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Abstract— The application of granular jamming in soft
robotics is a recent and promising new technology offer exciting
possibilities for creating higher performance robotic devices.
Granular jamming is achieved via the application of a vacuum
pressure inside a membrane containing particulate matter, and
is particularly interesting from a design perspective, as a myriad
of design parameters can potentially be exploited to induce
a diverse variety of useful behaviours. To date, the effect of
variables such as grain shape and size, as well as membrane
material, have been studied as a means of inducing bespoke
gripping performance, however the other main contributing
factor, membrane morphology, has not been studied due to
its particular complexities in both accurate modelling and
fabrication. This research presents the first study that opti-
mises membrane morphology for granular jamming grippers,
combining multi-material 3D printing and an evolutionary
algorithm to search through a varied morphology design space
in materio. Entire generations are printed in a single run and
gripper retention force is tested and used as a fitness measure.
Our approach is relatively scalable, circumvents the need for
modelling, and guarantees the real-world performance of the
grippers considered. Results show that membrane morphology
is a key determinant of gripper performance. Common high
performance designs are seen to optimise all three of the main
identified mechanisms by which granular grippers generate
grip force, are significantly different from a standard gripper
morphology, and generalise well across a range of test objects.

I. INTRODUCTION

Granular Jamming [1] is a popular and versatile soft robotic
mechanism allowing high stiffness variation with minimal
volume variation. By far the most prevalent use of granular
jamming in the literature is the ‘Universal Gripper’, which
consists of a spherical elastomeric balloon filled with coffee
grounds, which is attached to a vacuum pump. Applying a
vacuum force causes the coffee to increase rigidity and grip
onto a target object.

Design of granular jamming grippers is an interesting and
challenging research problem. Interesting, because granular
jamming structures are relatively unconstrained in their pos-
sible shapes and sizes. Moreover, numerous design variables
(including shape, size, and constituent materials of both grains
and membranes [2]), can potentially be tuned to elicit high
gripper performance. Challenging due to strongly-coupled
and complex interactions between grains, membrane, and
environment that are particularly difficult to model. Granular
grippers are therefore largely unsuitable for model-based
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Fig. 1: A selection of evolved membranes, after printing and cleaning
but pre-filling.

optimisation and design explorations of granular grippers
have to date been limited in scope.

This is particularly true for membrane morphology, where
complex deformations are tricky to capture via modelling and
prone to reality gap effects, but may be a precursor to novel,
high performance designs [3]. As such, the most common
membrane over the past decade remains a simple spherical
latex balloon.

We present the first study that optimises membrane mor-
phology for granular jamming grippers, and the first study that
directly optimises membrane morphology for a soft gripper in
general. It is particularly suited for soft robot design spaces
that are not easily amenable to modelling, such as granular
jamming, and encourages design methodologies based on
embodied cognition, which hinge on high-fidelity interactions
between an agent’s constituent parts and an environment.

Our model-free optimisation technique combines 3D print-
ing and a Genetic Algorithm (GA) to iteratively evolve
populations of grippers in materio [4]: each generation is
printed in one run on a multi-material 3D printer, before
being post-processed and tested. No modelling is required.
Additionally, the 3D printer allows for large theoretical
maximum population sizes of up to 80 grippers to be printed at
once, making the approach relatively scaleable. Our approach
also partially closes the loop on this design exploration via
scripting: printable CAD models are automatically generated
from gripper genomes, and fitness values are automatically
returned from the experimental setup to the genetic algorithm.
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To demonstrate the feasibility of this approach, we evolve
a total of 75 grippers across 15 generations. Grippers are
experimentally assessed for their ability to grip a challenging
benchmark object. Results show strong optimisation of
retention force. Common high performance designs are seen
to optimise all three of the main identified mechanisms by
which granular grippers generate grip force. A wide range of
geometries are generated, showing that the design space made
available by the Bezier representation is useful and permits
diverse designs, as well as suggesting the ability to adapt
morphologies for diverse applications outside of gripping.
(Fig.1). The best gripper performs well across a range of test
objects, despite being evolved to grip only a ball.

II. BACKGROUND

A. Granular jamming in soft robotics

Granular jamming is a highly capable means of achieving
stiffness-tuneable actuation and gripping of arbitrarily shaped
objects by soft robotic devices [1]. Granular jamming occupies
a very useful niche in soft actuation, being particularly useful
in applications that seek to exploit it’s rapid response time
(≈1s) and very large potential stiffness variation [5].

