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Energy-based shape regulation of soft robots
with unactuated dynamics dominated by elasticity

Pablo Borja1, Azita Dabiri2, Cosimo Della Santina1,3

Abstract— This paper proposes a model-based control de-
sign approach for a broad class of soft robots, having their
elastic field dominating gravity in the unactuated coordinates.
To this end, we consider finite-dimensional dynamic models
obtained from approximations of the system’s energy. Then,
we propose a general control architecture that can stabilize
soft robots based on potential energy shaping. We discuss
three specializations of this general architecture: a PD with
mixed feedback-feedforward gravity compensation, a PD with
feedforward compensation, and a saturated version of the latter.
We provide a physical interpretation of the controllers, and we
illustrate their applicability through simulations.

I. INTRODUCTION
Continuum soft robots can be understood as nonlinear

infinite-dimensional mechanical systems. Indeed, contrary
to standard rigid robots, these systems are built with con-
tinuously deformable materials [1]. This makes even basic
control problems extremely hard to solve [2]. Still, despite
their complexity, their behavior is determined by their en-
ergy and dissipation, as for any other mechanical system.
In this regard, the port-Hamiltonian (pH) framework has
proven suitable to capture such physical quantities in infinite-
dimensional mathematical models. See, for instance, [3], [4].
However, for control implementation purposes, the infinite-
dimension nature of the resulting models can be a challenge.
Thus, researchers have proposed approximation modeling
methods to describe soft robots as finite-dimensional me-
chanical systems to overcome this problem. See, for example,
piecewise constant strain models and functional parameteri-
zations [5], [6]. In particular, these approaches are suitable
for finding approximations of the system’s damping and
kinetic and potential energy. Hence, they are ideal to obtain
energy-based dynamic models of soft robots, i.e., Euler-
Lagrange (EL) or pH representations.

Due to their close relation to concepts like energy and dis-
sipation, passivity theory and passivity-based control (PBC)
are powerful tools for the analysis and control of complex
nonlinear systems. See, for instance, [7]–[9]. In particular,
PBC techniques have proven suitable to deal with underac-
tuated mechanical systems [8], [10], [11]. Hence, energy-
based design approaches and PBC for model-based control
design have gained interest in the soft robotics community
in recent years. For instance, in [12] and [13], the authors
propose energy-based modeling approaches for soft robots;
in [14], the authors provide an energy-based design approach
that eases the selection of adequate actuators for applica-
tions involving soft robots; in [15] and [16], the authors
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validate, through simulations, the effectiveness of energy-
shaping controllers for a cyberoctopus soft arm represented
by the Cosserat rod model; in [17], a PBC approach is used
to control a soft robot, which is approximated as a rigid link
system; in [18] and [19], the authors provide experimental
results that corroborate the effectiveness of PBC techniques
for stabilizing soft robot manipulators approximated as rigid
link systems. Additionally, [20], [21] are other examples of
applications with soft continuum systems, where approxima-
tions, energy-based models, and PBC techniques are used to
solve the stabilization problem.

However, despite these substantial advancements, general
results that apply to all soft robots—no matter the modeling
technique—are still lacking [2]. The goal of this paper is to
contribute to solving this challenge. To this end, we focus
on a generic class of soft robots, where elasticity dominates
the undesired gravity effects in the unactuated coordinates.
Then, we propose a general control design approach for these
systems using PBC. The main contributions of this work are:

(C1) A vast family of regulators suitable to stabilize under-
actuated soft robots with dominant elasticity in the un-
actuated coordinates. Notably, the proposed controllers
encompass and generalize recently introduced control
approaches such as the PD+feedforward [2].

(C2) Straightforwardly verifiable conditions for the stabiliza-
tion of underactuated soft robots via collocated feed-
back. Remarkably, such conditions do not hinge on a
particular approximation method.

