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Scalable Tactile Sensing for an Omni-adaptive Soft Robot Finger*

Zeyi Yang1,#, Sheng Ge1,#, Fang Wan2, Yujia Liu1, and Chaoyang Song3,∗

Abstract— Robotic fingers made of soft material and com-
pliant structures usually lead to superior adaptation when
interacting with the unstructured physical environment. In this
paper, we present an embedded sensing solution using optical
fibers for an omni-adaptive soft robotic finger with exceptional
adaptation in all directions. In particular, we managed to insert
a pair of optical fibers inside the finger’s structural cavity
without interfering with its adaptive performance. The resultant
integration is scalable as a versatile, low-cost, and moisture-
proof solution for physically safe human-robot interaction. In
addition, we experimented with our finger design for an object
sorting task and identified sectional diameters of 94% objects
within the ±6mm error and measured 80% of the structural
strains within ±0.1mm/mm error. The proposed sensor design
opens many doors in future applications of soft robotics for
scalable and adaptive physical interactions in the unstructured
environment.

Index Terms— soft robot, tactile sensing, optical fiber, adap-
tive grasping

I. INTRODUCTION

Robotic devices made of soft components not only exhibit

superior adaptation in actuation [1], but also in sensing [2],

[3]. Previous research on tactile sensing usually requires

explicit understanding of the material mechanics to build

analytical models that translate structural deformation into

sensory data [4], [5]. However, the non-linear mechanics

inherently involved in the soft material remains a challenging

issue in the kinematic analysis and dynamic modeling of soft

robot [5]–[9]. On the other hand, recent research has shown

novel tactile sensing solution using soft robots through the

integration with other devices, such as visual sensors [10],

[11].

The geometric response of the soft material provides a

versatile source of information that captures the underlying

dynamics during physical interaction [4], [12], [13]. The

current development of visual sensors provides a robust

mechanism for capturing the geometric deformations of the

soft matter [14].

However, modeling the deformation of a soft structure

is challenging. Numerous analyses and calculations were
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Fig. 1: Overview of scalable sensing design of gripper and

sensors. The light source is a pair of strong LEDs installed

in a box (A) that support eight optical fibers to be inserted.

The photoresistance, microprocessor (Arduino NANO) and

LED power are integrated into a small box (B) that can insert

eight receiving fibers and connect a serial port as a power

supply and communication interface. The grid-structured

omni-adaptive soft finger (C) is simple and low-cost, which

can be replaced easily. The material of the transparent optical

fiber (E) is polymethyl methacrylate which has a 0.2-0.5db/m

attenuation rate. The sensored fingertip is installed on a

real robot arm UR5 (E). Each finger will passively adapt

to a baseball (F) while grasping, especially be effective for

cylindrical objects (G). The final integration of sensor with

gripper can achieve detecting the horizontal section in real

time (H).

implemented to simulate a simple soft structure [6]. The

traditional sensing technology to evaluate the strain is using

strain gauge which takes advantage of the properties of

electrical principle [15], which requires the integration of

the gauge in the fingers. Piezoresistance is a scalable and

low-cost sensory element to generate tactile perception, but

it also needs electrical arrays to support and is difficult to

measure the bending state directly [16], [17]. In addition,

waterproofing must be considered, in case we use the gripper

in a wet environment or even underwater, which is more

challenging during tactile sensing integration.

A. Related Work

Recent research about tactile sensor for soft robots fo-

cuses on innovations relating to scalability and engineering

potentials [18]. The tendency of using neural networks to

http://arxiv.org/abs/2003.01583v1


process high-dimensional sensory data is widely accepted

by researchers, which provide a more accurate model via

repetitious training [4], [10], [11], [19], [20]. However,

the traditional calibration method is also applied by some

sensors and shows good results [16], [17]. Piezoresistive is an

appropriate component for tactile sensing on soft robot [21],

its application on a perceptive glove shows the scalability on

tactile sorting [19]. A handmade capacitive stack-up sensor

was tested and applied on an object sorting experiment [16],

which is directly attached to a finger of handed shearing

auxetic cylinders [22]. For soft robots, some structure allows

us to embed sensors into their bodies and fuse them together,

polydimethylsiloxane impregnated with conductive carbon

nanotubes can be used as a strain sensor and it is small

enough to be embedded into a soft structure as an integration

[4].