Although recent research has studied a range of different
morphologies in jamming actuators, including worm-like
and snake-like robots [6], [7], fingers and hands [8], and
locomoting spheres [9], the predominant jamming actuator is
the ’bag’ style universal gripper originally described in 2010
[10] that can be most simply realised using a latex balloon
membrane and coffee grounds as the granular material.

Bag grippers have subsequently appeared across a wide
range of application domains, including prosthesis [11],
underwater manipulation for deep sea missions [12], industrial
gripping [13], and as paws for legged robots [14]. A range
of further studies have explored the effects of, e.g., pressure,
grain shape, and grain size, using a bag-style gripper to
conduct those experiments (e.g., [15]). Bag grippers have
also been combined with learning algorithms [16] for object-
specific grasp strategies. Bag style grippers can therefore be
seen as a benchmark for jamming actuators. An important
question to ask is therefore ’how optimal is a bag shape?’.
This is the question we seek to answer in this paper.

B. Jamming gripper design exploration

Granular jamming grippers present a range of design
variables that can be tuned to elicit specific performance
regimes. Grain size, shape, and softness have been shown to
have a significant effect on gripper performance, confirmed
by studies of natural [17], manufactured [18] and 3D printed
[15], [19] grains. Grains are relatively simple to study as a
range of candidates is readily available.

The same cannot be said for membrane morphology,
although studies show that membrane material significantly
affects gripper performance [20]. Preliminary studies have
patterned ’nubs’ on the inside of the membrane, although
their effect on performance was mixed [21] Other preliminary
work demonstrates novel multi-material membranes that
can induce programmed deformations and improve gripping

performance on hard-to-grip objects such as coins [3].
Membrane morphology is a relatively underexplored area of
research as creating a variety of morphologies is only practical
through techniques including 3D printing, and despite recent
breakthroughs (e.g., [22]), modelling the complex interactions
between a membrane, the grains, and the environment is
an unsolved problem. This means pure experimental design
experimentation based on 3D printing is an attractive option,
to circumvent the reality gap and exploit the parallel nature
of the fabrication process.

C. Evolutionary robotics

Evolution has been demonstrated to be a useful enabling
technique for bespoke design of granular materials with
desired properties optimised for broad applications including
soft robotics [23]–[25]. Evolution has been applied in-silico to
the optimisation of the granular material within a soft robotic
gripper [2], where bespoke grains from a large set of possible
morphologies were explored in order to optimise the grip
strength, with a complex morphological dependency found on
both the size and shape of the target object. These approaches
were entirely modelled with no physical instantiation.

Ideally, modelling approaches can be parallelised on a
computing cluster as a means to scalability whereby an entire
generation of candidate designs can be assessed at once [26].
FEA is a typical approach, however it’s drawback is the
limited range of environmental interactions it can capture.
Mass-spring methods have shown promise in evolving soft
voxel robots, however the resulting real robots suffered from
some reality gap effects [27]. For a summary of available
modelling/design techniques see [28].

Our approach circumvents these issues and diretly evolves
in hardware. We parallelise on a print bed rather than a
high performance computer. Similar approaches using rigid
modular robots have been seen before [29], however we
harness printing rather reassembly of fixed modules to explore
the design space.

III. METHODOLOGY

We follow an experimental loop of print, assess, evolve.
The current generation of N=5 grippers are converted from
their numerical ’genome’ representation into CAD models
and printed. After printing, the grippers have their support
removed and are cleaned. Grippers are then filled with coffee
grounds and tested. Testing provides the average retention
(gripping) force on a target object, which is used as a fitness
metric. Fitness is automatically fed back into a desktop
computer that acts as an experiment manager, and a genetic
algorithm selects and mutates parent genomes to create new
children in the next generation. The experimental loop repeats
for a maximum of G=15 generations.

A. Representation

Each gripper is directly represented by a 2D Bezier curve; a
representation that has previously been shown to be amenable
for use in evolving robot components [30]. Each Bezier has a
variable number v of control points c0(x,y)...c(v−1)(x,y), plus



Fig. 2: Showing the step-by-step process that turns each genotype into a CAD model ready for printing: (a) The genome is a collection of
Bezier curves with a variable number of control points. The length and width of the gripper are included in the genome and fix the first
and last control points, as well as setting the radius of the attached base. (b) The profile created by the Bezier curve is revolved 360o

around the grippers y axis, creating a solid mesh. (c) A variety of attainable geometries, illustrating the potential scope of design space
exploration.

