys: osmAG:from and osmAG:to: While the
Area Graph is undirected, for the on-file format we save the
two osmAG:ids of the two areas connected to a passage in the
values of the osmAG:from and osmAG:to keys in arbitrary
order.

osm way key: osmAG:parent: This is the key that encodes
the hierarchical structure. Its value is the osmAG:id of this
area’s parent. The areas of all children have to be fully
contained within their parent. Areas can never overlap, unless
they are on different elevations or are parent and (grand-
)child.

This spans a hierarchical tree of areas and their children.
One osmAG file can contain multiple such trees, together
with traditional osm vector data.

The hierarchical structure is mainly used for two scenarios:
First, we may want to join multiple neighboring areas into
one bigger area, e.g. to facilitate faster planning and encode
bigger areas and semantic tags for them. For example, we
can, in the outdoor case, join areas for a parking place
and neighboring areas for streets together to a bigger area.
Indoors we can join multiple rooms to form a “floor” of a
building.

In the second case, the hierarchical structure is used to
stack several 2D areas on top of each other, e.g. multiple
floors of a building. The height of the floors is encoded,
following the osm standard, as height above the ground floor
in the osm key “height”.

The different levels of a building are connected via pas-
sages. E.g. an elevator will have areas on every floor that
are connected to each other vertically by special elevator
passages and that are also connected in the 2D plane to one
(or more) neighboring areas with passage(s) that have the
semantic information “elevatordoor”. Stairs follow the same
principle. More details can be found on GitHub.

B. Visualization and Editing

Since osmAG follows the basic data format of open street
map, users can perform visualization and editing operations
in any software or application that supports OpenStreetMap.

(a) 2D view of two osmAG build-
ings in an osm environment

(b) 3D view of two floors of one
building

(c) 3D view of the first floor (d) 3D view of the second floor

Fig. 4. 3D Rendering of an osmAG map

The three-dimensional rendering of osmAG data was per-
formed in the OpenIndoor application2. Fig. 4 (a) illustrates
the shape and geographic location of the indoor building.
Fig. 4 (b) showcases some floors within one of the buildings,
highlighting variations in the structural layout between floors.
Fig. 4 (c) and Fig. 4 (d) depict the rendered floor plans of
different levels, with black sections representing passages.
Walls with a fixed thickness show the area polygons, and
semantic labels such as “stairs”, “restrooms”, and “elevators”
are annotated according to the icons used in OpenStreetMap.

The two-dimensional visualization and manual editing
of osmAG are achieved through the JOSM (Java Open-
StreetMap Editor) application. By using JOSM, users are
able to easily view, edit, and update the area graph, as shown
in Fig. 5.

Fig. 5. 2D visualization of osmAG (highlighted) of two buildings in JOSM,
together with classic osm data

C. Automated Generation

Although existing editors like JOSM can be used to
edit area map, in this case, the elements, information, and
relationships of the topological map must be manually added.
It is impractical when the scene is vast. We focus on the basic

2https://wiki.openstreetmap.org/wiki/OpenIndoor

https://wiki.openstreetmap.org/wiki/OpenIndoor


(a) A CAD file (b) The area graph of that CAD file

(c) A draft osmAG visualization (d) osmAG with a marked passage

Fig. 6. Generating osmAG from CAD data

functionality of offline mapping for osm. This functionality
is implemented by a C++ library based on osmAG.

Offline mapping involves segmenting, extracting, and
merging from existing maps to create a new map. These maps
can be CAD files of buildings, 3D point clouds, or maps
generated by robots. We implement the automatic conversion
from 2D grid maps and 3D point cloud maps into osmAG,
as well as the simple fusion of multiple topological maps.

Generating from a 2D grid map. Our previous work [4], [5]
generates non-hierarchical areas graphs from 2D grid maps.
We modified that work to output osmAG files that can then
be further edited.

Generating from a CAD file. The process is illustrated in
Fig. 6 (a), taking a CAD file input as an example. Generally,
CAD files for building layouts contain multiple layers and
semantic information. Currently, CAD files are processed
manually by removing layers. Fig. 6 (b) shows the generated
area graph, where it can be observed that a corridor in the
bottom left of the current image is divided into several areas.
By adjusting the parameter alpha shape in the algorithm,
issues of over-segmentation and under-segmentation can be
alleviated. Fig. 6 (c) demonstrates the effect of directly using
the Area Graph method to generate the topological map’s
area nodes. Fig. 6 (d) illustrates how this method correctly
generates inner areas and passages for the osmAG (the red
arrow in the image represents a passage).

Generating from a 3D pointcloud map. We follow our pre-
vious work [3] which generates hierarchical 3D topometric
maps from 3D point clouds of the whole building, to extract
2D Area Graphs from a 3D pointcloud map.

These extraction methods are suitable for generating topo-
logical representations in indoor environments. For further
processing, our osmAGlib C++ library efficiently merges
multiple maps. This is achieved through a process that in-
volves assessing the distances between nodes and selectively
consolidating certain points to merge osmAG maps and inte-
grate existing outdoor OpenStreetMaps into the current map.

(a) One floor automatically extracted from the 3D building point cloud

(b) 2D Area Graph extracted from the 3D point cloud

Fig. 7. The automatic generation of osmAG from 3D maps[3]

IV. PATH PLANNING WITH OSMAG

Navigation is an essential part of mobile robotics and
utilizing osmAG for path planning is a crucial part in
developing a navigation stack for osmAG. We have already
demonstrated the effectiveness of path planning in the area
graph [34]. Here, we describe our approach to planning with
the hierarchical area graph data structure.