The remainder of this paper is organized as follows.
Section II revisits energy-based modeling, and provides a
class of interest of these systems. Then, Section III is devoted
to the control design, where we establish the main results of
this work. We provide examples of instances of the proposed
strategy in Section IV. In Section V, we report simulation
results. We present the concluding remarks in Section VI.

Notation: we denote the n × n identity matrix as In.
The symbol 0 denotes a vector or matrix of appropriate
dimensions whose entries are zeros. Given x ∈ Rn and f :

Rn → R, we consider that ∂f(x)
∂x =

[
∂f(x)
∂x1

. . . ∂f(x)
∂xn

]>
.

Moreover, given the constant vector x? ∈ Rn, we define(
∂f
∂x

)
?

:=
(
∂f(x)
∂x

)∣∣∣
x=x?

. When they are clear from the
context, we omit the arguments of functions to simplify the
notation.

II. ENERGY-BASED MODELING
Without loss of generality, the approximated1 kinetic en-

ergy of a soft robot is given by T (q , p) = 1
2p>M−1(q)p,

where q ∈ Rn is the configuration variables vector, M :
Rn → Rn×n is the positive definite inertia matrix, and

1Henceforth, we omit the adjective approximated while referring to the
finite-dimensional model.
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p ∈ Rn is the momenta vector, which satisfies p = M (q)q̇ .
Moreover, the potential energy is given by V (q) = Ve(q) +

Vg(q), where Ve : Rn → R+

is the elastic potential energy
and Vg : Rn → R+

is the potential energy due to gravity.
Hence, the total energy of the system, referred to as the
system’s Hamiltonian H : Rn × Rn → R+, is given by

H (q , p) = T (q , p) + V (q).

Moreover, the behavior of the system can be modeled as

[
q̇
ṗ

]
=

[
0 In

−In −D(q , p)

]
∂H (q , p)

∂q

∂H (q , p)

∂p

+

[
0

A(q)

]
τ ; (1)

where τ ∈ Rm, with m ≤ n, denotes the input vector; D :
Rn → Rn×n is the damping matrix, which is positive semi-
definite; and A : Rn → Rn×m is the input matrix, which has
full (column) rank.

A. Assignable equilibria

While dealing with the set-point regulation (stabilization)
problem, the desired equilibrium is often not an open-loop
equilibrium point. Thus, it is essential to identify which
equilibrium points can be assigned by the control input. Such
points are characterized by

E :=

{
q ∈ Rn | A⊥(q)

∂V (q)

∂q
= 0

}
, (2)

where A⊥(q) denotes the full-rank left annihilator of A(q),
i.e., A⊥(q)A(q) = 0. Equivalently, if q? ∈ E , then there
exists τ? ∈ Rm such that A?τ? =

(
∂V
∂q

)
?
, implying that

(q?,0) is an equilibrium for (1).

B. Class of systems of interest

We restrict our attention to a class of systems that en-
compasses the approximation of a wide variety of soft robot
dynamics. To characterize such systems, below we introduce
three assumptions.

Assumption 1. The input matrix is constant, i.e., A(q) = A ,
with A ∈ Rn×m.

Assumption 1 ensures that there exists a linear transforma-
tion such that the new coordinates can be split into actuated
and unactuated ones, which is essential for presenting the
results of Section III. This is formalized in the following
proposition.

Proposition 1. Consider the system (1) with A constant.
There exists a linear invertible transformation T ∈ Rn×n
such that the dynamics of the coordinates2

q := T−>q , p := T p. (3)
are q̇

ṗ

 =

 0 In

−In −D(q, p)



∂H(q, p)

∂q

∂H(q, p)

∂p

+

0
A

 τ
H(q, p) =

1

2
p>M−1(q)p+ V (q),

(4)

2Where T−> =
(
T>

)−1
=

(
T−1

)>.

where
V (q) := V (q)

∣∣
q=T>q ; M(q) := TM (q)T>

∣∣
q=T>q ;

D(q, p) := TD(q , p)T>
∣∣

q=T>q
p=T−1p

; A := TA =
[
Im 0

]>
.

