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Abstract— Enabling dexterous manipulation and safe human-
robot interaction, soft robots are widely used in numerous
surgical applications. One of the complications associated with
using soft robots in surgical applications is reconstructing their
shape and the external force exerted on them. Several sensor-
based and model-based approaches have been proposed to
address the issue. In this paper, a shape sensing technique
based on Electrical Impedance Tomography (EIT) is proposed.
The performance of this sensing technique in predicting the
tip position and contact force of a soft bending actuator is
highlighted by conducting a series of empirical tests. The
predictions were performed based on a data-driven approach
using a Long Short-Term Memory (LSTM) recurrent neural
network. The tip position predictions indicate the importance
of using EIT data along with pressure inputs. Changing the
number of EIT channels, we evaluated the effect of the number
of EIT inputs on the accuracy of the predictions. The least
RMSE values for the tip position are 3.6 and 4.6 mm in Y and
Z coordinates, respectively, which are 7.36% and 6.07% of the
actuator’s total range of motion. Contact force predictions were
conducted in three different bending angles and by varying
the number of EIT channels. The results of the predictions
illustrated that increasing the number of channels contributes
to higher accuracy of the force estimation. The mean errors
of using 8 channels are 7.69%, 2.13%, and 2.96% of the total
force range in three different bending angles.

I. INTRODUCTION

Soft robots are widely used in many fields and applications
such as minimally invasive surgery (MIS) [1], terrain navi-
gation [2], rehabilitation [3], and industrial grippers [4]. Soft
robots provide compliance, facilitate dexterous manipulation,
and ensure safe human-robot interaction. Despite consider-
able benefits associated with the use of soft robotics, certain
challenges remain to be addressed. One of these challenges
is state estimation during actuation and interaction with the
environment. The high compliance of soft robots enables
them to deform nonlinearly under external and internal loads,
thus making the prediction of their states, such as tip position
and backbone shape, demanding. In surgical applications, the
presence of anatomical barriers and unstructured environ-
ments make state estimation even more challenging. Accu-
rate state estimation contributes to lower pain and discomfort
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in patients [5] and reduces postoperative complications and
adverse events during operations [6], [7]. Estimating exerted
forces by soft robots can contribute equally to patients’
comfort. A large number of studies have investigated force
prediction from shape sensing modules of soft robots [8],
[9], [10]. Apart from intraoperative imaging, model-based
and sensor-based approaches have been investigated thus far
to address the state estimation challenges in the field of soft
surgical robots.

In sensor-based approaches, Fiber Bragg Gratings (FBGs),
ElectroMagnetic (EM) trackers, and stretchable sensors are
primarily used for state estimation. FBGs are MRI com-
patible and biocompatible optical sensors that provide state
information of the robot with high sampling rates [7],
[11], measuring the wavelength shifts of the emitted light.
Although FBGs intrinsically have limited range of motion,
recent studies have shown using Nitinol wires in combination
with FBGs can enhance their deformability [12]. FBGs
require a bulky and expensive optical spectrum interrogator
to measure the wavelength shift [13]. Additionally, the dis-
tance between the interrogator and optical cores adversely
influences the accuracy, thus posing limitations on the appli-
cation of FBGs in surgical devices [14]. EM trackers have
minimum impact on mechanical characteristics of the overall
system, however the electromagnetic field of operating rooms
can severely impact performance. Generally used in flexible
robots with multiple serially connected sections [15], several
studies estimated the shape and tip position of flexible robots
through fitting Bezier curves to EM tracker data [16], [17].
Stretchable sensors composed of conductive materials are
another method used for state estimation of soft robots by
measuring resistance [18], capacitance [19], or inductance
[20] changes induced by the deformations of the device. The
limitations of stretchable sensors are hysteresis, requiring
additional wiring, and material biocompatibility concerns
[21].