TABLE I: Gripper genome parameters and ranges.

Parameter Meaning Range

r Outer radius of gripper base 25-40mm
h Gripper height at central axis 30-60mm
v Number of Bezier control points 2-6

c(x) Control point x component 0-1
c(y) Control point y component 0-1

the radius of the base r and total gripper height h (both mm).
Control points are constrained such that 0 ≤ c(x), c(y) ≤ 1.
Any self-intersecting curves are randomly reinitialised as they
generate invalid meshes. The first and last control point are
constant and not encoded. They are set to (1,0) and (0,1),
representing the contact with the base and contact with the
gripper’s virtual central axis respectively (see Fig.2(a)).

To create a gripper, the genome is fed into FreeCAD via
a script, and is transformed from the (0,1) space such that
the maximum value of x = r and the maximum value of
y = h; e.g., the membrane contacts the base at (r,0), and
contacts the central axis at (0,h). The control points in the
genome are subsequently mapped to their real locations using
this transform. A base of appropriate size is automatically
generated in CAD as a ring with thickness 1mm, outer radius
r, and inner radius 15mm. A seal is added on top of the base
to connect to the membrane.

The curve defining the membrane morphology is rotated
360o around the gripper’s central axis to create a membrane
attached to the base and symmetric around the y axis at x = 0
(Fig.2(b)). The membrane is given a wall thickness of 1mm
(the minimum size permitted on our 3D printer). Fig.2(c)
shows 50 randomly initialised grippers, illustrating a wide
variety of printable morphologies. In the initial population,
grippers are random-uniformly generated within the parameter
ranges presented in Table I.

B. Printing

The current generation of grippers is then printed on
our Connex3 Objet 500 multimaterial polyjet printer. The
membrane is printed in Agilus30 (Shore-A 30) and the base
printed in rigid shore-D Vero material. The seal between the
membrane and adaptor is printed in Shore-A 30 with a thin
Shore-A 85 blend of Agilus30 and Vero between membrane
and adaptor to increase bond strength. An entire generation of
5 grippers is printed at once in approximately 4 fours; on our
printer we can easily scale each generation to a theoretical
maximum of 60-80 grippers at once, depending on base size.

After printing, excess support material was manually
removed using a craft knife and water jet. Each gripper
was then filled with coffee grounds using a funnel, repeatedly
tapping the membrane to ensure a complete, even fill, and
filling up to the gripper base level.

C. Testing

Each gripper was screwed on to a 3D printed adaptor
(item C in Fig. 3), which secures it during testing. The
adaptor connects via M6 silicone tubing and a small filter
to a Thomas 107CDC20 H vacuum pump, which provided
negative pressure through an SMC IRV10-C06BG regulator
at -50 kPa. The same tubing also connects to an auxiliary
positive pressure pump which unjammed the gripper after
each test.

The adaptor mounts onto a Dremel linear drill press,
which was adjusted so that the tip of the gripper was sitting
approximately 30mm above a 25mm radius 3D printed ball
test object. The ball is 3D printed with a thread and screwed
into a Zemic H3-C3 load cell, which is clamped and centered
inline with the gripper. The load cell records retention force
and sends to the desktop PC via a Raspberry Pi 3 Model B+
and a Sparkfun HX711 load cell amplifier. A 50mm x 50mm
platform was attached between the object and load cell to
replicate the action of picking an object from a flat surface.
See Fig. 3 for reference.



Fig. 3: Benchtop test setup: A: horizontal drill press, B: silicone
tubing (positive and negative pressure) attached to vacuum pump
(not shown), C: 3D printed adaptor, D: evolved printed membrane
filled with coffee grounds, E: Test object and flat platform, F: load
cell, G: vacuum filter. Data is sent via a USB-serial connection to
the desktop PC (not shown).

To test, the gripper is fully lowered onto the test object
in an unjammed state. Negative pressure is applied via the
vacuum pump to jam the gripper, which is then slowly raised
until it completely releases and clears the test object. The peak
retention force of the grip is recorded and then the vacuum
is released. Five one-second bursts of positive pressure are
then applied with a 3 second spacing via the auxiliary pump
to reset the gripper. To generate reliable fitness information,
each test is repeated five times, and the mean retention force
used as the gripper’s fitness score.