Proof: Consider

T =

[(
A>A

)−1
A>

A⊥

]
.

Since A⊥ is the full-rank left annihilator of A , T has full
rank. Therefore, T is invertible. Moreover, note that

H(q, p) := H (q , p)
∣∣

q=T>q
p=T−1p

.

Accordingly, from (3) and the chain rule, we have that
∂H(q, p)

∂q
= T

∂H (q , p)

∂q

∣∣∣∣ q=T>q
p=T−1p

,

∂H(q, p)

∂p
= T−>

∂H (q , p)

∂p

∣∣∣∣ q=T>q
p=T−1p

.

Hence,

q̇ = T−>q̇ = T−>
∂H
∂p

=
∂H

∂p

ṗ = T ṗ = T

(
−∂H
∂q
− D

∂H
∂p

+ Aτ
)

= −∂H
∂q
−D∂H

∂p
+Aτ

Furthermore, the inertia and damping matrices are modified
by congruence transformations. Accordingly, they remain
positive definite and positive semi-definite, respectively. �

Remark 1. The transformation T such that (1) takes the
form (4) is not unique.

Consider the system (4) and define the degree of under
actuation as s := n−m. Then, we can split the coordinates
into actuated and unactuated, namely,

qu := A⊥q; qa := A>q; pu := A⊥p; pa := A>p;

where A⊥ = [0 Is], qu, pu ∈ Rs, and qa, pa ∈ Rm. Note
that, given the desired configuration q? ∈ E for the system
(1), we have the corresponding desired configuration q? :=
T−>q? for the system (4).

The second assumption is related to the elasticity of the
system, which plays a crucial role in the control design
process.

Assumption 2. Given the desired configuration q? ∈ E , the
elastic potential energy satisties

K �
(
∂2Ve
∂q2

)
?

where Ve(q) := Ve(T
>q), and K ∈ Rn×n is a positive

semi-definite matrix.

We stress that Assumption 2 is satisfied by a large
class of soft robots. In particular, it holds if the elastic
potential energy is convex, for instance, soft robots with
linear elasticity, i.e., the elastic potential energy has the form
Ve(q) = 1

2q
>K̄q, where K̄ ∈ Rn×n is positive semi-definite.
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Note that K can be expressed as

K :=

[
kaa kau
k>au kuu

]
,

with kuu ∈ Rs×s, kau ∈ Rm×s, and kaa ∈ Rm×m.
Furthermore, K is positive semi-definite only if kuu and kaa
are positive semi-definite.

The third and final assumption is that the elasticity domi-
nates the forces resulting from the gravity in the unactuated
coordinates.

Assumption 3. Given the desired configuration q? ∈ E ,
the potential energy related to the unactuated coordinates
satisfies

kuu +

(
∂2Vg
∂q2u

)
?

� 0; Vg(q) := Vg(q)
∣∣

q=T>q .

Assumption 3 is equivalent to assuming that the zero
dynamics of (4) is asymptotically stable, considering as
the output y = qa [22]. In other words, the system is
minimum phase for the collocated case. For further details
on minimum phase systems and zero dynamics, we refer
the reader to [9]. Section III provides a general control
design strategy for soft robots characterized by the three
assumptions mentioned above.

III. CONTROL DESIGN

In this section, we suppose (1) satisfies Assumption 1.
Then, we propose a control design approach to stabilize (4)—
equivalently, (1).

The following proposition provides a general control law
that stabilizes soft robots satisfying Assumptions 1–3.

Lemma 1. Consider the system (4) and the desired con-
figuration q? ∈ E satisfying Assumptions 2 and 3. Let
Φ : Rm → R be a C2 function such that(

∂V

∂qa

)
?

+

(
∂Φ

∂qa

)
?

= 0 (5)

(
H
′′

ua

)> (
H
′′

uu

)−1
H
′′

ua −H
′′

aa ≺
(
∂2Φ

∂q2a

)
?