Continuing the study conducted in [22] where EIT was
shown effective in deformation detection, this paper eval-
uates the tip position and force estimation accuracy of
a data-driven approach using EIT data. Biocompatibility
and MRI compatibility are two potential benefits of this
sensing approach in inflatable medical devices. Compared to
previously mentioned sensing schemes, EIT shape sensing
requires minimal wiring, has negligible effect on system
physical characteristics, and minimizes manufacturing and
sensing integration costs. To employ this sensing technique,

ar
X

iv
:2

30
2.

06
45

6v
2 

 [
cs

.R
O

] 
 2

5 
A

pr
 2

02
3



Fig. 1. a) The soft continuum actuator and the integrated FPC containing
13 electrodes. The FPC was placed on the flat side of the semi-circle cross-
section of the actuator. b) Schematic of the integrated actuator with an 8-
electrode FPC, and how the impedances are measured. While current I17 is
injected, V26 , V35 are recorded simultaneously. Subscripts refer to electrode
number, so I17 is the current injected between electrodes 1 and 7.

a conductive liquid is used to pressurise the soft actuator,
which induces a deformation and volume change within
the chamber. Using an array of electrodes embedded inside
the actuation chamber, electrical current is injected between
different regions and the resultant voltages are recorded. The
changes in these voltages are attributed to the changes in
the volume of the liquid and shape changes of the actuator.
Leveraging the measured voltages in combination with a
recurrent neural network, we evaluate the performance of
EIT sensing in tip position prediction and contact force
estimation. Since EIT images provide no information of the
sequence of the data, a data-driven approach was adopted
to predict the states based on the arrays of voltage changes.
Experiments are executed using a single degree of freedom
(DOF) soft bending actuator to validate the accuracy of
EIT state estimation in a data-driven manner. An OptiTrack
camera system and a 6-axis force transducer are used for
training the network and as the ground truth for the EIT state
estimation assessment. As voltages are recorded through sev-
eral pairs of electrodes, the effect of number of measurement
pairs on the accuracy of state estimation of EIT is evaluated
in this study. The proposed sensing scheme can be potentially
used in flexible endoscopy and laparoscopy where the shape
changes of the end effector can be measured while meeting
safety concerns.

II. MATERIALS AND METHODS

A. EIT hardware system

The primary unit of the EIT system utilized here is Quadra
impedance spectroscopy developed by Eliko tech [23]. This
unit incorporates an alternating current source, voltage ac-
quisition and multiplexer, which enables the recording of

impedance data from up to 16 electrodes. An impedance
measurement requires current to be injected through a pair
of electrodes, and voltage to be recorded through another
pair, a sequence of these measurements is referred to as an
EIT protocol. In this study, current of magnitude 1 mA at 11
kHz frequency was used in all experiments, which is injected
sequentially, known as Time Division Multiplexing (TDM),
at a rate of 20 Hz for a complete protocol. To estimate
the state of the robot, the recorded voltages can be directly
exploited to train the network or EIT reconstructions could
be used as in [22].

B. Fabricating the Soft Actuator

The soft bending actuator is fabricated through casting
Ecoflex 00-50 Silicone rubber into a 3-D printed mold
following the same procedure discussed in [24]. The mold
is designed such that the actuator has an inflatable chamber
with a semi-circle cross-section. Fiber reinforcement and an
inextensible polyester layer are added to restrain the radial
and axial expansions of the actuator, respectively. Being able
to bend in-plane with a single DOF, the fabricated actuator
is 100 mm long with a wall thickness of 4 mm and total
diameter of 12 mm. Several of the proposed continuum ac-
tuator can be concatenated into a tethered endoscopic device
for applications such as gastrointestinal endoscopy. Prior to
capping the distal end of the actuator, a Flexible Printed
Circuit (FPC) containing the injection and measurement elec-
trodes was integrated into the actuation chamber. The FPC
contains 13 electrodes placed linearly with constant spacing
of 6.5 mm on a Polyamide flexible film. The flexibility and
stiffness of the film has a minimum impact on the mechanical
behaviour of the actuator. The electrodes were gold coated
to minimize the contact impedance between the conductive
fluid and the electrodes, thus reducing the noise in the voltage
signals. The fluid used for pressuring the actuator is 0.9%
saline. To integrate the FPC into the actuator, the Polyamide
film is placed on the flat side of the semi-circle cross section
of the actuator. To fix the position of the FPC and minimize
the noise stemming from the displacement of the electrodes,
both ends of the FPC are glued using a silicone epoxy.
The fabricated soft bending robot with the integrated FPC
is shown in Fig. 1.

