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Abstract— Nowadays, several real-world tasks require ade-
quate environment coverage for maintaining communication
between multiple robots, for example, target search tasks, envi-
ronmental monitoring, and post-disaster rescues. In this study,
we look into a situation where there are a human operator
and multiple robots, and we assume that each human or robot
covers a certain range of areas. We want them to maximize
their area of coverage collectively. Therefore, in this paper, we
propose the Graph-Based Multi-Robot Coverage Positioning
Method (GMC-Pos) to find strategic positions for robots that
maximize the area coverage. Our novel approach consists of
two main modules: graph generation and node selection. Firstly,
graph generation represents the environment using a weighted
connected graph. Then, we present a novel generalized graph-
based distance and utilize it together with the graph degrees
to be the conditions for node selection in a recursive manner.
Our method is deployed in three environments with different
settings. The results show that it outperforms the benchmark
method by 15.13% to 24.88% regarding the area coverage
percentage.

I. INTRODUCTION

Area coverage has been playing a significant role in
achieving various robotics-related tasks, such as path plan-
ning and area exploration. This topic is also critically im-
portant for search and rescue (SAR) operations [1], such as
post-disaster monitoring, awareness of victims’ conditions,
and target searching. At the same time, utilizing the robot as
relaying nodes for wireless ad hoc networks has also become
mainstream in recent years. According to current research,
there is room to enhance how robots should efficiently locate
in order to maximize the area coverage as much as possible.

According to the survey [2], currently, making the robots
meet at their initial or some rendezvous positions is cur-
rently one of the most used assignments for rearranging the
robot positions. Some strategies were proposed for different
research objectives. There was a graph-based rendezvous
[3] proposed to be used together with exploration. Bio-
inspired techniques, such as the ant algorithm [4] and bac-
terial chemotaxis [5], were also applied for post-exploration
meetings. Some works focused on connectivity-preserving
[6], [7], and communication-limited rendezvous [8]. In spite
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Fig. 1: Overview of the GMC-Pos framework

of the fact that gathering robots by rendezvous techniques is
systematic, it does not satisfy our primary goal, which is to
cover the environment.

Although previous studies have not directly treated it in
much detail, map-grid-based and graph-based strategies are
the most popular approaches due to the benefits associated
with map representation. The area coverage problem is often
studied together with other topics. There are applications in
various domains, such as path and motion planning [9]–[13],
pathfinding [14], multi-robot exploration [15]–[17], SAR
tasks [18], or even strategic positioning for robot soccer
teams [19], [20]. One of the related research matches our
purposes and conditions. It is about the multi-robot coverage
of a known environment [21]. Since, in our case, we have
a map image as a prior before the positioning stage, it
can also be considered a known environment. However, the
existing methods that apply the map-grid-based approach
[13], [20], [21] can have problems from unbalanced grid cell
size and high computational time, especially when deploying
a high number of robots. On the other hand, the existing
graph-based methods utilize different types of graphs, for
example, Voronoi diagrams [11], [12], [15], [19], Delaunay
triangulation [14], and bipartite graphs [19], which are not
aimed to be used for maximum area coverage purposes.

There also have been studies and applications of the
Maximal Covering Location Problem (MCLP) [22]–[25],
which is known to be NP-hard [26]. The mentioned problem
aims to locate a number of facilities to maximize the amount
of covered demand. For our problem studied in this paper,
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if we solve it in the same sense, we may consider the
environment area as the demand and the robots as the
facilities. However, our problem setting will have even more
constraints than the standard MCLP [22]. Firstly, the demand
nodes were originally conceived to be sparse discrete points,
but in our case, all map grids representing the area must
be taken into account since our goal is to maximize the
coverage area. Secondly, the mobile robots are different from
the classical facilities in MCLP. Since the desired robot
positions are also selected from the same map grids, they will
simultaneously be demand nodes and facilities. Therefore,
our unconventional problem requires a novel approach to
solve it differently.

