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Model-Based Control Can Improve the Performance of Artificial Cilia

Edoardo Milana1,2, Francesco Stella3, Benjamin Gorissen2,4, Dominiek Reynaerts2, Cosimo Della Santina3,5

Abstract— Artificial cilia are a prominent example of physical
intelligence. Their mechanical properties are often designed
so to achieve desired motions in response to very simple
actuation patterns. Yet, variability in the mechanical properties
are inherent in these systems. This may critically disrupt the
input-output relation, resulting in a final behavior completely
different from the desired one. In this Communication we
investigate the possibility of designing a robotic brain that helps
the cilium to maintain its physical intelligence. We achieve that
by closing a model-based control loop which tracks the position
of the end effector while compensating for drag forces. We
propose experiments to characterize our model, and extensive
simulations validating the results in different conditions. This
work is intended as a proof of concept, which will be further
expanded in future work.

I. INTRODUCTION

Biological cilia are slender hair-like organelles protruding
from eukaryotic cells, and their motion is responsible for
fluid transport at such micro-scales [1]. Given the size,
the hydrodynamic conditions are described by Reynolds
numbers much smaller than one. In these conditions, a
body must cyclically deform with a nonreciprocal pattern
in order to generate a net fluid flow, as consequence of the
Scallop theorem [2]. Biological cilia are an excellent source
of inspiration for small-scale soft robots [3] immersed in
fluids. Given their typical bent deformation, soft bending
microactuators are widely used to build artificial cilia [4]–[6].
Sareh et al. [7] showed that a multi-segment configuration
of bending actuators can accurately mimic the asymmetric
motion of the cilium. The spatial asymmetry of the single
cilium beat is caused by the different kinematics of the
recovery stroke compared to the effective stroke. It follows
that the tip trajectory of the cilium draws a closed area,
named ”swept area”, that quantifies the degree of asymmetry.
Khaderi et al. [8] revealed that there is a linear relationship
between the amount of swept area and the net flow induced
by the cilium. In previous works [9], we reported on the
low Reynolds fluid propulsion generated by the biomimetic
asymmetric motions of bi-segment soft pneumatic artificial
cilia. In the latter case, the soft cilia were actuated with very
simple pressure patterns. The resulting desired oscillatory
behavior is therefore an emergent characteristics of the soft
body [10].

Yet, solving the problem by completely relying on phy-
isical intelligence has two limitations. First, it does not
allow for any change in the cilia trajectory or frequency of
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Fig. 1. A. Artificial cilium actuation scheme. B. Image analysis steps to
measure the segments curvature. C. Segments curvature measurements over
six cycles. D. Dataset combined in one cycle and fit for the short segment.
E. Dataset combined in one cycle and fit for the long segment.

oscillation. Secondly, the unavoidable differences that exist
between the ideal design and the actual physical robot may
change drastically the resulting open loop response. In turn,
these two factors may result in sub-optimal behaviors of the
cilia. Both these limitations can be addressed by augmenting
the intelligent body with a suitable soft robotic brain. This
can be done by means of model-based feedback control.
The application of this class of techniques to soft robotics
flourished in the last few years [11]–[16], thanks to the
development of compact but effective dynamic models for
soft robots [17]–[19]. A model-free control loop achieving
synchronizations across multiple cilia has been proposed in
[20], [21]. There, the focus is not on the performance of a
single cilium. In this work, we implement a controller based
on the dynamic Piecewise Constant Curvature (PCC) model
introduced in [22]. The controller is designed so to enable
trajectory tracking of the tip of the cilia. We show that in
this way the swept area of the cilia can be strongly enlarged,
and kept constant across oscillation frequencies.

II. EXPERIMENTS

The artificial cilium considered in this work is composed
of two soft inflatable bending segments merged in a mono-
lithic structure (see Figs. 1 A and B). The bending segment is
a PDMS pillar with an inner eccentric inflatable cavity. The
eccentricity determines a stiffness asymmetry of the cross-
section which cause the pillar to bend when inflated. More
details on the operation and manufacturing of those artificial
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Fig. 2. Schematic representation of the proposed model. The shape of the
cilia is described with two segments with constant curvature (q1 and q2
respectively). The aim of our controller is to impose a desired evolution to
the tip by controlling the input pressure, despite the drag forces generated
by the fluid.

cilia can be found in [23]. The two degrees of freedom of
the bi-segment configuration are necessary to create the cilia
asymmetric motion. By actuating the two segments following
the pattern in Fig. 1A, the tip of the cilium follows an
asymmetric trajectory. To mimic the fluid dynamic conditions
of biological cilia (Re < 1), the artificial cilia are submerged
in glycerol (viscosity µ = 1.412 Pa s).