, (6)

where

H
′′

aa :=

(
∂2Vg
∂q2a

)
?

+ kaa, H
′′

ua :=

(
∂2Vg
∂qu∂qa

)
?

+ k>au,

H
′′

uu :=

(
∂2Vg
∂q2u

)
?

+ kuu.

Hence, the controller

τ = −∂Φ(qa)

∂qa
, (7)

(locally) stabilizes the system at (q?,0).

Proof: Consider the Lyapunov candidate function
Hd(q, p) = H(q, p) + Φ(qa).

Since at the equilibrium p = 0, some simple computations
show that(

∂Hd

∂q

)
?

=

(
∂V

∂q

)
?

+A

(
∂Φ

∂qa

)
?(

∂Hd

∂p

)
?

=
(
M−1(q)p

)
?

= 0. (8)

Furthermore, by applying the transformation T to (2), we

have that q? ∈ E implies
(
∂V
∂qu

)
?

= 0. Therefore, (5) ensures(
∂Hd

∂q

)
?

= 0. (9)

On the other hand, from Assumption 2, we get that(
∂2Hd

∂q2

)
?

�

H ′′aa (
H
′′
ua

)>
H
′′
ua H

′′
uu

 (10)

(
∂2Hd

∂q∂p

)
?

=

(
∂2Hd

∂p∂q

)>
?

= 0 (11)

(
∂2Hd

∂p2

)
?

= M−1(q?) � 0. (12)

Furthermore, a Schur complement analysis show that As-
sumption 3, together with (6), guarantees thatH ′′aa (

H
′′

ua

)>
H
′′

ua H
′′

uu

 � 0,

which implies (
∂2Hd

∂q2

)
?

� 0. (13)

Accordingly, from (8)–(13), we conclude that (q?,0) is an
strict minimum of Hd(q, p). Moreover,

Ḣ =

(
∂H

∂q

)>
q̇ +

(
∂H

∂p

)>
ṗ

=

(
∂H

∂q

)>
q̇ + q̇>

(
−∂H
∂q
−Dq̇ +Aτ

)
= −q̇>Dq̇ + q̇>a τ.

Hence,

Ḣd = Ḣ + Φ̇ = −q̇>Dq̇ + q̇>a τ + q̇>a
∂Φ

∂qa
= −q̇>Dq̇. (14)

Accordingly, Hd(q, p) is non-increasing. Thus, (q?,0) is a
stable equilibrium for the closed-loop system.

To prove asymptotic stability, i.e., that the trajectories
converge to the desired equilibrium, we invoke LaSalle’s
invariance principle. Hence, we identify the set of points
such that Ḣd = 0. To this end, note that

Ḣd = 0 ⇐⇒ q̇ = 0 ⇐⇒ p = 0 =⇒ ṗ = 0

=⇒ ∂Φ

∂q
+
∂V

∂q
= 0.

Furthermore, since (q?,0) is an strict minimum, we have that
(at least) in a neighboorhood of the equilibrium

∂Φ

∂q
+
∂V

∂q
= 0 ⇐⇒ q = q?. (15)

Accordingly, the equilibrium is asymptotically stable. �

Remark 2. The controller (7) shapes the potential energy of
the system. Indeed, the closed-loop system can be interpreted
as another mechanical system with potential energy Vd(q) =
V (q) + Φ(qa). Note that this new potential energy has a
minimum at the desired equilibrium. Thus, the dissipation
−q̇>Dq̇ ensures that the system converges to this point.

Nonlinear systems may have several open-loop equilib-
rium points. Furthermore, it is not possible to remove the
non-desired equilibria for the closed-loop system in some
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cases. For this reason, the results of Lemma 1 are only
local. However, the following corollary provides sufficient
conditions to claim global convergence.

Corollary 1. The controller (7) stabilizes the system (4) at
(q?,0) for any initial condition if (15) is true for all q ∈ Rn.