Optical sensing has been widely researched for its ease of

integration with soft robots. An innovative method to detect

the deformation of soft prosthetic hand via stretchable optical

waveguides shows the prospect of an optical sensor [17]. A

plastic optical fiber pressure sensor [23] was presented as

the merits of low cost and simple fabrication. And recent

research about applying soft optoelectronic sensory foams

presented an extremely accurate estimated 3D-model for

entire deformation of a normal soft foam [20]. A most recent

research using optical lace also opens a window for soft

robot tactile sensing [10] using the contact of input fiber and

distributed output fibers which are inserted in a 3D-printed

elastomer.

Application is always a final goal of grippers and sensors.

The soft grippers as the base of the tactile sensor have a

variety of designs with diverse functions [24]. An embedded

tactile sensor enables more functions for the gripper, such as

closed-loop object picking [12]. Besides, sorting experiment

is a good verification for the properties of robotic soft fingers

with tactile sensing. The application of fingers with the

structure of handed shearing auxetic showed good examples

of object sorting and material classification [16], [25].

B. Proposed Method and Contributions

In this paper, we propose a scalable, embedded tactile

sensing solution using soft plastic optical fiber inside a novel

design of soft robot finger with passive, omni-directional

adaptation, as shown in Fig. 1. While most tactile sensing

solutions are usually considered as a subsystem independent

to the overall robot, our proposed design is seamlessly inte-

grated inside this unique network structure of the soft robotic

finger without impeding its omni-adaptive performance. We

managed to capture the three-dimensional geometric defor-

mation through a scalable sensing solution using soft optical

fiber. Major contributions of this paper are listed as the

following.

• An integrated design of the fiber-cavity sensor with

omni-adaptive soft finger.

• Extensive experiment and characterization of the fiber-

cavity senor.

• Sensor implementation in sorting task of daily objects

via an integrated gripper system.

The rest of this paper is structured as the following.

Section II presents the design of the omni-adaptive finger

network and the proposed tactile sensing solution. Section

III includes the experimental characterization of the omni-

adaptive soft finger design using the the proposed tactile

sensors. A demonstrative example is presented in section IV

to explore the usefulness of the proposed integrative design

in object sorting tasks. Discussions and final remarks are

enclosed in section VI, which ends this paper.

II. EMBEDDED TACTILE SENSING FOR SCALABILITY

A. Soft Finger Network for Omni-adaptation

In this paper, we adopt a novel design of soft finger

network with passive adaptation in all directions of physical

contact. Fig. 2A shows the three-dimensional (3D) view of

the soft finger network, where layers of squared shapes with

shrinking area are stacked on top of the other with links

on the sides to connect them, forming the basic structure

of this finger design. When fabricated with soft material,

such as silicone rubber or Thermoplastic Urethane (TPU), the

3D structure is capable of passive adaptation of the overall

structural geometry, as shown in Figs. 2B & C. Due to the

hollowed squares used, the finger achieves omni-directional

adaptation instead of a uni-directional response. In fact, one

can design any shape for each of the layers as long as

certain hollow can be kept near the certain of each layer

for geometric adaptation.

B. Embedded Optical Fiber for Scalable Tactile Sensing

Given the omni-adaptive nature of this soft finger network,

we set our sensor design with a goal of minimum interference

with its geometric adaptation without limiting its usage

Fig. 2: Detailed design for the soft fingers and sensors.

The front-view of the Omni-adaptive fingers are trapeziums.

The side-view is a triangle. The Sagittal plane and Coronal

plane are the main bending plane (A). The inside soft fiber

passes through the inner tube to transmit the light which will

be received by a black coated optical fiber (A). The tube

wall will hinder light transmission while bending (B). The

midpoint is the most crucial point while grasping so that can

be considered as the standard value to measure the degree

of bending (C).



scenario. As a result, the optical fibers are selected for several

reasons. First, the material property of the optical fibers is

very similar to that of the some materials used for this soft

finger network. Second, optical sensing is capable of robust

measurement over a long distance and the optical sensor is

actually not placed in the finger structure, but outside of it

near the gripper base. As a result, we can still apply such soft

finger design in the same operational environment without

worrying about the protection of the sensing electronics on

the finger. Finally, optical fibers is a relatively cheap solution

when scalability is taken into considerations.