C. LSTM Network

To predict the tip position and the contact force of the soft
actuator an LSTM network is trained using a combination
of pressure and EIT voltages. LSTM is a dynamic network
capable of learning time series events by keeping a memory
of data from past events [25]. As soft robots display a
time-varying behaviour and the data related to their states
is sequential, LSTM is a potential candidate to be used for
predicting the tip position and contact force. In the study, the
training and predictions are performed by the LSTM used in
[26]. Ultimately, an LSTM network with layer size of 50 and
dropout rate of 0.1 is used. The ratio of the unseen data for
evaluating the prediction accuracy to the training data is 1 to
4. The training data is normalised by the mean and standard



Fig. 2. a) The setup used for tip position estimation using motion capture system. The effect of using pressure and EIT impedance changes in the accuracy
of the tip position estimation upon actuation b) with constant peak amplitude, top: pressure only as input, bottom: pressure and EIT impedance as inputs.
c) with random peak amplitude, top: pressure only as input, bottom: pressure and EIT impedance as inputs.

deviation of the training dataset. The network with the same
architecture but different training datasets is used for all the
predictions in this study.

III. EXPERIMENTAL SETUP

The experimental setup used for data collection comprises
the soft bending robot, two motion capture systems, a hy-
draulic pressure sensor, actuation and computation units, and
a force/torque transducer. Two reflective markers were placed
on the rigid structure and at the distal end of the robot for
optical tracking of the tip position using OptiTrack motion
capture system (see Fig. 2.a). The actuation unit incorporates
a hydraulic pump system along with connecting tubes. The
hydraulic pump system consists of a leadscrew and stepper
motor driven by a uStepper S-lite controller board and a
syringe filled with 0.9% saline. An Arduino Due generated
the control signals to pressurize the actuator, and recorded
the absolute hydraulic pressure as measured by a MS5803-
14BA sensor [27]. The pressure data was sampled at 20 Hz
and recorded in MATLAB through serial communication.

Two cameras (Prime 13 OptiTrack, NaturalPoint, USA)
are employed to track the reflective marker at the tip of the
actuator and record its coordinates in 3-D space. OptiTrack
data collected at 125 Hz is utilized to train the network
and as the ground truth for the tip position predictions. For
contact force prediction experiments, an 6-axis force/torque
transducer (Nano 17, ATI Automation, USA) is employed.
The force data sampled at 62.5 Hz is used for training and
validation of the LSTM. Impedance changes upon pressur-
ization of the actuator are sampled by Quadra impedance
spectroscopy at 20 Hz. Based on the protocol defined with
9 channels, the current is injected between two outlying
electrodes (e.g. I17 in Fig 1), and impedance changes are
measured through pairs of electrodes in between (e.g. V26

and V35 in Fig 1). Since the sampling rate of the capture
motion system and the force sensor exceed that of the EIT

system, the force and the tip position data are resampled at
20 Hz.