Proof: If (15) is true for all q ∈ Rn, then the only solution
to Ḣd = 0 is (q, p) = (q?,0). Hence, LaSalle’s invariance
principle establishes that all the trajectories converge to this
point. �

The result of Lemma 1 relies on (5) and (6). Nevertheless,
the following proposition establishes that Assumptions 2
and 3 guarantee the existence of Φ(qa) satisfying these
conditions.

Proposition 2. Consider the system (4) and the desired
configuration q? ∈ E satisfying Assumptions 2 and 3. There
exists Φ(qa) such that (5) and (6) hold.

Proof: Consider the function

Φ(qa) = −q>a
(
∂V

∂qa

)
?

+
1

2
(qa − qa?)>KP(qa − qa?), (16)

where KP ∈ Rm×m is a positive definite matrix. Hence,(
∂Φ

∂qa

)
?

= −
(
∂V

∂qa

)
?

.

Thus, (5) holds. Moreover, (6) takes the form(
H
′′
ua

)> (
H
′′
uu

)−1

H
′′
ua −H

′′
aa ≺ KP, (17)

which holds for KP large enough. �
While we propose a particular Φ(qa) to prove the result of

Proposition 2, other structures can be exploited for specific
purposes. We report some examples in Sec. IV.

Remark 3. Any fully actuated system can be stabilized by
adopting the proposed approach. Note that qa = q and the
input matrix is square and invertible. Therefore, even if A(q)
is nonconstant, we can propose

τ = −A−1(q)
∂Φ(q)

∂q
,

with Φ(q) such that(
∂V

∂q

)
?

+

(
∂Φ

∂q

)
?

= 0,

(
∂2V

∂q2

)
?

+

(
∂2Φ

∂q2

)
?

� 0.

Remark 4. Damping injection can improve the closed-loop
system’s transitory behavior. To do this, we add an extra term
to (7), i.e.,

τ = −∂Φ(qa)

∂qa
− ψ(q̇a), (18)

where ψ : Rm → Rm satisfies
ψ>(q̇a)q̇a ≥ 0, ∀ q̇a ∈ Rm.

Therefore, (14) takes the form
Ḣd = −q̇>Dq̇ − ψ>(q̇a)q̇a ≤ 0.

Assumption 3 is the result of the system’s under-actuation.
If this assumption is not satisfied by the system to be
controlled, then the controller (7) can assign the desired
equilibrium but fails to render it stable. This problem can be
overcome by also shaping the kinetic energy of the system.
This process is often referred to as total energy-shaping.
Some approaches that perform this process are the so-called
interconnection and damping assignment (IDA) PBC [10]
and the PID-PBC [11] method. Unfortunately, the former

leads to partial differential equations that seem unfeasible to
solve for soft robots, while the latter imposes conditions that
are not satisfied by these kinds of systems.

IV. EXAMPLES OF REGULATORS

We introduce four choices of functions Φ(qa) and ψ(q̇a)
resulting in as many regulators. This should provide an idea
of the generality of the control strategy (18) and how this can
be specialized to implement essentially different controllers
with similar stabilization properties. We use the symbol u
instead of τ to present the different control architectures.

Define the error q̃a := qa − qa? , let ϕ : Rm → R be a
function such that

∂ϕ(qa)

∂qa
=

(
∂V

∂qa

)∣∣∣∣
qu=qu?

,

and define

κ :=

(
∂V

∂qa

)
?

.

Consider the positive gains KP,KD, α, ρ, αd, and ρd. Hence,
we can introduce the following controllers:
(i) by selecting Φ(qa) as in (16) and

ψPD(q̇a) = KDq̇a,

we get
uPD = κ−KPq̃a −KDq̇a. (19)

Moreover, (6) reduces to (17).
(ii) by considering

ΦPD+(qa) = −ϕ(qa) +
1

2
q̃>a KPq̃a

and ψ = ψPD, we obtain

uPD+ =
∂ϕ(qa)

∂qa
−KPq̃a −KDq̇a. (20)

Moreover, (6) takes the form(
H
′′

ua

)> (
H
′′

uu

)−1
H
′′

ua −H
′′

aa ≺ KP −
(
∂2ϕ

∂q2a

)
?