We implement the resultant sensor design by creating a

cavity with the structural supporting beams between each

finger layers, and then embedding the optical fibers inside

to capture the geometric deformation. The transmitting fiber

are different with the receiving fiber. The core of transmitting

optical fiber (Model hof-2, EverHeng Optical Co., Shenzhen,

China) is 2mm polymethyl methacrylate (PMMA) fiber,

and with a cladding of transparent polytetra fluoroethylene

(PTFE) outside. The receiving fiber (Model epef-1.5) is

1.5mm PMMA core with PTFE cladding and additional

black polyvinyl chloride (PVC) jacket. For example, in the

soft finger structure with four supporting beams shown in

Fig. 2, cylindrical cavity is designed inside each of the

beams matching the diameter of the optical fiber. From the

side-viewing angle in Fig. 2B, the transmitting optical fiber

with a light source is inserted from the base of one beam

at the back side of interaction. Then, the receiving optical

fiber is inserted through another beam at the front side of

interaction all the way to its base, where photo-resistance

sensors (Model GL5506) are installed. During bending mo-

tions, the reading from the sensors correspond to the amount

of geometric deformations inside the front side beams of

interaction. When the backbones bend in a direction, the

received light intensity will attenuate theoretically because

of being hindered by the deformation of the tube wall. We

named the sensor as a fiber-cavity sensor. In addition, the

length of the inner cavity needs to be carefully selected.

After several testing, 35mm shows a satisfied result of

performance. Too long or too short will cause the reduction

of the measurement range.

The resultant design achieves tactile sensing through an

experimental mapping between the geometric deformation of

the soft finger network and the differential readings from the

optical fibers, which correspond to various geometric features

of the objects during physical interactions. We achieve a

rich set of readings when multiple sets of such fiber-cavity

sensors are used. The differences between different sensor

sets provides more detailed information of the geometric

deformation in 3D.

III. SENSOR CHARACTERIZATION

Given the nature of our integrated sensor design, the

experiment setup is closely related to observations of the

soft finger network under loading. Beside the pure bending

behaviour at the normal surface, the omni-directional adap-

tation relies greatly on the twisting deformation at random

Fig. 3: Experimental platform (A) and data from fiber-cavity

sensors. The half of gripper is a dual-finger model with four-

channel of fiber-cavity sensor (B), which was directly used in

the experiment. The graph is about the raw data of sensors

(line with square and error bar) and its derivative (thinner

fine line) after filtering (C). The same color represents the

same sensor.

angles to the finger surface, which is essentially a differential

readings from the two contacting beams. As a result, we

setup our experiment characterization by measuring the force

normal to the finger surface as shown in Fig. 3A. A T-shape

rod is fixed to a mount on top of a manual linear guide-

way to push the midpoint of the finger at right angle as the

displacement input. A 6D force and torque sensor (ATI Nano

17) is fixed at the end of the T-shape rod for measuring the

output force. Optical sensor readings are also recorded for

sensor characterization and calibration.

In this experiment, two such soft finger networks are

mounted at the same time, which is the same as the ones to be

installed on one of the finger tips of the robotic gripper to be

used later. A total of four sets of fiber-cavity sensor readings

are recorded in Fig. 3B with results reported in Fig. 3C. We

definite the original point of displacement at the midpoint

of the front backbone in the non-grasping state. The positive

direction is towards the back surface. The sensor value is a

voltage from 0v to 5v, which positively correlates with the

light intensity. Each measurement is repeated three times and

the standard error bars are also included.

We identify three stages of behaviours from the results in

Fig. 3C between a measurement range of 0-35mm displace-

ment range. For the initial stage up to around 5mm displace-

ment at finger midpoint, the small bending behaviours of the

soft finger network is not well-captured by the fiber-cavity

sensors. The diffuse reflection of the light by the tube wall

causes the photo-transduction instability, invalidating sensor



Fig. 4: Linear fitting in the interval of 5mm to 30mm (A).

Magnitude and angle of the contact force at midpoint (B)

change with displacement (C). The graph is just for one

finger, if using a dual-finger model, the magnitude will

become twice as much as the current curve.

readings at this stage. For the final stage beyond 30mm

displacement at finger midpoint, although the soft finger

network still shows adaptive behaviours, the inner layers

starts to stack on top of each other as shown in Fig. 2C,

making it difficult to produce consistent sensor readings.

Sensors readings during this stage is also disregarded by

one can still utilize the twisting behaviour at this stage for

grasping object of irregular shape.