A. Tip Position Estimation

To evaluate the reliability of the EIT data to predict the tip
position of the soft bending robot, two sets of experiments
were conducted. First, the actuator was set to bend with a
constant period and amplitude of 4000 steps, using a constant
velocity of 1500 steps per minute, which corresponded to
minimum and maximum pressures of 1.131 and 1.675 bar
respectively. The complete dataset was 10 minutes or 58 rep-
etitions. In the second experiment, the amplitudes between
1000 and 5000 steps were chosen randomly while the slope
and the velocity remained the same. It was found in initial
testing that the extra complexity in this required additional
training data, so 20 minutes or 116 actuations were used in
this case. In both experiments, the pressure and EIT data are
used as the input to the LSTM network, and Y-Z coordinates
of the tip position are defined as the output. The test data
used as the ground truth for the predictions incorporates
the unseen data from the sampled dataset. To demonstrate
the improvements offered by EIT, the tip prediction was
performed using pressure data alone, and then in combination
with EIT data through four channels.

To discover the effect of the number of EIT channels used
for training the LSTM, the tip position was estimated by
training the network using pressure and 3 different subsets of
the original EIT dataset containing 1, 4, and 8 EIT channels.

B. Contact Force Estimation

To collect the contact force data, the force transducer was
placed within the working space of the soft actuator. The po-
sition of the sensor in the vertical plane was adjusted using a
rigid structure connected to the aluminium stand. The contact
force dataset was obtained at three different bending angles
of the actuator to evaluate the effect of the shape on the



Fig. 3. The effect of the number of EIT channels used for the tip prediction. a) One channel b) Four channels c) Eight channels. The results indicate
that while using 4 channels can lead to enhanced estimation compared to 1 channel, increasing this number to 8 may not have the same effect. The RMSE
values for tip estimation with 4 channels are 7.36% and 6.07% of the actuator’s total range of motion in Y and Z, respectively.

precision of the predictions (see Fig 4). Before pressurizing
the actuator, it was pre-curved such that the tip has slight
contact with the sensor. The actuator was pressurized by
a triangle wave signal with random peak values. The data
collection at each bending angle lasted 10 minutes followed
by resampling the data at 20 Hz EIT sampling rate. The
feature variables of the LSTM incorporated the pressure and
EIT impedance values of 4 channels while the target variable
was set to the force data.

IV. RESULTS

A. Tip Position Estimation

Fig. 2 compares the predicted tip position for the networks
trained with pressure and with pressure and EIT. In the first
experiment with repetitive actuation, using the pressure alone
has approximately the same prediction results as using both
the pressure and the EIT data (see Fig. 2.b). This outcome
can be intuitively concluded as the data sequence is highly re-
peatable and thus easier to predict by the network. However,
when the pressure signals have random peak amplitudes, the
pressure fails to predict the tip position with any accuracy
(Fig. 2.c). It is observed that the RMSE of the predictions by
the pressure values is smaller than using both the pressure
and EIT data in the experiment with non-random pressure.
This difference can be explained by the additional noise in
the EIT signals, that impacts the accuracy of the predictions.
In case of constant peak amplitude, the overall RMSE values
in vertical plane are 0.825 and 2.08 mm using pressure only
and in combination with EIT data, respectively. However,

these values for random peak amplitude are 21.6 and 6.24
mm.

Regarding the effect of the number of channels, as shown
in Fig. 3, the dataset with 4 EIT channels yielded slightly en-
hanced predictions than the dataset with 1 channel. However,
the prediction accuracy dropped by increasing the number of
EIT channels to 8. This can be concluded by calculating the
RMSE values. The least RMSE values for the tip position
are 3.6 and 4.6 mm in Y and Z coordinates, respectively.
These values are 7.36% and 6.07% of the actuator’s total
range of motion in Y and Z, respectively. The overall RMSE
values in vertical plane are 5.84, 6.24, and 7.21 mm in
case of using 1 channel, 4, and 8 channels, respectively.
The results underline the fact that using a higher number
of channels does not necessarily enhance the accuracy of
the predictions, as the channels are not linearly independent
and thus may not contain much additional information,
but may introduce further noise. Optimizing the number of
channels is important as the higher number can increase the
computational cost of the system, and complexity of wiring
and manufacture, while it has no contribution to improving
the predictions.