.

(iii) the selection3

Φsat(qa) = −q>a κ+
α

ρ
ln (cosh(ρq̃a))

ψsat(q̇a) = αd tanh(ρdq̇a)

yields
usat = κ− α tanh(ρq̃a)− αd tanh(ρdq̇a). (21)

Furthermore, (6) takes the form(
H
′′
ua

)2
H ′′uu

−H
′′
aa < αρ. (22)

(iv) the choice
Φexp(qa) = −ϕ(qa) +KP

(
eq̃a + e−q̃a

)
and ψ = ψPD results in

uexp =
∂ϕ(qa)

∂qa
−KP

(
eq̃a − e−q̃a

)
−KDq̇a. (23)

Moreover, (6) takes the form(
H
′′
ua

)> (
H
′′
uu

)−1

H
′′
ua −H

′′
aa ≺ 2KP −

(
∂2ϕ

∂q2a

)
?

. (24)

Note that the four choices of Φ(qa) above presented satisfy
(5). Furthermore, uPD is a classical PD controller, uPD+ is a
PD controller with a compensation term, uexp is a completely

3We consider the case m = 1 for simplicity. We refer the reader to [23]
for more details about the case m > 1.
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Fig. 1. Simulation results obtained for uexp and usat depicted in blue and yellow, respectively. The plots show the evolution of the configuration variables
and the control law, where the desired values and saturation limits are represented by dashed red lines.

nonlinear controller, and usat is a saturated controller. In
particular, usat ∈ [κ− (α+ αd), κ+ α+ αd].

V. SIMULATIONS

In this section, we apply the results of Lemma 1 to stabi-
lize three soft robots. Note that the proposed strategies are
applicable to robots with any number of degrees of freedom.
However, we focus on simple low-dimensional examples to
investigate the evolution of the relevant variables.

A. Constant curvature segment with variable length
Consider a robot consisting of a constant curvature seg-

ment with variable length. This system can be represented
by (4), with4

q =

[
θ
δL

]
=

[
qa
qu

]
, D = β

[
1
2 0
0 1

]
,

Vg(q) = −mg (qu + L0) (qa − sin qa) /q
2
a , Ve(q) =

kaaq
2
a/2 + kuuq

2
u/2, where θ represents the curvature; δL

the length variation; L0 the length at rest; m the mass of
the robot; and g the gravitational acceleration. Moreover, β
kuu, and kaa are positive parameters. Note that Assumptions
1 and 2 are satisfied. Moreover, the assignable equilibria for
this system can be parameterized in terms of the desired qa,
i.e., given qa? , we have qu? = mg (qa? − sin qa?) /

(
kuuq

2
a?

)
.

For this system, we have
(
∂2V
∂q2u

)
?

= kuu. Accordingly,
Assumption 3 holds. Moreover,

ϕ(qa) = −mg
q2a

(qu? + L0) (qa − sin qa) +
1

2
kaaq

2
a .

To corroborate the effectiveness of the control approach,
we consider that the system starts at rest, i.e., q0 = 0. Then,
the control objective is to stabilize the system at qa,1? =
π
3 . Once the system reaches the desired configuration, it is
steered to the new desired configuration qa,2? = π

6 .
We consider m = 1[kg]; L0 = 1[m]; g = 9.81[ms2 ]; kuu =

kaa = 1[N·mrad ]; and β = 0.5[N·m·srad ] for simulation purposes.
Hence, for qa,1? we get

qu,1? = 1.6207, κ = −2.5628,

(
∂2ϕ

∂q2a

)
?