Once five test results are stored on the raspberry Pi, they
are returned to the desktop PC. Each gripper’s fitness score
f is set to the mean peak retention force of the five tests.

D. Genetic Algorithm

The gripper design space is explored using a GA, which
is a gradient-free black box optimiser suited for multi-modal
problem spaces such as ours. The GA can alter a gripper’s
radius, height, and can modify the placement of control points,
as well as adding or removing control points from the curve.

After all grippers in a generation have their fitness assessed
and recorded, the next generation of five children is created
via fitness-proportional selection, which gives preference
to high-performing parents and is used to balance design

Fig. 4: All 75 grippers arranged in generational order, with
generation 15 at the front and generation 1 at the rear of the image.
Some grippers were reprinted for the image.

space exploration and performance optimisation given the
small number of generations [31]. One parent is always
selected in this way; a second parent is chosen in an identical
manner if the crossover probability χ=0.8 is satisfied1. In
this case, one-point crossover is applied such that control
points are preserved (i.e., not split by crossover) and that
at least one control point is taken from the second parent.
The first peturbation of crossed parents (that with parent 1’s
genome contribution first) is used and the second peturbation
is discarded.

Mutation is applied to each possible allelle in the genome.
For r, h, plus the two components of each control point cx
and cy , mutation occurs on satisfaction of µ=0.2. Mutations
alter the value of the allelle by an amount drawn from a
normal distribution with a standard deviation set to 10% of
the parameter’s range. With probability η=0.25, either a new
control point is randomly initialised and added to the genome
(50% chance), or a random control point is deleted (50%
chance). All operations respect the bounds in Table I.

The child grippers then printed and tested as before. Once
all grippers have fitness values, the generation is over and a
new generation begins. We run 15 generations of in materio
evolution with 5 grippers per generation, for a total of 75
printed and tested grippers (see Fig.4). With 5 repeats per
test, this constitutes a total of 375 real data points, which is
used to generate the graphs below.

IV. RESULTS

Results assess the evolution of grippers in three main
ways, (i) gripper performance, (ii) gripper morphology, and
(iii) progression of the evolutionary process. To create a
reasonable baseline, we compare to a 3D printed bag-style
gripper.

A. Performance

Fig. 5(a) shows strong fitness progression through the
generations for both maximum and population fitness, with

1All GA probabilities are sampled from a uniform distribution in the
range 0-1. Mutation rates were selected following a brief parameter sweep.



(a)

(b)
Fig. 5: Evolution of gripper performance through the 15 generations:
(a) Maximum retention force (best gripper per generation, average
of 5 tests), and Average retention force (mean of 5 tests per gripper,
averaged over the entire population). (b) Morphology comparison
to bag-style jamming gripper using multiresolution Reeb graphs:
best gripper and average similarity per generation. Higher numbers
equate to grippers that are more similar to a bag-style spherical
gripper.

the best gripper per generation starting around 5N and ending
at 29N. The baseline standard bag gripper achieved an average
of 2.68N on the same object.

To investigate how the grippers achieved such strong
performance, we note that the best-performing grippers evolve
to exploit all three of the mechanisms by which granular
grippers generate grip strength [32]. Static friction from
surface contact is maximised through evolution of a curves
surface that approximates the curve of the sphere to maximise
the contact area. Geometric constraints from interlocking are
evidenced as grippers partially envelope the lower half of
the ball when the gripper is pushed over the object. Vacuum
suction from an airtight seal is seen in the highest-performing
grippers as a deep pocket in the centre of the gripper. These
mechanisms are exploited relatively reliably, as evidenced
through the low standard error in Fig. 5(a). The discovery
of these grippers is facilitated by the Bezier representation
which allow for these features to be readily embodied in the
grippers.

(a)

(b)
Fig. 6: (a) The four test objects, clockwise from top-left; Cube,
Ball, Coin, and Star.(b) Comparing performance (retention force)
for a standard bag gripper and the best evolved gripper (generation
15 gripper 4) across a range of test objects.

Features further away from the contact surface serve two
main purposes, (i) to ’set up’ specific curves on the contact
surface, or (ii) are be optimised to cause deformations that
pinch around the object when pushed down onto it.