A. Dynamic Model

The use of PCC kinematic models to describe the shape
of a cilia has been already validated in [24]. We consider
here a complete dynamic model augmented with a simple
model of robot-fluid interaction. Fig. 2 shows a schematic
representation of the model of the cilia, where the main
quantities are highlighted. Each bending segment is described
with a segment having curvature q and length constant in
space. The shape is therefore a semi-circle. The curvature q
may vary in time, while the length is constant. Therefore,
the state of the cilia is (q1, q2, q̇1, q̇2). We propose to model
the dynamics of the cilia in the following form

M(q1, q2)

[
q̈1
q̈2

]
+ C(q1, q2, q̇1, q̇2)

[
q̇1
q̇2

]
+

[
k1q1
k2q2

]
+

[
d1(q1)q̇1
d2(q2)q̇2

]
=

[
a1P1

a2P2

]
.

(1)

M(q1, q2) ∈ R2×2 is the inertia matrix, and
C(q1, q2, q̇1, q̇2) ∈ R2×2 collects Coriolis and centrifugal
terms. These are evaluated by connecting an equivalent
mass in the geometrical center of mass of the segment, as
discussed in [25]. We add here also a rotational inertia. The
two constants k1, k2 > 0 are the flexural stiffness of the
segments. The area factors a1, a2 > 0 map input pressures
P1, P2 into generalized forces at the curvature level. The
equivalent damping of each segment is configuration
dependent: d1(q1), d2(q2). Consider the infinitesimal
elements at distance s from the base of a constant curvature
segment. Its Cartesian velocity is vs ∈ R2. The element
experiences a drag force −dvs due to the fluid, with d ∈ R
being a constant connected to the fluid viscosity [26]. This
generates a distribution of infinitesimal forces, as shown
in Fig. 2. The total force experienced by the segment
is d

(∫ L

0
JT
s Jsds

)
q̇, where Js is the Jacobian mapping

the variation of curvature into Cartesian velocity, and
q̇ = (q̇1, q̇2). As a trade off between accuracy and precision,
we consider the 5th order approximation of the drag forces.

Fig. 3. The proposed model well explains the experimental data. Top
panels show the difference between the rows of δ and Y π (i.e. what we are
actively optimizing for). Note that the variability of δ may be an artifact of
the noise in the measurements amplified by numerical differentiation. The
bottom panel shows the simulated evolution compared to the real data.

This yields the following

di(qi) ' d0,i + d2,iq
2
i + d4,iq

4
i > 0, (2)

where d0,i, d2,i, d4,i ∈ R are constants. In this way d0,i
can also include the usual linear damping generated by the
robot’s body itslef. Note that odd terms are not appearing
since the JT

s Js is even.

B. Data Acquisition
The segments are synchronously driven with a trapezoidal

pressure wave (maximum pressure of 140 kPa for the long
segment and 120 kPa for the short) for six cycles with a
period of 8 s. A camera is placed in front of the cilium,
capturing the motion at 25 frames/s. The video is analysed
through a computer vision algorithm written in python using
the OpenCV library to extract the two curvature segments.
The image analysis steps are depicted in 1B. For each
frame (subfigure 1), the image is binarized (subfigure 2) and
the larger contour is detected (subfigure 3) and extracted
(subfigure 4). Only the upper profile is selected and seg-
mented to obtain the two actuators profiles (subfigure 5).
Note that the resulting shapes are remarkably close to the
arcs of a circle. This is the instant of maximum velocity,
and therefore the point in which the PCC hypothesis should
be less accurate. Finally, the segmented profiles are fitted
through a circle using a least-square fitting (subfigure 6).
Figure 1C depicts curvature measurements for each frame.
The overall curvature trends are consistent and coherent. The
reconstruction of the long segment straight configuration is
not precise due to the well known numerical instability of
the PCC model. The collected dataset of the six cycles is
grouped in a single cycle and fit to a curve. In Figs. 1 D
and E, the pressure profile is superimposed to the curvature
measurements using the acoustic signal generated by the
pressure valves.

C. Identification
The elements of the dynamic model (1) depend on

several physical quantities. Some of them can be di-
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Fig. 4. An example of evolution of the curvature in time. The low level
generates the pressures necessary to make the actual curvature q follow the
desired curvature q̄. Convergence happens in less than one second.