= 2.2327,

while for qa,2? we have

qu,2? = 0.8444, κ = −2.3694,

(
∂2ϕ

∂q2a

)
?

= 1.4635.

We test the performance of usat, given in (21), and uexp,
provided in (23). Therefore, (22) becomes −0.3351 < αρ

4We omit M(q) due to space constraints.

and 0.9957 < αρ for qa,1? and qa,2? , respectively. Thus, αρ
must be greater than 0.9957. Furthermore, (24) reduces to

−0.3351 < 2KP − 2.2327, 0.9957 < 2KP − 1.4635

for qa,1? and qa,2? , respectively. Accordingly, KP must be
greater than 1.2296. We select the gains KP = 3, KD = 1,
α = 3, ρ = 50, αd = 1, and ρd = 20. The results are shown
in Fig. 1, where we observe that both controllers achieve the
control task. However, for the selected gains, usat exhibits a
better performance.

B. The soft inverted pendulum with affine curvature
In this section, we stabilize a soft inverted pendulum using

controllers of the form (18). To this end, we consider the
dynamic model provided in [24]. Therefore, we refer the
reader to the mentioned reference for further details on the
model. The configuration variables for this system are q =
[θ0 θ1]>, which approximate the curvature at each point of
the pendulum’s main axis. This system can be represented
as in (1) with5

Ve =
1

2
q>k

[
1 1

2
1
2

1
3

]
q , D = β

[
1 1

2
1
2

1
3

]
, A =

[
1
1
2

]
,

where k and β are positive constant parameters. The control
objective is to stabilize the pendulum at its upward con-
figuration, i.e., at q? = (0, 0) ∈ E . Note that the desired
configuration is an open-loop equilibrium for the system.
Therefore, κ = 0 and q̃a = qa. Furthermore, Assumption 1
is satisfied and the transformation (3), with

T =

[
4 −6
−6 12

]
,

ensures that A = [1 0]>. Moreover,(
∂2Ve
∂q2

)
?

= k

[
4 −6
−6 12

]
,

(
∂2Vg
∂q2

)
?

=
mgL

30

[
−34 33
33 −36

]
,

(25)
where m, g, L are the pendulum’s mass, the gravity accel-
eration, and the pendulum’s length, respectively. From (25),
we conclude that Assumption 2 holds. We consider that the
parameters m, g, L, k are such that 10k > mgL but

(
∂2V
∂q2

)
?

is not positive definite. Thus, Assumption 3 is satisfied but
q? is not a stable equilibrium for the open-loop system.

We consider m = 1[kg], L = 1[m], g = 9.81[ms2 ],
k = 1[N·mrad ], and β = 0.1[N·m·srad ] for simulation purposes.
Moreover, the controllers (19), (20), and (21) can be ex-
pressed in terms of the original coordinates through the

5Due to space limitations, we omit the expressions of M (q) and Vg(q).
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Fig. 2. Simulation results for the initial configuration q = [π
2

− π
3
]>. The plots show the evolution of the configuration variables for uPD with KP = 15

and KD = 0.005; uPD with KP = 300 and KD = 0.005; uPD+ with KP = 15 and KD = 0.005; and usat with α = 4, ρ = 50, αd = 0.5, and ρd = 10.

Fig. 3. Evolution of the soft inverted pendulum in the cartesian plane for
different controllers.

expression qa = θ0 + 1
2θ1. Moreover, (17) and (22) become

107.7920 < KP and 107.7920 < αρ, respectively. Fig. 2
shows the simulation results considering the initial conditions
q0 = [π2 −