This paper proposes the Graph-Based Multi-Robot
Coverage Positioning Method (GMC-Pos) to generate bal-
anced and high coverage for 2D maps, which consists of two
modules: graph generation and node selection. Firstly, we
present a graph generation method to construct the weighted
connected graph to represent the environment. This graph
behaves like the topological map of the environment, i.e.,
it will be according to the connectivity and structure of
the environment. The generated graph nodes are placed in
reachable areas and not obstructed by obstacles and walls.
This is further enhanced by the property of the connected
graphs, in which there is always at least one path between
graph nodes. In addition, each edge of this map-represent
graph is also assigned with its length as they will be ben-
eficial for calculating the inter-position distances afterward.
Secondly, we introduce a novel node selection strategy. In
particular, the process is based on a recursive fashion with
some graph-related requirements. Note that there are multiple
robots and also one human operator in our setting, which
can be treated like a robot as well, i.e., able to move around
the environment. The robots will spread through the map
according to the human position. In this module, we also
construct a novel graph-based generalized distance combin-
ing the Euclidean distance and Dijkstra’s shortest path length.
This distance is used for all the relevant situations since it
can realistically measure the distance between positions in
the environment for both those that are and are not the graph
nodes. Subsequently, as we aim to select the nodes as the
robot positions for maximizing the area coverage, the nodes
are chosen bidirectionally starting from the human position in
the range of each robot area coverage radius. We then focus
on the nodes with the highest degree in the range since they
mostly represent the intersection or the centers of sub-areas.
Finally, among these nodes, we select the one that is the
furthest from the previous nodes in order to spread through
the environment as much as possible. The main contributions
of this paper are shown as follows:

• To efficiently represent the environment for distance-
calculated purposes, we propose a graph generation
method to create a map-represent connected graph with
the edge length as the weight.

• To obtain the maximum area coverage possible in
any given environment, we propose a new recursive

Fig. 2: An example of the generalized graph-based distance
from A to B: dG(A,B)

node selection strategy, which is based on the novel
graph-based generalized distance and the graph nodes’
degrees.

• We implement the GMC-Pos and test it in six scenarios
using three different maps. Our method is compared
with a benchmark to show its excellent performance in
area coverage percentage.

The remainder of this paper proceeds as follows: Firstly,
in Section II, the GMC-Pos is described in two subsections,
namely graph generation and node selection. Next, in Section
III, the details about the simulation settings, evaluation
metric, and benchmark method will be provided. Then, the
results will be presented and discussed in Section IV. Finally,
in Section V, the main findings are concluded, and the
directions of future research are addressed.

II. GMC-POS POSITIONING METHOD

This section describes the details of our proposed method,
GMC-Pos, which consists of two modules: graph generation
and node selection. Given a fully explored map, we have
obtained map information. Then we can start generating a
connected graph and select the appropriate nodes based on
our novel strategy to be robot positions further. Each process
will be explained in the following subsections.

A. Graph Generation

The representing graph for the fully explored map is
generated in the form of a connected graph by the Voronoi
distillation [9], which was implemented as a part of the ROS
package, tuw_voronoi_graph [27], [28]. We use the graph-
based approach because considering all the positions on the
map requires high computational time. Moreover, the main
benefit of this graph is that it is connected and spanned
thoroughly on the map. That means there is always at least
one path between each graph node. The nodes also locate
only in the explored area and do not overlap with obstacles.
Thus, the graph nodes and edges are already sufficient for



Algorithm 1: GMC-Pos’s node selection process
Input: The set of nodes: V , the number of robots:

N , the scaled map height and width: H , W ,
the set of robot positions from a previous
recursive step: Λ

Output: The set of robot positions Λ
// Calculate Vη
α = max({H,W})/N
Vη = {}
for λ in Λ ∪ {P} do

for v in V do
if dG(v, η) < 2r and dG(v, λ) ≥ α then

Vη = Vη ∪ {v}

// Calculate V ∗
η

V ∗
η = {}
maxdeg = maxv∈Vη

(deg(v))
for v in Vη do

if deg(v) is equal to maxdeg then
V ∗
η = V ∗

η ∪ {v}

// Select the node as λi and add it to Λ
maxdist = maxv∈V ∗

η
(dG(v, η))

for v in V ∗
η do

if dG(v) is equal to maxdist then
Λ = Λ ∪ {v}
V = V \ {v}
break

return The set of robot positions Λ

representing the environment. The graph generation can be
customized by changing values of segment length, crossing
optimization, and end segment optimization. However, since
the unweighted graph created by the tuw_voronoi_graph
always uses the bottom left corner of the map image as the
position (0.0, 0.0), we adjust the graph to have proper node
coordinates for any map origin. Otherwise, the coordinate
of each node will not be its actual position on the map.
Moreover, as the distance between nodes will be presented
in Section II-B, we transform the graph into a weighted graph
in the structure of a Python package, NetworkX [29].