During the stable stage between 5-30mm displacement at

finger midpoint, the recorded results shows good linearity be-

tween displacement and sensor readings in voltage changes,

making this stage the most suitable for usage. The results

in Fig. 3C shows slightly differences in the sensors placed

at the same locations on the two soft finger network, but

consistent results are recorded. We found that this is caused

by the fabrication errors and assembly inaccuracies, which

can be improved with optimized engineering processing and

sensor calibration shown in Fig. 4A. After normalization and

linear fitting, the sensor can be regarded as a linear element

that relates to the midpoint displacement in Fig. 4A. The

R
2 value is within 0.9544 and 0.9887, which is acceptable

for linear fitting. Therefore, this interval of the curve can be

regarded as a linear variation that can be used for sensor

integration.

Tactile sensing information is extracted by mapping the

displacement readings from the optical sensors with the force

measurement from the 6D FT sensors, as shown in Fig.

4C. The measured displacement-force relationship shows

consistent results after long-hours of usage and the reliable

linear performance from previous experiments. We found the

data was basically the same as the origin for any finger

after our calibration and sorting experiments during two

weeks. Therefore, by using the results in Figs. 3C and Fig.

4C, one can derive the force information of the soft finger

structure during interaction. Alternatively, one can also detect

the hardness to measure the strain under a constant force.

Basically, The softer the object is, the greater the strain will

be.

IV. OBJECT SORTING

In this section, we aim at establishing the tactile sensing

potentials of the fiber-cavity sensor for object sorting via

collaborative robot Universal Robot UR5. Being a passive

finger with omni-adaptive capability, the soft finger structure

provides an enabling functionality to exiting grippers of

rigid design with shape adaptation. As shown in Fig. 1,

we propose a dual-finger design where two of such finger

structures are mounted on a simple and small flange to

replace the exiting gripper’s common rigid finger. In the

following experiment setup, the OnRobot RG6 is adopted

for modification with two sets of the dual-finger structure.

The RG6 is selected for its relatively large range of grasping

and heavy payload design. One can easily modify the base

mount design according to different fingers to install this

proposed soft finger structures on almost any robotic grippers

with rigid finger structure, introducing scalable and enabling

capability for shape adaptation in grasping tasks.

For the object sorting task, both YCB objects [26] and

some other routine objects are chosen for experiments. A

microcomputer is integrated with the fiber-cavity sensors on

the gripper to send all sensor values to the upper computer by

a serial port in real-time. The grasping force of RG6 needs to

be set by users, but RG6 will measure and feedback the cur-

rent width of the gripper. The additional sensing capability

introduced by the fiber-cavity sensor enables further refined

control of the grasping process by estimating the interaction

force and shape geometry of the objects in contact. The

actual sectional diameter of the object under certain force

theoretically equals to the estimated midpoint displacement

plus the width of RG6 at the beginning contact point. And

the actual strain of the object can be calculated by measuring

the width of the object at both beginning contact state and

final steady-state.

A. Calibration

Calibration of the sensor needs to transfers the raw mea-

surement of the electronics data into intuitive information of

physical values. To do so, we use a series of plates with

different standard widths to calibrate the gripper (Fig. 5A).

Although the resolution of senor is less than 0.2mm, the

inaccuracy is beyond this range. Therefore, we implement the

calibration process by letting the gripper grasp the plates with

standard width and record the sensor value. After obtaining

a group of data, linear fitting will be used to obtain a

proportional relationship as the calibrated result of the sensor.

So, any sensor readings will be transferred to the midpoint

displacement via the calibrated expression.



Fig. 5: Fast calibration for gripper in a real application

(A). Plates with different plates will be placed between the

gripper and record the sensor value for further linear fitting.

A selection of sorting objects are selected from the YCB

dataset and daily objects (B). The basic idea of selection is to

ensure the the group of sectional diameter and compliance of

the object is unique. Due to the parallel finger configuration

used in our experiment, some objects (C) may slip through

the gap between dual-fingers during grasping.

B. Sorting Experiment

Some objects with different sizes and compliance were

selected in the sorting experiment in Fig. 5B. One obvious

challenge to distinguish objects with sectional diameters

similar to each other. However, this is not common in

the YCB object sets used in our experiment. We adopt a

qualitative measurement of the object hardness in a way

similar to human grasping, where a scalar level of hardness is

adopted. It should be noted that more accurate measurement

is always preferable, yet different grasping compliance may

occur when approached from different angles. So the strains

of samples under a certain force were manually determined

by observing and simple measuring. The standard strains of

samples are not absolutely accurate but in accordance with

the common sense of human, which can be used to judge

the estimated strain. For object classification, our experiment

requires the gripper to squeeze the object to determine this

geometric features for sorting, which is similar to human

when visual data is not available or sufficiently enough. In

this way, if the force applied to the object is constant, the

strain of the object will be different due to the different

compliant characteristics. The strain of each object is the

ratio of deformation and original width before being exerted

a certain force. The ratio should be different in different

materials, which can be used to distinguish the objects (Fig.