π
3 ]>, p0 = 0 and different controllers. Similarly,

Fig. 3 shows the behavior of the robot in the cartesian plane,
where the green line denotes the initial position and the
blue line the final configuration. In particular, we observe
in the leftt-hand plot of Fig. 2 that uPD fails to stabilize
the system for KP < 107.7920. To solve this problem, we
drastically increase the proportional gain, as is illustrated in
the middle and right-hand plots of Fig. 2. Nonetheless, this
approach yields important peaks in the control signal, making
it infeasible from a practical perspective. In order to avoid
high gains, we use uPD+ which includes a compensation
term. Remarkably, this controller stabilizes the system at
the desired equilibrium with the same gains as the PD used
to obtain the left-hand plot of Fig. 2. Finally, we observe
in Figs. 2 and 3 that usat has a similar performance than
the high-gain PD controller. However, usat ensures that

the control signal is constrained to ±4.5[N ·m]. Hence, the
saturated controller has a better performance as it stabilizes
the system without exhibiting an oscillatory behavior while
keeping the control signals constrained. Fig. 4 shows the
simulation results considering the initial conditions q0 =
[π4 −

π
4 ]> and p0 = 0. In this case, we only consider uPD+ and

usat. We propose the same control gains as in the previous
case. Notably, the system converges much slower with usat.
Hence, comparing the performance of both controllers under
both sets of initial conditions, we conclude that the saturated
controller is more sensitive to the initial configuration.

C. Three-segments robot

We consider the 3D model of a soft robot consisting
of three segments with variable lengths. We assume that
the length variation is the unactuated coordinate for each
segment. The configuration variables are given by the pa-
rameterization proposed in [25], i.e., qi = [∆xi ,∆yi , δLi]

>

with i ∈ {1, 2, 3}. Moreover, the robot is actuated through
a pneumatic device, resulting in a nonconstant input ma-
trix. In this case, Assumption 1 is satisfied by reordering
the configuration variables and considering a modulation
of the form τ = A−1a (q)u, where Aa is the part of the
input matrix associated with the actuated variables, i.e.,
∆xi and ∆yi . We consider linear elasticity with a diagonal
stiffness matrix. Hence, Assumption 2 holds. In this case,(
∂2V
∂q2

)
?

is always positive definite, which guarantees that
Assumption 3 is satisfied. We implement a PD controller
and an exponential controller of the form uexp = κ −
KP

(
eq̃a − e−q̃a

)
− KDq̇a. Moreover, we consider that the

length at rest is 0.2[m] for each segment; the mass is
0.3[kg]; the stiffness coefficients are 1[N·mrad ] for the actuated
variables and 10[N·mrad ] for the unactuated variables; and
the damping matrix is diagonal with damping coefficients
0.1[N·m·srad ]. Fig. 5 shows the simulation results considering
the initial configuration q = 0 and the desired configuration
q? = (2, 2, 0.136,−1,−2− 0.102, 1, 1, 0.066)>. While both
controllers stabilize the system, uPD is physically infeasible
because of the length variation. Moreover, uexp results in
faster convergence and fewer oscillations than uPD, which is
more notorius in the unactuated coordinates.

VI. CONCLUDING REMARKS

This paper introduced a general class of control strategies
for soft robots having a constant input matrix, and elastic-
ity dominating gravity in the unactuated coordinates. The
resulting family of controllers encompasses PD regulators
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Fig. 4. Simulation results for the initial configuration q = [π
4

− π
4
]>. The plots depict the evolution of the configuration variables and the control signal

for uPD+ and usat. The control gains are KP = 15, KD = 0.005, α = 4, ρ = 50, αd = 0.5, and ρd = 10.
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Fig. 5. Simulation results for the initial configuration q = 0. The plots depict the evolution of the configuration variables. The gains are KP1 = diag(15, 15),
KD1 = diag(20, 20), KP2 = KP3 = diag(10, 10), and KD2 = KD3 = diag(15, 15) for uPD; and KP = I6 and KD = 1.5I6 for uexp.

and more elaborated nonlinear feedback rules, e.g., saturated
control laws and partially closed-loop gravity compensations.
Future work will be devoted to exploring the space of
possible choices of Φ(qa) to shape the transient behavior
and ensure the robustness of the closed-loop.
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