For the sake of convenience, each node in the generated
graph is represented by its coordinate, while the distance
between the connected nodes is assigned to be the weight
of the corresponding edges. Therefore, let G0 = (V0, E0) be
an unweighted graph generated by the tuw_voronoi_graph
where

V0 = {(x0v, y0v) ∈ R2}. (1)

We reconstruct G0 into a weighted graph G = (V,E). Let
(xmap, ymap) be the map origin from the map image. The set
of nodes can be denoted as follows:

V = {(x0v + xmap, y
0
v + ymap) ∈ R2} for all (x0v, y

0
v) ∈ V0.

(2)
The edges in E are still based on E0, but are updated with the
adjusted nodes in V . The weight of each edge e = (u, v) ∈ E

is assigned as follows:

w(e) = d(u, v), (3)

where d is the Euclidean distance. This graph G will be
used afterward for node selection, which will be presented
in Section II-B.

B. Node Selection

Before looking into the selection process, we introduce a
novel distance called the generalized graph-based distance.
The generalized graph-based distance can be illustrated in
Fig. 2. This distance is a better measurement than the
Euclidean distance because it depends on the map-represent
graph paths. So, it acts in accordance with the connectivity
and structure of the map. We define it as follows:

dG(A,B) = d(A, vA) + δ(vA, vB) + d(vB , B), (4)

where d is the Euclidean distance, δ is the length of Dijkstra’s
shortest path [30] calculated by a NetworkX function, and
vA, vB are the nodes that are closest to A, B in the Euclidean
manner, respectively.

The generalized graph-based distance can realistically
measure the distance between any point on the map for both
the graph nodes and those that are not. For example, in the
case of the distance between nodes u and w, we have u = vu
and w = vw. Hence,

dG(u,w) = δ(u,w), (5)

which is just the length of Dijkstra’s shortest path between
u and w.

Moving to look at the node selection, the overall process
is shown in Algorithm 1. We will choose the nodes as the
robot positions based on the novel strategy in a balanced
bidirectional manner to maximize the total area coverage.
Let Λ = {λ0, λ1, ..., λN−1} ⊆ V be the set of nodes that are
selected as the positions for N robots. The human operator
position P and the robot area coverage radius r are required
as the input. The selection process is constructed using the
recursion as follows:

λ0 = argmax
v∈V ∗

P

{dG(v, P )}, λ1 = argmax
v∈V ∗

P

{dG(v, P )},

λi = argmax
v∈V ∗

λi−2

{dG(v, λi−2)} if i = 2, 3, ..., N − 1, (6)

where

V ∗
η = argmax

v∈Vη

{deg(v)}, (7)

Vη = {v ∈ V |dG(v, η) < 2r ∧ dG(v, λ) ≥ α,

∀λ ∈ Λ ∪ {P}} \ Λ}. (8)

Since the proposed selection strategy contains various novel
components, it is important to clarify which each equation is
used for which purposes. Starting from eq. (8), Vη contains
the nodes within 2r. At the same time, the balance of nodes



(a) Map 1 (b) Map 2

(c) Map 3

Fig. 3: Environment maps

in Vη spread thoroughly from all previously selected nodes
in Λ needs to be considered. Thus, we choose α as

α =
max({H,W})

N
, (9)

where H = H0 ·Res, W =W0 ·Res, and H0, W0, Res are
the height, width, and resolution of the map, respectively.

Next, for eq. (7), V ∗
η is a subset of Vη in eq. (8), but

it will contain only the nodes with the highest degree. We
prefer these nodes because we can infer they have many
connections in the map. Therefore, in most cases, they are
the intersections or the centers of separate rooms, which will
consequently affect the area coverage. Finally, the selection
process (6) is the last step after we have obtained the nodes
with a maximum degree from eq. (7). Among those nodes,
we select the one that is the furthest from η according to the
bidirectional manner.

III. SIMULATION

The details of the simulation and results of the GMC-Pos
will be presented in this section. In the first subsection, we
will describe how the simulations are conducted. Then, in the
second subsection, we will introduce the evaluation metric.
And finally, the method that we use as the benchmark will
be explained in the third subsection.