The goal of path planning in osmAG is to provide the best
global path between two coordinates. The paths generated
may be close to walls and it is the job of local planning to
keep a safe distance during navigation.

We cannot use the graph structure of the area graph to
directly plan, because the cost is in traversing the vertices,
while the cost of traversing a passage is typically zero. The
cost of traversing the area depends on which passage you
enter and through which passage you exit. A simple solution
would assign the cost by summing up the distance from the
first passage to the center with the distance from the center
to the second passage. But that may overestimate the cost
and lead to sub-optimal paths as shown in Fig. 8 (a).

We therefore opt for generating a 2D grid map just from
that area and utilizing A* on that grid map to calculate
the true cost for that traversal (Fig. 8 (b)). Consequently,
for planning we build a new graph where the passages are
the vertices and where we add edges to all possible other
passages of that area.

We pre-compute this passage graph on the leaves of the
whole Area graph. Planning a path between two coordinates
then follows these simple steps:

1) Find the leaf areas of the start and goal points.
2) (Special case: if both are in the same area, render that

area and use A* on that grid map)



(a) Planning through the center of an area

(b) Planning true cost with rendered 2D grid
map

Fig. 8. Comparison of cost calculation options during path planning.

3) Temporarily add edges from the start (goal) point to
all passages of that area by using A* on the rendered
2D grid map of that area.

4) In that graph use A* to search for a path from the start
to the goal node.

5) Return the path in terms of a list of passages and areas
and/or in terms of a set of points (from the A* of the
pre-computed 2D grids).

A. Speedup using Hierarchy

Path planning can be further sped up by utilizing bigger,
higher-level areas. This is done by pre-computing the cost of
all combinations of start and end passages of each non-leaf
area. This pre-computation is very fast, since it utilizes the
already computed costs of the child areas. During planning,
whenever we encounter a passage we select the highest level
area it connects to that is not containing the goal point -
unless it is the goal leaf area.

B. Planning using Semantic Information

One great feature of planning with the osmAG map is,
that it can take robot-specific capabilities into account. For
that semantic cues from the passages and areas are taken into
account. For example, a wheeled robot will not plan through
an area with the semantic information “stairs”, while a legged
robot might. For that we plan to callback a cost-calculation
function for every area and passage that is encountered, so
robot specific code may determine the cost. The legged robot
may return the cost in terms of the estimation of time needed
to traverse and still avoid the stairs—if there is a ramp with
just a small detour close by. Other information taken into
account may be the step height of a curb (bigger wheeled
robots can traverse, smaller ones cannot), the type of door
(automatic, push, pull), or the material of an area (pavement,
grass, sand).

V. EXPERIMENT

Our experiment verifies the feasibility and effectiveness of
the proposed global path planning method in osmAG.

This global path planning experiment is conducted in
an osmAG that includes two multi-story buildings and an
outdoor area. The osmAG is stored in XML file format with a
size of 883.9 kb. It consists of 4908 nodes, 500 areas, and 347
passages. The actual area of the indoor area is approximately
22300 m2, while the outdoor area is approximately 3000 m2.
Fig. 1 shows how we use the proposed osmAG to represent a
complex and large-scale environment, and also demonstrates
the global path planning results of the robot spanning two
floors, across the road, leveraging semantic cues such as
whether to use elevators. The path shown by the black line
in the figure starts from the first floor of the building located
in the bottom half of the figure, through the outdoor area to
the first floor of the building in the top half of the figure,
and then through the elevator to the destination located on
the second floor. Our experiments are carried out on an Intel
i7-6700 CPU. The distance of the planned path is 157.57m
(Includes the vertical distance between floors), the time is
about 3100 µs at the topological level, and the pre-compute
time (calculating the metric level distance for all areas and
can be applied multiple times) is about 200 ms.

VI. CONCLUSIONS

This paper proposed a novel hierarchical semantic topo-
logical map called open street map Area Graph (osmAG),
based on the Area Graph and OpenStreetMap. This map
represents the environment using a topometric, hierarchical
semantic structure with areas as vertices and passages as
edges. It can encode outdoor and indoor maps on multiple
levels. Through its use of open street map format, we stay
compatible with a plenitude of tools and libraries. Our
osmAG C++ library is capable of loading osmAG, and
visualizing and planning with it in ROS. We also will publish
tools to semi-automatically generate osmAG from 2D grid
maps, 3D point clouds, and CAD data.

Through utilizing osmAG, we are able to plan paths for
mobile robots, taking into account their capabilities through
semantic cues, and planning through multiple floors. We are
able to plan very quickly by utilizing the abstract topometric
and hierarchical data structure. Our experiment shows the
good performance of our approach. The code and example
data are available on GitHub.

For future work, we plan on providing a full ROS os-
mAG Navigation stack including localization, planning, and
navigation with online changing of the osmAG to facilitate
real-time updates of temporary or permanent map changes.
We will furthermore introduce WiFi access point mapping to
include those locations in the osmAG maps to fully automate
our osmAG localization approach. We will then test the
whole osmAG Navigation stack on real robots and provide
it as open source to the robotics community.
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