B. Contact Force Estimation

Using the same LSTM and training to test dataset ratio,
the prediction results respective to three bending angles
are depicted in Fig. 6. Further predictions were conducted
to evaluate the influence of channel numbers on the re-
sults. Therefore, the contact force was predicted using three



Fig. 4. Collecting the contact force data for training the network in three
different bending angles.

different number of channels similar to ones used in tip
position estimation. These predictions were repeated for
all three bending angles. The mean and standard deviation
of the absolute error between the ground truth data and
predictions are illustrated in Fig. 5. The force was predicted
most accurately in location b with 8 EIT channels, with a
mean error of 2.6 mN, or 1.82% of the maximum force
applied. Additionally, regardless of the location of the force
sensor, the mean and the standard deviation of the error
decline by using higher number of channels for training the
network. Higher number of channels provides more detailed
information of the actuator’s states during the force exertion.
Furthermore, the relatively high prediction error in location
(a) can be attributed to the lower Signal to Noise Ratio
(SNR) of the impedance data measured in this location. The
actuator’s deformation is close to its rest shape in location
(a), hence yielding minimal impedance differentials.

V. DISCUSSION AND CONCLUSION

In this paper, the EIT sensing technique with broad
applications in the shape sensing and force estimation of
medical devices was proposed. Experiments were conducted
to evaluate the reliability and effectiveness of EIT in pre-

Fig. 5. Mean and standard deviation for the contact force estimation
respective to the number of channels and the location of the force sensor

Fig. 6. The accuracy of the contact force prediction in three different
location using 4 channels of EIT.

dicting the tip position and contact force of a soft bending
actuator. Since the actuator bends in plane, the external force
is exerted and estimated in the same plane. However, out
of the plane force exertion will be studied in future works
with a multi degree of freedom actuator fabricated in [28].
The results showed using pressure data as the only input
of the LSTM leads to noticeably less accurate predictions
when the continuum robot is actuated by random values of
pressure. The prediction RMSE values for using pressure
only were 10.1 and 19.1 mm in Y and Z coordinates,
respectively. However, the inclusion of the EIT data in the
feature variables resulted in RMSE values of 4 and 4.8 mm
in the same coordinates. These values are 8.18% and 6.33%
of the actuator’s range of motion in Y and Z coordinates
respectively, which are more promising than some studies
such as [26]. Increasing the number of channels used in
the tip position predictions can have an undesired effect
on the resultant accuracy. Particularly, using only a single
channel yielded less erroneous predictions than using 4 and
8 channels in terms of RMSE values. The higher accuracy of
a single channel can stem from the fact that one channel is
more sensitive to deformations. However, changing the EIT
protocol for defining measurement and injection pairs might
vary the results. Additionally, higher number of channels
is probably required in case of interacting with an obstacle
or the exertion of an external load along the length of the
actuator.

The accuracy of the force prediction increases by using a



higher number of EIT channels. The mean errors of using
8 channels are 7.8, 2.6, and 4.5 mN, which are 7.69%,
2.13%, and 2.96% of the total force range (improved results
compared to [26]). This value for using 1 channel equals
to 13.6, 3.8, and 7.3 mN in location (a), location (b), and
location (c), respectively. It can be observed that the bending
angle at which the external force is exerted can have an
impact on the accuracy of the force predictions. This can be
attributed to SNR value of the impedance signal which is
the lowest in location (a). This result is due to the minimal
difference between the actuator’s shape in location (a) and
its shape in rest position. In future studies, the proposed
EIT system will be used to predict the entire shape of the
actuator’s backbone by using additional markers along the
actuator and parameterising the curves. Shape estimation
will be conducted using different machine learning models
and will be compared to LSTM. The prediction of the
shape while external forces are being exerted simultaneously
and shape will be explored in future works. Additionally,
the Quadra impedance spectroscopy will be replaced by
a frequency division multiplexing (FDM) method which
enhances the sampling rate of the measurements.
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