A. Simulation Setup

All simulations are conducted using ROS Melodic with
Ubuntu 18.04 on a Desktop PC with Xeon(R) CPU E5-
1680 v3 @ 3.20GHz×16 and 31.3 GB RAM. RViz is used

Scenario Map Number of Robots Operator Location
1A Map 1 3 Bottom left
1B 3 Top right
2A Map 2 5 Center
2B 6 Right side
3A Map 3 5 Right side
3B 6 Left side

TABLE I: Simulation scenarios

Algorithm 2: Conditional Random’s node selection
process

Input: The set of unoccupied occupancy grid cells:
O, the number of robots: N , the scaled map
height and width: H , W , the set of robot
positions from a previous recursive step: Ψ

Output: The set of robot positions Ψ
// Calculate Oϕ
α = max({H,W})/N
Oϕ = {}
for o in O do

if α ≤ d(o, ϕ) < 2r then
Oϕ = Oϕ ∪ {o}

// Select the node as ψi and add it to Ψ
ψ = random. sample(Oϕ, 1)
Ψ = Ψ ∪ {ψ}
O = O \ {ψ}
return The set of robot positions Ψ

for visualization. We perform multi-robot simulations with
one human operator in three environments, as shown in Fig.
3. Map 1 is a loop corridor of size 12.20m×12.20m, Map
2 is an actual indoor area of size 27.10m×32.20m set up
to be more complicated by using boxes and partitions, and
Map 3 from [27] is a floor map of size 37.37m×23.38m
containing long narrow corridors and rooms. Subsequently,
we have the scenarios as shown in Tab. I. The purpose
of considering Scenarios 1A and 1B is to preliminarily
determine if the GMC-Pos can accurately handle when the
best robot positions are heuristically known. Meanwhile, the
rest of the scenarios are mainly for testing the efficiency
of GMC-Pos in various conditions, which have different
numbers of robots and operator locations.

B. Evaluation Metric

First of all, in this paper, we assume that robots and the
operator have the same area coverage range r = 6m. So,
since our goal is strategically positioning robots to maximize
the coverage area all over the map, we newly introduce
a metric for evaluating this factor. Let Ō be the set of
occupancy grid cells of the map area scaled by the map
resolution and origin. We define the total map area A and
the area covered by all robots and the operator Acover as
follows:



(a) 1A: GMC-Pos (b) 1A: Conditional Random (c) 1B: GMC-Pos (d) 1B: Conditional Random

(e) 2A: GMC-Pos (f) 2A: Conditional Random (g) 2B: GMC-Pos (h) 2B: Conditional Random

(i) 3A: GMC-Pos (j) 3A: Conditional Random (k) 3B: GMC-Pos (l) 3B: Conditional Random

Fig. 4: Results of the GMC-Pos (the proposed method) and the Conditional Random. The green circles represent the robots,
the red square represents the human operator, the blue translucent circles represent the areas covered by the corresponding
robot, the yellow translucent circle represents the area covered by the human operator, and the red boxes indicate the areas
that are not covered.

A =
∣∣Ō∣∣ (10)

Acover =

∣∣∣∣∣ ⋃
λ∈Λ∪{P}

Br[λ]

∣∣∣∣∣, (11)

where
Br[λ] = {o ∈ Ō|d(o, λ) ≤ r}. (12)

We can see from eq. (11) that Acover is the union of the
coverage ranges of all robots and the operator. Therefore, the
area coverage percentage (ACP ) is defined as

ACP =
Acover

A
· 100. (13)

C. Benchmark Method

Turning now to the benchmark, we implement a method
called Conditional Random, as presented in Algorithm 2,
to compare with our GMC-Pos, in which by this method,

the robot positions will be chosen based on the occupancy
grid and the Euclidean distance. Let O ⊆ Ō be the set of
unoccupied occupancy grid cells of the map area scaled by
the map resolution and origin, Ψ = {ψ0, ψ1, ..., ψN−1} ⊆ O
be the set of cells that are selected as the positions for
N robots. The selection process is constructed using the
recursion as follows:

ψ0 = random. sample(Op, 1),
ψ1 = random. sample(Op, 1),
ψi = random. sample(Oψi−2

, 1)

if i = 2, 3, ..., N − 1, (14)

where
Oϕ = {o ∈ O|α ≤ d(o, ϕ) < 2r} \Ψ. (15)

Recall that d is the Euclidean distance, α is the same as in
eq. (9), and random. sample(S, k) is a function that chooses
random k items from the set S. Here the process (14) is in



Fig. 5: Bar plot for the ACP of the GMC-Pos and the Conditional Random in six scenarios.

a random manner because of the high number of grid cells
needed to be considered and filtered under the conditions.
Therefore, for the Conditional Random method, we will use
the average of 50 iterations of each scenario for comparison
in the following section.