6).

C. Result

The results are reported in Fig. 6, where we explore the

basic discernibility of the gripper for width and compliance.

The total amount of sample objects is 42. The green tri-

angular marks as shown in Fig. 6A are 9 softest objects

whose estimated diameters are much smaller than the actual

diameters because their structures or materials cannot support

the finger force. The orange diamond marks are the 2 balls

whose diameters adapt the finger space but will cause the

lateral bending and torsion of the finger. The lateral bending

will result in the underestimate of the diameter in sagittal

plane. The black square mark is the result of container of

glass cleaner. The overestimate error happened because once

a pair of fingers contact the bigger diameter of the bottle, it

will prevent the other pair of fingers to contact smaller part.

Thus, the one result is normal but the other is abnormal. 8

objects cannot be measured their strain because the midpoint

displacement did not reach the valid interval from 5mm to

30mm. The total amount of objects whose diameter and

compliance can be correctly measured is 28 in 38, so the

success rate of object classification is 73.7%.

Expect the soft objects, balls and irregular object, 94% of

results from the rest 26 objects are in the range of ±6mm

with respect to absolutely accurate as shown in Fig. 6A. The

average error of the estimated diameter is 3.17mm. The result

comes from the sectional diameter measured by two pairs of

fiber-cavity sensors. There have four pairs of sensors, but we

only use the two intermediate pairs of sensors to ensure the

fingers entirely contact the objects, and the finger is passively

driven by the shape of the object.

Twenty-eight objects has appropriate data to estimate

strain from total graspable 38 objects. The result was shown

in the Fig. 6B. We cannot get a accurate conclusion as

the actual strains are intuitive perception of human, but a

qualitative analysis is possible. The black dashed cross line

is the boundary of rigid and soft according to the experiment.

The objects in upper-right section are deformable, such as

plush toys. The objects in the lower-left section are rigid. The

average error of the estimated strain is 0.062mm/mm. Some

objects cannot induce enough deformation of the finger,

which cannot calculate the strain via sensor data. So, for

those objects, we consider them as unrecognizable samples.

The estimated strain can be used to describe the hardness

of an object because the grasping force is always the same.

With the increasing of strain, the objects become softer.

V. DISCUSSION

A. Scalable Integration of Omni-adaptive Soft Finger

The scalability of the fiber-cavity sensory gripper is its

greatest merit. First, the whole strategy is simple and low-

cost that total cost of the four-fingers gripper with eight fiber-



Fig. 6: Comparison of actual object properties with senor es-

timated properties. The estimated sectional diameter showed

a nearly linear relationship with the actual diameter (A). 94%

of rigid objects are within the error of ±6mm, expect the

abnormal objects. The estimated strain, which represents the

compliance of the object, has a relative consistency with the

actual strain (B). 80% of 28 objects, which strain can be

measured, are within the error of ±0.1mm/mm.The accuracy

of strain estimation is not perfect, but the relative compliance

rank is basically correct. The cross line is the soft-rigid

boundary. The upper-right part is soft objects and the lower-

left part is rigid objects.

cavity sensors and one microcomputer (Fig. 1E) is less than

8 US dollars and the time of assembling all sensors into one

3D-printed finger is less than one minute. Thus, the modular

sensory fingers could be as daily using or even more short-

term using. Second, the structure could be used in many

aspects, not only in the grasping area, and with the changing

of the whole shape, sensor strategy can easily adapt to the

new shape without modification. For example, it can be used

as a wheel to adapt the topography or an exoskeleton to

adapt the wearer’s body. Third, current fingers do not need

to embed circuits, so working in a wet environment is its

additional merit. Integrating these merits above, one of the

most suitable working cases is in waste sorting. We do not

need to consider the water in garbage and sterilization and

disinfection method for the finger. Forth, the soft material

and flexible structure could enable any rigid gripper a kind of

omni-adaptability, and the scalable fiber-cavity sensor enable

it a tactile sense. At last, the fiber-cavity sensor still has great

potentiality because of high distinguishability and sensitivity

after calibrating.