One potential issue with this approach is overspecialisation
caused by testing on a single test object. To assess the
generality of the grippers, we test both the baseline and best
evolved gripper on three other challenging and geometrically
diverse test objects; a a cube, a star, and a coin with
approximate size of 25mm [3] (Fig. 6(a)).

Fitness, averaged over 5 tests, shows that the evolved
grippers transfer well onto these objects (Fig. 6(b)). We
suggest that transferability is due to the promotion of
fundamental gripping mechanisms rather than object-specific
features. The strongest optimisation effect is seen for the Ball
object that the grippers were optimised for, however both
cube and coin objects show vastly improved performance by
the best evolved gripper. Interestingly, the bag-style gripper
shows large average error on the cube; previous studies have
highlighted this issue with 3D printed membranes struggling
to comply around the shear surfaces. The evolved gripper
appears to solve this issue despite still using a printed
membrane. The star object shows closer (although still higher)
performance between the two grippers.



Fig. 7: Illustrating the Reeb similarity values attained when
comparing evolved grippers to the standard spherical bag gripper.
Higher numbers show increased similarity to a bag gripper, and
similarity scores range between 0 and 1.

These findings suggest that results might be more widely
applicable, however the limits of this generality are out of
scope for this paper and subject to further study.

B. Morphology

Multi-level Reeb graphs [33] allow us to assess the
morphological similarity of the evolved grippers. We compare
the CAD of each gripper to a spherical bag gripper to generate
a similarity score, which ranges between 0 and 1 and where
higher values correspond to more similar geometries. For
added context, Fig. 7 shows example similarity scores.

Fig. 5(b) shows that similarity generally decreases through-
out the generations, e.g., the population (which is initially
random) tends to move into a search space away from bag-
style geometries. The best gripper in 12 of the 15 generations
displays a similarity score lower than the population average,
meaning that fitter grippers are less spherical. The single
best gripper had a similarity score of 0.663. Similarity scores
are limited by the representation, as Beziers have a strong
tendency to produce curved surfaces.

C. Evolutionary process

Fig. 8 allows us to visualise the evolutionary process,
showing the composition of each generation with respect
to the parents they are created from, and demonstrating the
effects of fitness-proportional selection. We note that child 1
in generation 5 was given a fitness of 0; this design was not
printable. A low failure rate of 1/75 shows the benefit of the
Bezier representation in creating printable grippers, however
guaranteed printability is the eventual aim.

V. DISCUSSION

This paper showed the first successful model-free direct
evolution of soft robotic grippers. Grippers were evolved
over 15 generations to maximise their retention force on
a challenging test object. Results show a strong optimisa-
tion effect, with an upward trend in both maximum and
average generational gripping forces. Evolution generated
high-performing grippers significantly in excess of the grip

performance of a comparative bag-style gripper. Evolution
exploited all three mechanisms delineated in the literature
for increasing granular grip strength [32], meaning grippers
worked well when tested on an assortment of other test objects
and suggests that the evolved designs are potentially highly
generalisable, although further experimentation is required
to confirm. Overall, direct evolution is demonstrated to be
a viable technique for design of soft robotic mechanisms
despite operating with relatively low population sizes and few
generations. Evolution works especially well when coupled
with 3D printing, as (i) entire generations of (in this case
5, but up to 80) grippers may be printed at once, and (ii)
diverse and performant designs can be simply fabricated.

Reeb complexity assessed morphological differences be-
tween the evolved grippers and a standard spherical bag
gripper, showing increased generational deviation from bag-
like geometries as the evolution progressed. The best gripper
per generation was generally less similar to a bag-like gripper
than the average similarity of the generation, showing that the
best grippers were typically found away from the standard
designs used in the literature. This result suggests that,
despite their popularity in the literature, bag-style grippers
are frequently not optimal and that other designs should be
considered.

The ability to design, fabricate and test soft devices at
scale is a key component of upcoming ’autonomous design’
[28] or ’high throughput’ methodologies [34], [35] that
generate predictive models through large-scale experimental
data collection to further scale design exploration. Our
platform can be seen as a small-scale prototype demonstrator
of the data collection part of this methodology, although
significant human input is still required to communicate
with the printer, clean the prints, and set them up on the
experimental apparatus.

Besides increasing the level of automation in our technique,
the most straightforward extension is to expose a wider range
of design variables to evolution: grain shape and size, as
well as material composition of the membrane and potential
surface patterning are all potential optimisation candidates.
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