IV. RESULTS AND DISCUSSION

The simulations for the GMC-Pos and the Conditional
Random are conducted in the six scenarios we mentioned
previously, as presented in Fig. 4. Note that for the Condi-
tional Random, the figures shown are an iteration of each
scenario setting. They are evaluated using the ACP , as
shown in Fig. 5. We can see that the GMC-Pos performs
better than the Conditional Random in all the scenarios.

Firstly, in Scenarios 1A and 1B, shown in Fig. 4(a) to 4(d),
our purpose is to preliminarily check if the GMC-Pos works
correctly on Map 1, which is a simple map. We can see that
the robots using the GMC-Pos successfully cover the whole
area as the node selection does not fail in choosing the three
apparently best robot positions. On the other hand, those
using the Conditional Random still have some uncovered
areas around one of the corners since the robot positions are
not selected efficiently using a graph-based approach. So,
the results show that the GMC-Pos has 15.13% and 16.23%
higher ACP than the Conditional Random in Scenarios 1A
and 1B, respectively. Secondly, in Scenario 2A, shown in
Fig. 4(e) and 4(f), the robots using the Conditional Random
have an unbalanced positioning between the left and right
sides of the map. On the other hand, those using the GMC-
Pos can spread equally and cover most of the whole area
well, resulting in a 24.88% improvement of ACP . Thirdly,
in Scenario 2B, shown in Fig. 4(g) and 4(h), there is a
space and unbalanced distribution among the robots using
Conditional Random. The main reason is that the Euclidean
distance used in the Conditional Random can sometimes be
suboptimal. However, GMC-Pos that uses dG still performs
well in this scenario, resulting in a 16.54% improvement of
ACP . Fourthly, in Scenario 3A, shown in Fig. 4(i) and 4(j),

although the robot using the Conditional Random can span
through the map, the selected robot positions are not good
enough to cover the map. In contrast, the coverage by robots
using GMC-Pos is almost the whole map, as we can see
18.54% higher ACP . Finally, in Scenario 3B, shown in Fig.
4(k) and 4(l), we can see that the distances between robots
using the Conditional Random is unbalanced. Consequently,
the coverage is not as high as the ones using the GMC-
Pos, which almost perfectly covers all parts of the maps,
resulting in a 21.29% higher ACP . Moreover, we observe
another advantage of the GMC-Pos, which is all the selected
positions are located in accessible and practical areas, i.e.,
they are quite visible to the human operator and not too close
to the wall.

V. CONCLUSION AND FUTURE WORK

This paper proposes the GMC-Pos, a novel positioning
method for multiple robots to maximize the environment area
coverage. Our approach consists of two modules. Firstly,
the graph generation module is for representing the en-
vironment map in a practical structure using a connected
graph. All the graph nodes are in the accessible area, and
the weighted edges show the connectivity and structure of
the environment. Secondly, the node selection module is for
strategically choosing appropriate positions for robots. We
newly introduce the generalized graph-based distance, which
combines the Euclidean distance and Dijkstra’s shortest path
length. Also, our selection process is based on the recursion
with some conditions based on the maximum node degree
and the mentioned distance to ensure the chosen positions
have the highest area coverage possible. For the simulation,
we have six scenarios: multi-robot simulations in a simple
map of size 12.20m×12.20m and two challenging maps of
size 27.10m×32.20m and 37.37m×23.38m. We compare the
positioning performance between our proposed GMC-Pos
and the Conditional Random method. The results show that
our approach is more well-performed against the Conditional



Random regarding the area coverage percentage in all scenar-
ios. There can be further studies to extend the GMC-Pos for
making the robots reposition to maintain the area coverage
according to the position of the moving human operator. It is
also interesting to make physical obstructions such as dense
walls and furniture exert influence on the coverage range.
Moreover, applying the GMC-Pos for the SAR is a useful
and possible topic for future work.
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