B. Enabling Design for Omni-adaptation

A major advantage of such soft finger network is ease of

integration with existing gripper designs. By replacing the

finger tips with this soft finger network, almost any rigid

gripper is instantly enabled with passive adaptation with

superior performance in all contact directions, such as the

one shown in Fig. 1. Further discussion of this finger design

is beyond the scope of this paper. In this paper, we aim

at utilizing such geometric adaptation to integrate a sensing

solution within the finger network structure.

C. Engineering Application for Object Sorting

Our current fiber-cavity sensory gripper is still in its early

stage, which has some aspects that should be improved. First,

the ambient light has some effect on the sensor value as the

material is not lightproof. Although the calibrating operations

could eliminate the influence of ambient light, the change of

light after calibration still has some impact on the sensor. The

receiving optical fiber is black coated, so the transparency of

the white TPU cavity’s wall mainly caused the sensitivity to

ambient light. Second, the inconsistency of the fiber-cavity

sensor is a problem, even the normalizing process could

unify the curves, but that is not a permanent solution. The

inconsistency is mainly caused by the fabricating process,

which completely made by hand. In addition, the 3D-printed

TPU finger has some defects and burrs on the inner tube

wall that also affect the light transmission. Third, to pursue

extremely low-cost, high sensitivity in week light environ-

ment and wide sensing range, we apply photoresistors as our

underlying sensory elements. However, the inconsistency of

the element, temperature-dependent and non-linear property

are its drawback.

The current drawbacks of the fiber-cavity sensor are not

insoluble. For the sensitivity of ambient light, a grey or black

colored TPU material could reduce transmissivity widely

or just coat a light-absorption layer to avoid ambient light



influence. For the inconsistency of the fiber-cavity sensor,

we are trying to use casting to manufacture the finger whose

surface is smooth and fine. In addition, we will try to use

some photoresistors with higher accuracy and inconsistency

or find an appropriate photodiode.

The result of estimating diameter (Fig. 6A) is significant

for further work, because the obvious regulation for the soft

object shows the potential of fusion of visual and tactile

sensing. The visual diameter can be fast measured by a extra

camera but the material is unknowable. With the fiber-cavity

sensor, we can take advantage of the variation of diameter

after grasping to estimate hardness as the softer objects will

have more difference between visual size and tactile size.

As for the result of estimating strain (Fig. 6A), the

quantitative conclusion is inaccurate. There are three possible

reasons. First, the standard strains of specific objects are

measured by human perception. We ensured the rank of each

object’s strain was correct but were unable to guarantee that

the absolute value was correct. So, the distribution of points

is scattered, but tendency of points basically concentrate at a

correct area. The conclusion of ’soft’ or ’rigid’ for a certain

object is correct according to the value of sensors and the

soft-rigid boundary. Second, we think the sensor is accurate

in the range of 5-30mm, but some objects cannot reach 5mm

of midpoint displacement, because their structural shape

limit the bending of fingers, whose contact points are at

the tips of fingers. Third, the compliance of 3D-printed

finger are inconsistent and the sectional diameter of object

is variable, both of which result in the heterogeneous force

while grasping. So, the result of estimating strain for the

same objects by different pairs of sensors is differentiated.

But for human perception, the hardness of object is a scale

rather than a numerical value, so we consider the result is

useful as the tendency is correct.

VI. FINAL REMARKS

In this paper, we demonstrated a scalable bending sensor

method for a novel design of omni-adaptive soft robotic

fingers. Our work combined the omni-adaptive finger and

fiber-cavity sensor to enable more functions based on its

own structure. And we implemented experiments to find

the relationship between midpoint displacement and sensor

value and demonstrated their nearly linear relationship in the

interval of 5mm to 30mm, which could be used to calibrate

the gripper and estimate the actual width and compliance of

objects in sorting tasks. The final result of sorting showed the

estimated widths of 94% objects are within ±6mm error and

the estimate strains of 80% objects are within ±0.1mm/mm.

The object identification rate from a total of 38 objects

from the YCB dataset and some other objects covering basic

routine things is 73.7%.

Future work on this sensory gripper will focus on the

improvement of the fiber-cavity sensor and application in

multi-tasking. We will continue to develop the advantages

of low-cost and modular design, meanwhile, to improve the

performance of the fiber-cavity sensor. Our next application

scenarios are for waste sorting, which needs the properties

of omni-adaptive, waterproof, low-cost, and easy-replaced.

We would like to combine the computer vision and neural

network to complete a more perceptive model of the finger

and build a system to learn how to grasp new objects through

training.
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