Fig. 5. End effector swept area evolution in Cartesian coordinates. The left
panel shows that the proposed feedback strongly improves the ability of the
cilia to follow the desired trajectory. The right panel reports the performance
of the controller for various frequencies and a larger path.

rectly measured. Others are obtained through an exper-
imental characterization of the two segments. In this
work we consider the following parameters as unknowns:
k1, k2,d0,1, d0,2, d2,1,d2,2, d4,1, d4,2, a1, a2. We call π the
vector collecting these parameters. We instead measure
lengths, masses, inertias. Thus we can re-write the dynamics
as δ(q1, q1, q̇1, q̇2, q̈1, q̈2) = Y (q1, q2, q̇1, q̇2, P1, P2)π, where
δ collects the first two terms in (1) - the dynamic forces
- and Y is such that Y π collects all the remaining terms.
We call q̃1, q̃2 P̃1, P̃2 the measurements of curvature and
pressure gathered in the above discussed experiments. We
call t1, . . . , tm the instances during which the measurements
are done. We evaluate the set of parameters that better explain
the real data by minimizing the least mean square error of
||δ − Y π||22 across all data. This is achieved by

π̂ =

 Y (q̃1(t1), . . . , P̃2(t1))
...

Y (q̃1(tm), . . . , P̃2(tm))


+ δ(q̃1(t1), . . . , ¨̃q2(t1))

...
δ(q̃1(tm), . . . , ¨̃q2(tm))

, (3)

where ·+ is the Moore-Penrose pseudo-inverse. Time deriva-
tives are calculated through numerical differentiation. Fig. 3
shows the result of this identification procedure.

III. MODEL BASED CONTROLLER

The controller that we propose here is an extension of the
one proposed in [27], [28], which we adapt here to act on (1).
This required some modifications, like the introduction of a
compensation for fluid-induced dissipation. The controller
is organized in two stages. First, the reference trajectory in
curvature space q̄ = (q̄1, q̄2) required to generate the desired
tip evolution x̄ ∈ R2 is calculated as solution of the following
dynamical system

˙̄q = J−1
tip (q̄)[ ˙̄x− κ(x̄− h(q̄))] (4)

Fig. 6. Average control pressure (equation) for performing the task with
different cycles per second. Increasing the number of cycles generates higher
velocities and accelerations, which leads to higher torques.

where h is the forward kinematics of the cilia’s tip, and
Jtip = ∂h/∂q̄. In this work we take κ = 10. The acceleration
can be evaluated by direct differentiation of (4), which yields
¨̄q = J−1

tip [¨̄x − κ2(x̄ − h(q̄))] − J−1
tip J̇J

−1
tip [ ˙̄x − κ(x̄ − h(q̄))],

where we omitted explicit dependencies on q̄ and ˙̄q. We also
expressed the time derivative of J−1

tip as J−1
tip J̇J

−1
tip , see for

example [29]. The second part of the controller generates the
pressures P = (P1, P2) from the knowledge of q, q̇, q̄, ˙̄q, ¨̄q.
The goal is to make q converge to q̄. The controller is

P =

[
1/a1 0

0 1/a2

](
C(q, q̇)

[
q̇1
q̇2

]
+

[
k1q1
k2q2

]
+

[
d1(q1)q̇1
d2(q2)q̇2

]
+M(q, q̇)(¨̄q + κD( ˙̄q − q̇) + κP(q̄ − q))

)
,

(5)

where all elements are as in (1) and κP, κD are two positive
control gains. In the following we take both equal to 100.

With the proposed controller, we aim at following a
trajectory with the end effector which covers a region with
a large swept area (see Sec. I). More specifically, we select
the area that was originally considered in the design of the
cilia [23]. This still leaves free the frequency of oscillation.
We start by considering a frequency of one cycle every 10
seconds (as in Sec. II). Fig. 4 reports the desired curvature
evolution q̄ generated by (4), and the evolution of the actual
curvature q produced by (5). Fig. 5a shows the trajectory
generated at the end effector by the proposed controller,
compared with the open loop excitation in Sec. II. The
controller generates a dramatic improvement of performance.
This is consistent across frequencies, up to 1 cycle per
second, as shown in Fig. 5b. The same panel shows what
happens when we test the effectiveness of the algorithm with
a larger area (approximately 10% larger). In all conditions
the trajectory is closely tracked at steady state. This proves
that the proposed control algorithm can be used not only
to recover ideal performance, but also to improve upon
the original design idea. Finally, Fig. 6 shows the average
pressure that is exerted by the controller during the task.

IV. CONCLUSIONS AND FUTURE WORK

This Communication showed through a proof of concept
application, that model based closed loop control can be
used to augment the performance of physically intelligent
artificial cilia. Future work will be devoted to validating the
method in full-fledged swimming tasks, as for example in
[30]. Extension of the controller will be considered to models
with affine curvature [31], to online adaption to different fluid
conditions [32].
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